[1] |
AN T C, SUN H W, LI G Y, et al., 2016. Differences in photoelectrocatalytic inactivation processes between E. coliand its isogenic single gene knockoff mutants: Destruction of membrane framework or associated proteins?[J]. Applied Catalysis B: Environmental, 188: 360-366.
|
[2] |
CHEN X F, YIN H L, LI G Y, et al., 2019. Antibiotic-resistance gene transfer in antibiotic-resistance bacteria under different light irradiation: Implications from oxidative stress and gene expression[J]. Water Research, 149: 282-291.
DOI
PMID
|
[3] |
CHOUDHARY D, LAGAGE V, FOSTER K R, et al., 2023. Phenotypic heterogeneity in the bacterial oxidative stress response is driven by cell-cell interactions[J]. Cell Reports, 42(3): 112168.
|
[4] |
GAO S, ZHAO P D, LI Y W, et al., 2021. Characterization and influence of odorous gases on the working surface of a typical landfill site: A case study in a Chinese megacity[J]. Atmospheric Environment, 262: 118628.
|
[5] |
HE R, YAO X Z, CHEN M, et al., 2018. Conversion of sulfur compounds and microbial community in anaerobic treatment of fish and pork waste[J]. Waste Management, 76: 383-393.
DOI
PMID
|
[6] |
HU Z Y, BAI X H, 2023. Self-repair and resuscitation of viable injured bacteria in chlorinated drinking water: Achromobacter as an example[J]. Water Research, 245: 120585.
|
[7] |
IMLAY J A, 2013. The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium[J]. Nature Reviews Microbiology, 11(7): 443-454.
DOI
PMID
|
[8] |
LEI J T, LI G Y, YU H, et al., 2022. Potent necrosis effect of methanethiol mediated by METTL7B enzyme bioactivation mechanism in 16HBE cell[J]. Ecotoxicology and Environmental Safety, 236: 113486.
|
[9] |
LI Y J, HU Z H, LIU X H, et al., 2024a. Characteristics of bioaerosol emissions from a municipal wastewater treatment plant: Health risk assessment and microbial composition[J]. Science of the Total Environment, 934: 173096.
|
[10] |
LI P Y, WANG C, LI L, et al., 2024b. Bioaerosols and VOC emissions from landfill leachate treatment processes: Regional differences and health risks[J]. Journal of Hazardous Materials, 480: 136232.
|
[11] |
LIANG Z S, YU Y, WANG X L, et al., 2023. The exposure risks associated with pathogens and antibiotic resistance genes in bioaerosol from municipal landfill and surrounding area[J]. Journal of Environmental Sciences, 129: 90-103.
DOI
PMID
|
[12] |
LIANG Z S, FENG Q H, ZHANG Y, et al., 2024. Odorous VOCs released from bio-decomposition and its interaction mechanism with bacteria: Compared inter-type with intra-type household garbage[J]. Journal of Cleaner Production, 447: 141523.
|
[13] |
LIAO W, LIANG Z S, YU Y, et al., 2021. Pollution profiles, removal performance and health risk reduction of malodorous volatile organic compounds emitted from municipal leachate treating process[J]. Journal of Cleaner Production, 315: 128141.
|
[14] |
LIAO X Y, LIU D H, DING T, 2020. Nonthermal plasma induces the viable-but-nonculturable state in Staphylococcus aureus via metabolic suppression and the oxidative stress response[J]. Applied and Environmental Microbiology, 86(5): e02216-19.
|
[15] |
LIU J Y, YANG L, KJELLERUP B V, et al., 2023. Viable but nonculturable (VBNC) state, an underestimated and controversial microbial survival strategy[J]. Trends in Microbiology, 31(10): 1013-1023.
DOI
PMID
|
[16] |
LIU Y J, CAI Y W, LI G Y, et al., 2022. Response mechanisms of different antibiotic-resistant bacteria with different resistance action targets to the stress from photocatalytic oxidation[J]. Water Research, 218: 118407.
|
[17] |
LIU Y X, YE J H, YANG Y, et al., 2025. Volatile organic compound emissions from polluted and natural soils: Influences of environmental factors[J]. ACS ES & T Air, 2(3): 386-395.
|
[18] |
MA R N, PENG L J, TANG R L, et al., 2025. Bioaerosol emission characteristics and potential risks during composting: Focus on pathogens and antimicrobial resistance[J]. Journal of Hazardous materials, 481: 136466.
|
[19] |
NG T W, IP M, CHAO C Y H, et al., 2018. Differential gene expression in Escherichia coli during aerosolization from liquid suspension[J]. Applied Microbiology and Biotechnology, 102(14): 6257-6267.
DOI
PMID
|
[20] |
SIDOROVA D E, PLYUTA V A, PADIY D A, et al., 2022. The effect of volatile organic compounds on different organisms: Agrobacteria, plants and insects[J]. Microorganisms, 10(1): 69.
|
[21] |
ŞIMŞEK E, KIM M, 2018. The emergence of metabolic heterogeneity and diverse growth responses in isogenic bacterial cells[J]. The ISME Journal, 12(5): 1199-1209.
|
[22] |
SMITH B L, KING M D, 2022. Aerosolization triggers immediate antibiotic resistance in bacteria[J]. Journal of Aerosol Science, 164: 106017.
|
[23] |
ŠTUMPF S, HOSTNIK G, PRIMOŽIČ M, et al., 2020. Generation times of E. coliprolong with increasing tannin concentration while the lag phase extends exponentially[J]. Plants, 9(12): 1680.
|
[24] |
WANG Q, GUO S Y, HOU Z L, et al., 2021. Rainfall facilitates the transmission and proliferation of antibiotic resistance genes from ambient air to soil[J]. Science of the Total Environment, 799: 149260.
|
[25] |
WANG Y, WANG W W, YU X Z, et al., 2024a. Global diversity of airborne pathogenic bacteria and fungi from wastewater treatment plants[J]. Water Research, 258: 121764.
|
[26] |
WANG Z M, LIANG Z S, LI G Y, et al., 2024b. Odorous organic gas emission characteristics from cooked food wastes during aerobic decomposition[J]. Journal of Cleaner Production, 434: 139961.
|
[27] |
WANG Y N, WANG Q Z, LI Y H, et al., 2024c. Insights into bioaerosol contamination in the process of mineralized refuse mining: Microbial aerosolization behavior and potential pathogenicity[J]. Journal of Hazardous materials, 480: 136142.
|
[28] |
XU A K, CHANG H M, ZHAO Y, et al., 2020. Dispersion simulation of odorous compounds from waste collection vehicles: Mobile point source simulation with ModOdor[J]. Science of the Total Environment, 711: 135109.
|
[29] |
YE C S, CHEN C L, FENG M B, et al., 2024. Emerging contaminants in the water environment: Disinfection-induced viable but non-culturable waterborne pathogens[J]. Journal of Hazardous Materials, 461: 132666.
|
[30] |
YIN H L, LI G Y, CHEN X F, et al., 2020. Accelerated evolution of bacterial antibiotic resistance through early emerged stress responses driven by photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 269: 118829.
|
[31] |
YU Y, LIANG Z S, LIAO W, et al., 2021. Contributions of meat waste decomposition to the abundance and diversity of pathogens and antibiotic-resistance genes in the atmosphere[J]. Science of the Total Environment, 784: 147128.
|
[32] |
ZHANG L M, WANG B H, SU Y L, et al., 2023a. Pathogenic bacteria are the primary determinants shaping PM2.5-borne resistomes in the municipal food waste Treatment system[J]. Environmental Science & Technology, 57(48): 19965-19978.
|
[33] |
ZHANG S M, LIANG Z S, WANG X L, et al., 2023b. Bioaerosols in an industrial park and the adjacent houses: Dispersal between indoor/outdoor, the impact of air purifier, and health risk reduction[J]. Environment International, 172: 107778.
|
[34] |
ZHANG J K, SU P D, CHEN H H, et al., 2023c. Impact of reactive oxygen species on cell activity and structural integrity of Gram-positive and Gram-negative bacteria in electrochemical disinfection system[J]. Chemical Engineering Journal, 451(Part 3): 138879.
|
[35] |
ZHANG J Y, LI X W, QIAN A A, et al., 2024. Effects of operating conditions on the in situ control of sulfur-containing odors by using a novel alternative landfill cover and its transformation mechanism[J]. Environmental Science and Pollution Research, 31(5): 7959-7976.
|
[36] |
ZWIETERING M H, JONGENBURGER I, ROMBOUTS F M, et al., 1990. Modeling of the bacterial growth curve[J]. Applied and Environmental Microbiology, 56(6): 1875-1881.
DOI
PMID
|
[37] |
李桂英, 刘建莹, 安太成, 2023. 水体消毒过程中活的不可培养细菌的形成与复苏机制研究进展[J]. 生态环境学报, 32(7): 1333-1343.
DOI
|
|
LI G Y, LIU J Y, AN T C, 2023. The formation and resuscitation mechanisms of viable but nonculturable bacteria during water disinfection processes[J]. Ecology and Environmental Sciences, 32(7): 1333-1343.
|
[38] |
田莹, 张国城, 李晶晶, 等, 2022. 生物气溶胶雾化器对大肠杆菌活性影响的评价[J]. 计量学报, 43(5): 696-700.
|
|
TIAN Y, ZHANG G C, LI J J, et al., 2022. Evaluation of the influence of bioaerosol atomizers on the activity of E. coli[J]. Acta Metrologica Sinica, 43(5): 696-700.
|
[39] |
王艺霓, 蔡仪威, 孙彤,, 2025. 海产养殖水体中复杂组分致光催化剂杀菌失活的机理研究[J]. 生态环境学报, 34(1): 89-98.
DOI
|
|
WANG Y N, CAI Y W, SUN T, et al., 2025. The deactivation mechanism of photocatalyst inactivation of bacteria caused by complex components in mariculture water[J]. Ecology and Environment, 34(1): 89-98.
|
[40] |
王莹, 韩云平, 李琳, 2024. 污水处理厂生物气溶胶中肠杆菌赋存特征及影响因素[J]. 环境科学学报, 44(3): 327-334.
|
|
WANG Y, HAN Y P, LI L, 2024. Characteristics and influence factors of Enterobacteriaceae in bioaerosols from wastewater treatment plants[J]. Acta Scientiae Circumstantiae, 44(3): 327-334.
|
[41] |
徐振波, 钟菲凤, 赵喜红, 等, 2024. 在生物被膜中活但不可培养状态细胞的形成与调控研究进展[J]. 浙江大学学报(农业与生命科学版), 50(4): 568-583.
|
|
XU Z B, ZHONG F F, ZHAO X H, et al., 2024. Research progress on the formation and regulation of viable but nonculturable cells in biofilms[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 50(4): 568-583.
|
[42] |
张硕, 丁林贤, 苏晓梅, 2018. 微生物VBNC状态形成及复苏机制[J]. 微生物学报, 58(8): 1331-1339.
|
|
ZHANG S, DING L X, SU X M, 2018. Formation and resuscitation of the viable but non-culturable state in microorganisms[J]. Acta Microbiologica Sinica, 58(8): 1331-1339.
|