生态环境学报 ›› 2022, Vol. 31 ›› Issue (8): 1637-1646.DOI: 10.16258/j.cnki.1674-5906.2022.08.016
陶玲1,2,3(), 黄磊1,2, 周怡蕾1,2, 李中兴1,2, 任珺1,2,3,4,*(
)
收稿日期:
2022-01-12
出版日期:
2022-08-18
发布日期:
2022-10-10
通讯作者:
* 任珺(1968年生),男,教授,博士,博士研究生导师,主要从事土壤污染控制与修复研究。E-mail: renjun@mail.lzjtu.cn作者简介:
陶玲(1970年生),女,教授,博士,从事土壤污染环境修复工作。E-mail: taoling@mail.lzjtu.cn
基金资助:
TAO Ling1,2,3(), HUANG Lei1,2, ZHOU Yilei1,2, LI Zhongxing1,2, REN Jun1,2,3,4,*(
)
Received:
2022-01-12
Online:
2022-08-18
Published:
2022-10-10
摘要:
全国部分地区重金属污染土壤问题严重,生物炭作为土壤修复材料,其在土壤重金属的治理中具有重要的作用。为探讨不同添加量的污泥-凹凸棒石共热解生物炭对土壤中重金属的钝化效果,在矿区重金属污染土壤中添加不同比例的凹凸棒石(0,5%,10%,15%,20%,25%,30%)和污泥共热解制备污泥生物炭,进行钝化修复实验,从而降低土壤中重金属转移的风险。结果表明,污泥生物炭增加了土壤的pH值,显著提高了钝化土壤的阳离子交换量(CEC)和电导率(EC),降低了土壤中重金属的DTPA提取态和TCLP提取态含量,明显促进了土壤中Cd和Zn由酸溶态向残渣态转变。其中20%凹凸棒石添加量制备的污泥生物炭对重金属Cu和Cd钝化效果较好,残渣态Cu显著提高了19.27%,还原态Cd降低了12.5%。15%凹凸棒石添加量制备的污泥生物炭对重金属Cr、Zn和Ni钝化效果较好,酸溶态Cr、Zn和Ni分别显著地降低了38.41%、38.39%和25.4%,同时凹凸棒石和污泥共热解决生物炭明显降低了土壤中重金属转移的风险,钝化效率达到了94.09%。20%凹凸棒石添加污泥制备的污泥生物炭在重金属污染土壤的工程修复领域具有一定的应用潜力。
中图分类号:
陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646.
TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil[J]. Ecology and Environment, 2022, 31(8): 1637-1646.
处理 Treatment | pH | CEC/(cmol∙kg-1) | EC/(μS∙cm-1) |
---|---|---|---|
CK (对照) | 7.74±0.19d | 5.83±0.06f | 490.36±8.32e |
SAB0 (0%) | 8.23±0.03c | 6.43±0.07e | 549.99±4.97d |
SAB5 (5%) | 8.31±0.03bc | 7.47±0.16d | 584.72±15.63c |
SAB10 (10%) | 8.42±0.03b | 8.75±0.09b | 626.29±11.26b |
SAB15 (15%) | 8.49±0.01ab | 8.13±0.09c | 668.04±9.58a |
SAB20 (20%) | 8.39±0.06b | 8.80±0.04b | 580.24±9.59c |
SAB25 (25%) | 8.61±0.17a | 9.88±0.18a | 574.10±3.53c |
SAB30 (30%) | 8.39±0.07bc | 8.91±0.12b | 571.64±11.43d |
F值 | 20.734*** | 418.83*** | 70.83** |
表1 污泥生物炭钝化重金属污染土壤的pH、离子交换容量和电导率
Table 1 pH, cation exchange capacity and electrical conductivity of heavy metals-polluted soil stabilized by sludge biochar
处理 Treatment | pH | CEC/(cmol∙kg-1) | EC/(μS∙cm-1) |
---|---|---|---|
CK (对照) | 7.74±0.19d | 5.83±0.06f | 490.36±8.32e |
SAB0 (0%) | 8.23±0.03c | 6.43±0.07e | 549.99±4.97d |
SAB5 (5%) | 8.31±0.03bc | 7.47±0.16d | 584.72±15.63c |
SAB10 (10%) | 8.42±0.03b | 8.75±0.09b | 626.29±11.26b |
SAB15 (15%) | 8.49±0.01ab | 8.13±0.09c | 668.04±9.58a |
SAB20 (20%) | 8.39±0.06b | 8.80±0.04b | 580.24±9.59c |
SAB25 (25%) | 8.61±0.17a | 9.88±0.18a | 574.10±3.53c |
SAB30 (30%) | 8.39±0.07bc | 8.91±0.12b | 571.64±11.43d |
F值 | 20.734*** | 418.83*** | 70.83** |
萃取剂 Extractant | 处理 Treatment | Cu | Zn | Cd | Cr | Ni |
---|---|---|---|---|---|---|
DTPA | CK | 89.61±1.07 | 98.38±0.04 | 93.15±0.64 | 91.46±0.22 | 84.90±1.55 |
SAB0 | 90.63±0.93 | 98.39±0.08b | 93.35±0.0.68 | 92.18±0.43 | 87.01±1.14 | |
SAB5 | 90.79±0.87 | 98.33±0.09 | 94.66±0.34 | 92.25±0.18 | 86.70±2.14 | |
SAB10 | 91.34±1.22 | 98.41±0.07 | 93.80±0.54 | 92.32±0.65 | 86.11±0.31 | |
SAB15 | 90.92±0.11 | 98.49±0.07 | 93.85±0.91 | 92.29±0.16 | 86.44±1.23 | |
SAB20 | 91.44±0.89 | 98.53±0.07 | 94.08±0.98 | 92.48±0.27 | 87.56±4.02 | |
SAB25 | 91.48±1.20 | 98.58±0.07 | 94.03±0.97 | 92.47±0.27 | 85.78±1.04 | |
SAB30 | 91.38±0.69 | 98.52±0.08 | 93.94±0.65 | 92.28±0.46 | 85.34±1.70 | |
TCLP | CK | 92.78±0.53 | 98.52±0.01 | 92.75±0.97 | 93.62±0.45 | 72.15±2.22 |
SAB0 | 93.89±0.58 | 98.53±0.09 | 92.51±0.70 | 95.03±0.22 | 67.67±4.23 | |
SAB5 | 94.36±0.25 | 98.69±0.14 | 93.71±0.89 | 94.32±0.38 | 64.08±5.13 | |
SAB10 | 94.43±0.79 | 98.67±0.19 | 93.12±0.86 | 95.18±0.40 | 67.62±4.96 | |
SAB15 | 95.08±0.26 | 98.78±0.18 | 93.61±0.47 | 95.56±0.11 | 72.44±3.50 | |
SAB20 | 95.43±0.50 | 98.87±0.43 | 93.21±0.41 | 95.96±0.0 | 71.03±2.02 | |
SAB25 | 93.83±0.67 | 98.94±0.22 | 93.27±1.20 | 96.60±0.08 | 64.77±0.54 | |
SAB30 | 94.17±0.19 | 98.86±0.10 | 94.28±0.34 | 95.99±0.15 | 61.13±5.31 |
表2 污泥生物炭钝化土壤中重金属的钝化效率(Es)
Table 2 Stabilization efficiency (SE) of heavy metals in soil stabilized with sludge biochar %
萃取剂 Extractant | 处理 Treatment | Cu | Zn | Cd | Cr | Ni |
---|---|---|---|---|---|---|
DTPA | CK | 89.61±1.07 | 98.38±0.04 | 93.15±0.64 | 91.46±0.22 | 84.90±1.55 |
SAB0 | 90.63±0.93 | 98.39±0.08b | 93.35±0.0.68 | 92.18±0.43 | 87.01±1.14 | |
SAB5 | 90.79±0.87 | 98.33±0.09 | 94.66±0.34 | 92.25±0.18 | 86.70±2.14 | |
SAB10 | 91.34±1.22 | 98.41±0.07 | 93.80±0.54 | 92.32±0.65 | 86.11±0.31 | |
SAB15 | 90.92±0.11 | 98.49±0.07 | 93.85±0.91 | 92.29±0.16 | 86.44±1.23 | |
SAB20 | 91.44±0.89 | 98.53±0.07 | 94.08±0.98 | 92.48±0.27 | 87.56±4.02 | |
SAB25 | 91.48±1.20 | 98.58±0.07 | 94.03±0.97 | 92.47±0.27 | 85.78±1.04 | |
SAB30 | 91.38±0.69 | 98.52±0.08 | 93.94±0.65 | 92.28±0.46 | 85.34±1.70 | |
TCLP | CK | 92.78±0.53 | 98.52±0.01 | 92.75±0.97 | 93.62±0.45 | 72.15±2.22 |
SAB0 | 93.89±0.58 | 98.53±0.09 | 92.51±0.70 | 95.03±0.22 | 67.67±4.23 | |
SAB5 | 94.36±0.25 | 98.69±0.14 | 93.71±0.89 | 94.32±0.38 | 64.08±5.13 | |
SAB10 | 94.43±0.79 | 98.67±0.19 | 93.12±0.86 | 95.18±0.40 | 67.62±4.96 | |
SAB15 | 95.08±0.26 | 98.78±0.18 | 93.61±0.47 | 95.56±0.11 | 72.44±3.50 | |
SAB20 | 95.43±0.50 | 98.87±0.43 | 93.21±0.41 | 95.96±0.0 | 71.03±2.02 | |
SAB25 | 93.83±0.67 | 98.94±0.22 | 93.27±1.20 | 96.60±0.08 | 64.77±0.54 | |
SAB30 | 94.17±0.19 | 98.86±0.10 | 94.28±0.34 | 95.99±0.15 | 61.13±5.31 |
重金属Heavy metal | 形态Speciation | CK | SAB0 | SAB5 | SAB10 | SAB15 | SAB20 | SAB25 | SAB30 |
---|---|---|---|---|---|---|---|---|---|
Cu | S1/(mg∙kg-1) | 4.21 | 2.89 | 3.06 | 2.64 | 3.26 | 2.73 | 2.61 | 2.97 |
S2/(mg∙kg-1) | 6.66 | 8.69 | 8.91 | 9.13 | 8.99 | 11.11 | 9.72 | 9.42 | |
S3/(mg∙kg-1) | 4.22 | 2.49 | 2.31 | 3.19 | 2.49 | 3.03 | 3.37 | 2.92 | |
S4/(mg∙kg-1) | 6.02 | 6.83 | 6.85 | 6.43 | 6.65 | 7.18 | 6.86 | 6.46 | |
Rp/% | 65.93 | 69.45 | 72.44 | 77.23 | 79.64 | 99.88 | 96.65 | 106.83 | |
Rr/% | 28.52 | 32.68 | 32.42 | 30.06 | 31.09 | 29.85 | 30.41 | 29.67 | |
Zn | S1/(mg∙kg-1) | 138.61 | 101.72 | 94.78 | 131.03 | 85.39 | 135.14 | 124.91 | 97.22 |
S2/(mg∙kg-1) | 389.45 | 355.79 | 334.68 | 322.78 | 355.75 | 355.34 | 355.48 | 346.19 | |
S3/(mg∙kg-1) | 54.04 | 74.53 | 71.97 | 64.61 | 70.88 | 55.71 | 73.56 | 68.52 | |
S4/(mg∙kg-1) | 189.26 | 239.35 | 237.89 | 238.93 | 238.32 | 224.13 | 246.34 | 247.45 | |
Rp/% | 98.70 | 98.22 | 90.24 | 94.98 | 89.03 | 95.06 | 99.38 | 95.96 | |
Rr/% | 24.54 | 31.03 | 21.8 | 35.5 | 32.63 | 29.10 | 30.78 | 32.59 | |
Cd | S1/(mg∙kg-1) | 4.21 | 3.88 | 3.22 | 3.31 | 3.31 | 3.61 | 3.54 | 3.41 |
S2/(mg∙kg-1) | 2.24 | 2.68 | 2.31 | 2.66 | 2.39 | 1.96 | 2.32 | 2.35 | |
S3/(mg∙kg-1) | 1.06 | 1.62 | 2.12 | 2.17 | 1.89 | 1.43 | 2.36 | 2.48 | |
S4/(mg∙kg-1) | 2.19 | 2.54 | 3.72 | 3.67 | 5.13 | 4.13 | 4.36 | 3.52 | |
Rp/% | 99.10 | 90.80 | 107.35 | 97.77 | 111.16 | 103.78 | 105.19 | 100.34 | |
Rr/% | 22.58 | 23.69 | 32.72 | 31.08 | 40.33 | 37.11 | 34.66 | 29.93 | |
Cr | S1/(mg∙kg-1) | 55.03 | 31.43 | 33.59 | 36.12 | 33.89 | 34.57 | 34.56 | 36.73 |
S2/(mg∙kg-1) | 41.58 | 36.03 | 46.74 | 16.16 | 35.61 | 46.35 | 46.04 | 47.58 | |
S3/(mg∙kg-1) | 166.35 | 218.56 | 217.78 | 207.94 | 225.21 | 221.73 | 217.78 | 217.65 | |
S4/(mg∙kg-1) | 215.46 | 205.32 | 196.45 | 212.38 | 192.45 | 205.56 | 203.56 | 207.78 | |
Rp/% | 97.76 | 83.23 | 93.39 | 83.22 | 85.14 | 94.78 | 83.95 | 96.84 | |
Rr/% | 45.04 | 41.79 | 39.72 | 42.26 | 39.50 | 40.45 | 40.55 | 40.76 | |
Ni | S1/(mg∙kg-1) | 1.89 | 1.72 | 1.75 | 1.38 | 1.41 | 1.61 | 1.74 | 1.43 |
S2/(mg∙kg-1) | 4.15 | 5.38 | 5.41 | 5.18 | 6.32 | 5.27 | 5.15 | 6.28 | |
S3/(mg∙kg-1) | 10.16 | 9.27 | 9.69 | 8.33 | 8.82 | 9.02 | 8.21 | 9.51 | |
S4/(mg∙kg-1) | 21.11 | 21.52 | 21.34 | 21.45 | 21.24 | 21.15 | 21.58 | 21.16 | |
Rp/% | 100.57 | 100.27 | 99.26 | 84.83 | 94.28 | 91.98 | 86.55 | 93.05 | |
Rr/% | 56.58 | 56.80 | 55.88 | 59.26 | 56.21 | 57.09 | 58.83 | 55.13 |
表3 污泥生物炭钝化土壤中重金属的BCR连续萃取态质量分数、一致率(Rp)及重金属修复效率(Rr)
Table 3 BCR sequential extraction of of heavy metals in soil stabilized with sludge biochar
重金属Heavy metal | 形态Speciation | CK | SAB0 | SAB5 | SAB10 | SAB15 | SAB20 | SAB25 | SAB30 |
---|---|---|---|---|---|---|---|---|---|
Cu | S1/(mg∙kg-1) | 4.21 | 2.89 | 3.06 | 2.64 | 3.26 | 2.73 | 2.61 | 2.97 |
S2/(mg∙kg-1) | 6.66 | 8.69 | 8.91 | 9.13 | 8.99 | 11.11 | 9.72 | 9.42 | |
S3/(mg∙kg-1) | 4.22 | 2.49 | 2.31 | 3.19 | 2.49 | 3.03 | 3.37 | 2.92 | |
S4/(mg∙kg-1) | 6.02 | 6.83 | 6.85 | 6.43 | 6.65 | 7.18 | 6.86 | 6.46 | |
Rp/% | 65.93 | 69.45 | 72.44 | 77.23 | 79.64 | 99.88 | 96.65 | 106.83 | |
Rr/% | 28.52 | 32.68 | 32.42 | 30.06 | 31.09 | 29.85 | 30.41 | 29.67 | |
Zn | S1/(mg∙kg-1) | 138.61 | 101.72 | 94.78 | 131.03 | 85.39 | 135.14 | 124.91 | 97.22 |
S2/(mg∙kg-1) | 389.45 | 355.79 | 334.68 | 322.78 | 355.75 | 355.34 | 355.48 | 346.19 | |
S3/(mg∙kg-1) | 54.04 | 74.53 | 71.97 | 64.61 | 70.88 | 55.71 | 73.56 | 68.52 | |
S4/(mg∙kg-1) | 189.26 | 239.35 | 237.89 | 238.93 | 238.32 | 224.13 | 246.34 | 247.45 | |
Rp/% | 98.70 | 98.22 | 90.24 | 94.98 | 89.03 | 95.06 | 99.38 | 95.96 | |
Rr/% | 24.54 | 31.03 | 21.8 | 35.5 | 32.63 | 29.10 | 30.78 | 32.59 | |
Cd | S1/(mg∙kg-1) | 4.21 | 3.88 | 3.22 | 3.31 | 3.31 | 3.61 | 3.54 | 3.41 |
S2/(mg∙kg-1) | 2.24 | 2.68 | 2.31 | 2.66 | 2.39 | 1.96 | 2.32 | 2.35 | |
S3/(mg∙kg-1) | 1.06 | 1.62 | 2.12 | 2.17 | 1.89 | 1.43 | 2.36 | 2.48 | |
S4/(mg∙kg-1) | 2.19 | 2.54 | 3.72 | 3.67 | 5.13 | 4.13 | 4.36 | 3.52 | |
Rp/% | 99.10 | 90.80 | 107.35 | 97.77 | 111.16 | 103.78 | 105.19 | 100.34 | |
Rr/% | 22.58 | 23.69 | 32.72 | 31.08 | 40.33 | 37.11 | 34.66 | 29.93 | |
Cr | S1/(mg∙kg-1) | 55.03 | 31.43 | 33.59 | 36.12 | 33.89 | 34.57 | 34.56 | 36.73 |
S2/(mg∙kg-1) | 41.58 | 36.03 | 46.74 | 16.16 | 35.61 | 46.35 | 46.04 | 47.58 | |
S3/(mg∙kg-1) | 166.35 | 218.56 | 217.78 | 207.94 | 225.21 | 221.73 | 217.78 | 217.65 | |
S4/(mg∙kg-1) | 215.46 | 205.32 | 196.45 | 212.38 | 192.45 | 205.56 | 203.56 | 207.78 | |
Rp/% | 97.76 | 83.23 | 93.39 | 83.22 | 85.14 | 94.78 | 83.95 | 96.84 | |
Rr/% | 45.04 | 41.79 | 39.72 | 42.26 | 39.50 | 40.45 | 40.55 | 40.76 | |
Ni | S1/(mg∙kg-1) | 1.89 | 1.72 | 1.75 | 1.38 | 1.41 | 1.61 | 1.74 | 1.43 |
S2/(mg∙kg-1) | 4.15 | 5.38 | 5.41 | 5.18 | 6.32 | 5.27 | 5.15 | 6.28 | |
S3/(mg∙kg-1) | 10.16 | 9.27 | 9.69 | 8.33 | 8.82 | 9.02 | 8.21 | 9.51 | |
S4/(mg∙kg-1) | 21.11 | 21.52 | 21.34 | 21.45 | 21.24 | 21.15 | 21.58 | 21.16 | |
Rp/% | 100.57 | 100.27 | 99.26 | 84.83 | 94.28 | 91.98 | 86.55 | 93.05 | |
Rr/% | 56.58 | 56.80 | 55.88 | 59.26 | 56.21 | 57.09 | 58.83 | 55.13 |
萃取剂 Extractant | 处理 Treatment | Cu | Zn | Cd | Cr | Ni |
---|---|---|---|---|---|---|
DTPA | CK | 0.10±0.01 | 0.10±0.01 | 0.07±0.01 | 0.09±0.01 | 0.15±0.02 |
SAB0 | 0.09±0.01 | 0.09±0.01 | 0.07±0.01 | 0.08±0.01 | 0.13±0.01 | |
SAB5 | 0.09±0.01 | 0.09±0.01 | 0.05±0.01 | 0.08±0.01 | 0.13±0.02 | |
SAB10 | 0.08±0.02 | 0.02±0..01 | 0.06±0.00 | 0.08±0.01 | 0.14±0.01 | |
SAB15 | 0.09±0.01 | 0.02±0.01 | 0.06±0.01 | 0.08±0.01 | 0.14±0.01 | |
SAB20 | 0.09±0.01 | 0.02±0.01 | 0.06±0.01 | 0.08±0.00 | 0.12±0.04 | |
SAB25 | 0.09±0.02 | 0.02±0.00 | 0.06±0.01 | 0.08±0.00 | 0.14±0.01 | |
SAB30 | 0.09±0.01 | 0.02±0.01 | 0.06±0.01a | 0.08±0.00 | 0.15±0.02 | |
TCLP | CK | 0.07±0.01 | 0.02±0.01 | 0.07±0.01 | 0.06±0.00 | 0.28±0.02 |
SAB0 | 0.06±0.01 | 0.02±0.01 | 0.07±0.01 | 0.05±0.00 | 0.32±0.04 | |
SAB5 | 0.06±0.01 | 0.01±0.00 | 0.06±0.01 | 0.06±0.01 | 0.36±0.05 | |
SAB10 | 0.06±0.01 | 0.01±0.01 | 0.07±0.01 | 0.05±0.01 | 0.32±0.05 | |
SAB15 | 0.05±0.01 | 0.01±0.00 | 0.07±0.01 | 0.04±0.01 | 0.28±0.03 | |
SAB20 | 0.05±0.01 | 0.01±0.01 | 0.07±0.01 | 0.04±0.00 | 0.29±0.02 | |
SAB25 | 0.06±0.01 | 0.01±0.01 | 0.07±0.01 | 0.03±0.00 | 0.35±0.01 | |
SAB30 | 0.06±0.01b | 0.01±0.00 | 0.06±0.00 | 0.04±0.00 | 0.39±0.05 |
表4 污泥生物炭钝化土壤中重金属的生态风险指数(ERI)
Table 4 Ecological risk index (ERI) of heavy metals in soil stabilized with sludge biochar
萃取剂 Extractant | 处理 Treatment | Cu | Zn | Cd | Cr | Ni |
---|---|---|---|---|---|---|
DTPA | CK | 0.10±0.01 | 0.10±0.01 | 0.07±0.01 | 0.09±0.01 | 0.15±0.02 |
SAB0 | 0.09±0.01 | 0.09±0.01 | 0.07±0.01 | 0.08±0.01 | 0.13±0.01 | |
SAB5 | 0.09±0.01 | 0.09±0.01 | 0.05±0.01 | 0.08±0.01 | 0.13±0.02 | |
SAB10 | 0.08±0.02 | 0.02±0..01 | 0.06±0.00 | 0.08±0.01 | 0.14±0.01 | |
SAB15 | 0.09±0.01 | 0.02±0.01 | 0.06±0.01 | 0.08±0.01 | 0.14±0.01 | |
SAB20 | 0.09±0.01 | 0.02±0.01 | 0.06±0.01 | 0.08±0.00 | 0.12±0.04 | |
SAB25 | 0.09±0.02 | 0.02±0.00 | 0.06±0.01 | 0.08±0.00 | 0.14±0.01 | |
SAB30 | 0.09±0.01 | 0.02±0.01 | 0.06±0.01a | 0.08±0.00 | 0.15±0.02 | |
TCLP | CK | 0.07±0.01 | 0.02±0.01 | 0.07±0.01 | 0.06±0.00 | 0.28±0.02 |
SAB0 | 0.06±0.01 | 0.02±0.01 | 0.07±0.01 | 0.05±0.00 | 0.32±0.04 | |
SAB5 | 0.06±0.01 | 0.01±0.00 | 0.06±0.01 | 0.06±0.01 | 0.36±0.05 | |
SAB10 | 0.06±0.01 | 0.01±0.01 | 0.07±0.01 | 0.05±0.01 | 0.32±0.05 | |
SAB15 | 0.05±0.01 | 0.01±0.00 | 0.07±0.01 | 0.04±0.01 | 0.28±0.03 | |
SAB20 | 0.05±0.01 | 0.01±0.01 | 0.07±0.01 | 0.04±0.00 | 0.29±0.02 | |
SAB25 | 0.06±0.01 | 0.01±0.01 | 0.07±0.01 | 0.03±0.00 | 0.35±0.01 | |
SAB30 | 0.06±0.01b | 0.01±0.00 | 0.06±0.00 | 0.04±0.00 | 0.39±0.05 |
[1] |
AGRAFIOTI E, BOURAS G, KALDERIS D, et al., 2013. Biochar production by sewage sludge pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 101: 72-78.
DOI URL |
[2] |
DAI L, REN J, TAO L, et al., 2017. Effect of sludge biochars obtained at different pyrolysis temperatures on the adsorption of Cd(II) by loess in northwestern China[J]. Polish Journal of Environmental Studies, 26(4): 1485-1492.
DOI URL |
[3] |
FANG S, TSANG D C W, ZHOU F S, et al., 2016. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar[J]. Chemosphere, 149: 263-271.
DOI PMID |
[4] |
FENG M H, SHAN X Q, ZHANG S, et al., 2005. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley[J]. Environmental Pollution, 137(2): 231-240.
DOI URL |
[5] |
FIGUEIREDO C C D, CHAGAS J K M, DA SILVA J D, et al., 2019. Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil[J]. Geoderma, 344: 31-39.
DOI URL |
[6] |
GUAN Y, SONG C, GAN Y, et al., 2014. Increased maize yield using slow-release attapulgite-coated fertilizers[J]. Agronomy for Sustainable Development, 34(3): 657-665.
DOI URL |
[7] |
HOSSAIN M K, STREZOV V, NELSON P F, 2015. Comparative assessment of the effect of wastewater sludge biochar on growth, yield and metal bioaccumulation of Cherry Tomato[J]. Pedosphere, 25(5): 680-685.
DOI URL |
[8] |
HWANG H, OH S, CHO T S, et al., 2013. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products[J]. Bioresource Technology, 150: 359-366.
DOI PMID |
[9] |
JINDO K, SUTO K, MATSUMOTO K, et al., 2012. Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure[J]. Bioresource Technology, 110: 396-404.
DOI PMID |
[10] |
KHANMOHAMMADI Z, AFYUNI M, MOSADDEGHI R M, et al., 2017. Effect of sewage sludge and its biochar on chemical properties of two calcareous soils and maize shoot yield[J]. Archives of Agronomy and Soil Science, 63(1-7): 198-212.
DOI URL |
[11] |
LI F, BADE R, OH S, et al., 2012. Immobilization of heavy metals in a contaminated soil using organic sludge char and other binders[J]. Korean Journal of Chemical Engineering, 29(10): 1362-1372.
DOI URL |
[12] |
MÉNDEZ A, GÓMEZ A, PAZ-FERREIRO J, et al., 2012. Effects of sewage sludge biochar on plant metal availability after application to a mediterranean soil[J]. Chemosphere, 89(11): 1354-1359.
DOI PMID |
[13] |
MÉNDEZ A, PAZ-FERREIRO J, ARAUJO F, et al., 2014. Biochar from pyrolysis of deinking paper sludge and its use in the treatment of a nickel polluted soil[J]. Journal of Analytical and Applied Pyrolysis, 107: 46-52.
DOI URL |
[14] |
MIERZWA-HERSZTEK M, GONDEK K, KLIMKOWICZ-pAWLAS A, et al., 2018. Sewage sludge biochars management-ecotoxicity, mobility of heavy metals, and soil microbial biomass[J]. Environmental Toxicology and Chemistry, 37(4): 1197-1207.
DOI URL |
[15] |
MONIKA M H, KRZYSZTOF G, AGNIESZKA K P, et al., 2018. Sewage sludge bio-chars management:Ecotoxicity, mobility of heavy metals, and soil mi-crobial biomass[J]. Environmental Toxicology and Chemistry, 37(4): 1197-1207.
DOI URL |
[16] |
PAZ FERREIRO J, PLASENCIA P, GASCÓ G, et al., 2016. Biochar from pyrolysis of deinking paper sludge and its use in the remediation of zn-polluted soils[J]. Land Degradation & Development, 28(1): 355-360.
DOI URL |
[17] | WANG A Y, WANG M Y, LIAO Q, et al., 2016. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: implication of maize cultivar selection for minimal risk to human health and for phytoremediation[J]. Environmental Science & Pollution Research, 23(6): 5410-5419. |
[18] | WANG D F, GUO W, ZHANG G L, et al., 2017. Remediation of Cr(VI)-contaminated acid soil using a nanocomposite[J]. ACS Sustainable Chemistry & Engineering, 5(3): 2246-2254. |
[19] |
ZHAO Y H, ZHAO L, MEI Y Y, et al., 2018. Release of nutrients and heavy met-als from biochar-amended soil under environmentally relevant condi-tions[J]. Environmental Science and Pollution Research, 25(3): 2517-2527.
DOI URL |
[20] |
ZHOU D, LIU D, GAO F X, et al., 2017. Effects of biochar-derived sewage sludge on heavy metal adsorption and immobilization in soils[J]. International Journal of Environmental Research and Public Health, 14(7): 681.
DOI URL |
[21] |
ZHOU J M, CHEN H L, HUANG W L, et al., 2015. Sorption of atrazine, 17α-estradiol, and phenanthrene on wheat straw and peanut shell biochars[J]. Water Air and Soil Pollution, 227(1): 7.
DOI URL |
[22] |
陈冠益, 韩克旋, 刘彩霞, 等, 2021. 污泥中重金属处理方法[J]. 化学进展, 33(6): 998-1009.
DOI |
CHEN G Y, HAN K X, LIU C X, et al., 2021. Removing Heavy Metals from Sludge[J]. Progress in Chemistry, 33(6): 998-1009.
DOI |
|
[23] | 陈展祥, 陈传胜, 陈卫平, 等, 2018. 凹凸棒石及其改性材料对土壤镉生物有效性的影响与机制[J]. 环境科学, 39(10): 4744-4751. |
CHEN Z X, CHEN C S, CHEN W P, et al., 2018. Effect and mechanism of attapulgite and its modified materials on bioavailability of cadmium in soil[J]. Environmental Science, 39(10): 4744-4751. | |
[24] | 黄黎粤, 丁竹红, 胡忻, 等, 2019. 生物炭施用对小麦和玉米幼苗根际和非根际土壤中Pb、As和Cd生物有效性的影响研究[J]. 农业环境科学学报, 38(2): 348-355. |
HUANG L Y, DING Z H, HU X, et al., 2019. Effects of biochars on bioavailability of Pb, As, and Cd in the rhizosphere and non-rhizosphere soil of corn and wheat seedlings[J]. Journal of Agro-Environment Science, 38(2): 348-355. | |
[25] | 黄荣, 徐应明, 黄青青, 等, 2017. 施用不同磷肥对海泡石钝化修复镉污染土壤影响的研究[J]. 土壤通报, 48(6): 1499-1505. |
HUANG R, XU Y M, HUANG Q Q, et al., 2017. Effect of different phosphate fertilizers on the immobilization remediation of cadmium contaminated soil by sepiolite[J]. Chinese Journal of Soil Science, 48(6): 1499-1505. | |
[26] | 廖启林, 刘聪, 朱伯万, 等, 2014. 凹凸棒石调控Cd污染土壤的作用及其效果[J]. 中国地质, 41(5): 1693-1704. |
LIAO Q L, LIU C, ZHU B W, et al., 2014. The role and effect of applying attapulgite to controlling Cd-contaminated soil[J]. Geology in China, 41(5): 1693-1704. | |
[27] | 刘广明, 杨劲松, 2001. 土壤含盐量与土壤电导率及水分含量关系的试验研究[J]. 土壤通报, 32(z1): 85-87. |
LIU G M, YANG J S, 2001. Study on the correlation of soil salt content with electric conductivity and soil wate content[J]. Chinese Journal of Soil Science, 32(z1): 85-87. | |
[28] | 刘慧, 温小艳, 李禹韬, 等, 2021. 生物炭施用模式生态效益与经济效益耦合协调度研究[J]. 农业机械学报, 52(11): 287-296. |
LIU H, WEN X Y, LI Y T, et al., 2021. Coupling coordination degree of ecological benefits and economic benefits of biochar application models[J]. Ecology and Environmental Sciences, 52(11): 287-296. | |
[29] | 刘凯传, 刘佳欢, 孙甲玉, 等, 2018. 污泥-秸秆混合基生物炭对土壤性质和植物生长的影响[J]. 山东农业大学学报 (自然科学版), 49(6): 1015-1019. |
LIU K C, LIU J H, SUN J Y, et al., 2018. Effect of sludge-straw mixture biochar on soil properties and plant growth[J]. Journal of Shandong Agricultural University (Natural Science Edition), 49(6): 1015-1019. | |
[30] | 刘左军, 陈正宏, 袁惠君, 等, 2010. 凹凸棒石粘土对土壤团粒结构及小麦生长的影响[J]. 土壤通报, 41(1): 142-144. |
LIU Z J, CHEN Z H, YUAN H J, et al., 2010. Effects of attapulgite clay on soil aggregate and wheat growth[J]. Chinese Journal of Soil Science, 41(1): 142-144. | |
[31] | 任静华, 廖启林, 范健, 等, 2017. 凹凸棒粘土对镉污染农田的原位钝化修复效果研究[J]. 生态环境学报, 26(12): 2161-2168. |
REN J H, LIAO Q L, FAN J, et al., 2017. Effectof in-situ stabilizing remediation of Cd-polluted soil by attapulgite[J]. Ecology and Environmental Sciences, 26(12): 2161-2168. | |
[32] | 任珺, 张凌云, 刘瑞珍, 等, 2021. 甘肃凹凸棒石对土壤Cd污染的钝化修复研究[J]. 非金属矿, 44(1): 5-8. |
REN Q, ZHANG L Y, LIU R Z, et al., 2021. Stabilizing remediation of soil contaminated by Cd applying Gansu attapulgite[J]. Non-Metallic Mines, 44(1): 5-8. | |
[33] | 沈芳芳, 罗昌泰, 廖迎春, 等, 2022. 生物炭减缓农业生态系统土壤N2O排放的研究进展[J]. 中国农业大学学报, 27(2): 202-213. |
SHEN F F, LUO C T, LIAO Y C, et al., 2022. Review on biochar mitigating the soil N2O emission from agro-ecosystems[J]. Journal of China Agricultural University, 27(2): 202-213. | |
[34] | 孙丽娟, 秦秦, 宋科, 等, 2018. 镉污染农田土壤修复技术及安全利用方法研究进展[J]. 生态环境学报, 27(7): 1377-1386. |
SUN L J, QIN Q, SONG K, et al., 2018. The remediation and safety utilization techniques for Cd contaminated farmland soil: A review[J]. Ecology and Environmental Sciences, 27(7): 1377-1386. | |
[35] | 陶玲, 张倩, 张雪彬, 等, 2020. 凹凸棒石-污泥共热解生物炭对玉米苗期生长特性和重金属富集效应的影响[J]. 农业环境科学学报, 39(7): 1512-1520. |
TAO L, ZHANG Q, ZHANG X B, et al., 2020. Influence of biochar prepared by co-pyrolysis with attapulgite and sludge on maize growth and heavy metalaccumulation[J]. Journal of Agro-Environment Science, 39(7): 1512-1520. | |
[36] | 王忠科, 李刚, 王格格, 等, 2017. 污泥-锯末共热解生物炭的制备及土壤应用[J]. 现代化工, 37(1): 147-150. |
WANG Z K, LI G, WANG G G, et al., 2017. Preparation of biochar from co-pyrolysis of sludge-sawdust and its application in soil[J]. Modern Chemical Industry, 37(1): 147-150. | |
[37] | 吴继阳, 郑凯琪, 杨婷婷, 等, 2017. 污泥生物炭对土壤中Pb和Cd的生物有效性的影响[J]. 环境工程学报, 11(10): 5757-5763. |
WU J Y, ZHENG K Q, YANG T T, et al., 2017. Remediation of Pb and Cd contaminated soil by sludge biochar[J]. Chinese Journal of Environmental Engineering, 11(10): 5757-5763. | |
[38] | 杨敬军, 何淑玲, 常毓巍, 2012. 坡缕石对匙叶翼首草生长、产量和品质的影响[J]. 土壤通报, 43(2): 461-465. |
YANG J J, HE S L, CHANG S W, 2012. Effects of playgoskite on growth, yield and quality of Pterocephalus hookeri (C. B. Clarke) diels[J]. Chinese Journal of Soil Science, 43(2): 461-465. | |
[39] | 杨康, 周茜, 苏琦, 等, 2018. 污泥中还原性基团的赋存形态研究[J]. 环境工程, 36(11): 190-195. |
YANG K, ZHOU Q, SU Q, et al., 2018. Existent forms of the reductive groups in sewage sludge[J]. Environmental Engineering, 36(11): 190-195. | |
[40] | 杨秀敏, 任广萌, 李立新, 等, 2017. 土壤pH值对重金属形态的影响及其相关性研究[J]. 中国矿业, 26(6): 79-83. |
YANG X M, REN G M, LI L X, et al., 2017. Effect of pH value on heavy metals form of soil and their relationship[J]. China Mining Magazine, 26(6): 79-83. | |
[41] | 张水清, 黄绍敏, 郭斗斗, 2011. 河南三种土壤阳离子交换量相关性及预测模型研究[J]. 土壤通报, 42(3): 627-631. |
ZHANG S Q, HUANG S M, GUO D D, et al., 2011. The correlations and prediction models of cation exchange capacity in three soils in Henan[J]. Chinese Journal of Soil Science, 42(3): 627-631. | |
[42] | 翟琨, 向东山, 殷艳, 等, 2015. EDTA对Cu污染农田土壤的淋洗实验研究[J]. 土壤通报, 46(5): 1108-1113. |
ZHAI K, XIANG D S, YIN Y, et al., 2015. Leaching experimental design of Cu eemoval by EDTA in the polluted cultivated soil[J]. Chinese Journal of Soil Science, 46(5): 1108-1113. | |
[43] | 赵廷伟, 李洪达, 周薇, 等, 2019. 施用凹凸棒石对Cd污染农田土壤养分的影响[J]. 农业环境科学学报, 38(10): 2313-2318. |
ZHAO T W, LI H D, ZHOU W, et al., 2019. Effects of attapulgite application on soil nutrients in Cd-contaminated farmland[J]. Journal of Agro-Environ-ment Science, 38(10): 2313-2318. | |
[44] | 国家环境保护局, 中国环境监测总站, 1998. 土壤质量铜、锌的测定火焰原子吸收分光光度法[S]. |
National Board of Environmental Protection, China National Environmental Monitoring Center, 1998. Soil quality-Determination of copper and zinc, flame atomic absorption spectrophotometry[S]. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
[3] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[4] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[5] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
[6] | 游宏建, 张文文, 兰正芳, 马兰, 张宝娣, 穆晓坤, 李文慧, 曹云娥. 蚯蚓原位堆肥与生物炭对黄瓜根结线虫及根际微生物的影响[J]. 生态环境学报, 2023, 32(1): 99-109. |
[7] | 黄宏, 郑欣芸, 李迎东, 赵旭, 俞锦辰, 汪振华. 大陈岛海域不同年龄褐菖鲉对重金属富集作用研究[J]. 生态环境学报, 2022, 31(9): 1885-1891. |
[8] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[9] | 李晓晖, 艾仙斌, 李亮, 王玺洋, 辛在军, 孙小艳. 新型改性稻壳生物炭材料对镉污染土壤钝化效果的研究[J]. 生态环境学报, 2022, 31(9): 1901-1908. |
[10] | 房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656. |
[11] | 李莹, 张洲, 杨高明, 祖艳群, 李博, 陈建军. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657-1666. |
[12] | 罗松英, 李秋霞, 邱锦坤, 邓素炎, 李一锋, 陈碧珊. 南三岛土壤-红树植物系统中重金属形态特征及迁移转化规律[J]. 生态环境学报, 2022, 31(7): 1409-1416. |
[13] | 钱莲文, 余甜甜, 梁旭军, 王义祥, 陈永山. 茶园土壤酸化改良中生物炭应用5 a后的稳定性研究[J]. 生态环境学报, 2022, 31(7): 1442-1447. |
[14] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
[15] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||