Most Read

Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
Acute Toxicity of Seventeen Herbicides Commonly Used to Earthworm ( Eisenia fetida)
LI Tao, MENG Dandan, GUO Shuiliang, YUAN Guohui, QIAN Zhenguan, LV Weiguang
2021, 30 (6): 1269-1275. DOI: 10.16258/j.cnki.1674-5906.2021.06.018
Abstract1276)   HTML5)    PDF (3383KB)(186)      

Earthworms are known to play an important role in improving soil, decomposing agricultural litter, and enhancing soil fertility and crop yield. The acute toxicity of 17 herbicides to Eisenia fetida was determined by a contact filter paper toxicity bioassay and an artificial soil toxicity bioassay. Results of 48 h by the contact filter paper toxicity bioassay, metamifop was high toxicity to E. fetida with LC50 (median lethal concentration) value of 7.6 μg∙cm-2; pretilachlor, haloxyfop-R-methyl, and bentazone were moderate toxicity to E. fetida with LC50 values of 10.7, 12.7, and 61.3 μg∙cm-2, respectively; quinclorac, MCPA-Na, topramezone, glufosinate ammonium, nicosulfuron, and bispyribac-sodium were low toxicity to E. fetida with LC50 values of 143.0, 198.2, 211.1, 466.9, 433.7, and 649.2 μg∙cm-2, respectively; pyrazosulfuron-ethyl, penoxsulam, pyribenzoxim, cyhalofop-butyl, fluoroglycofen, pendimethalin, and mesotrione were slight toxicity to E. fetida with LC50 values greater than 1000 μg∙cm-2. Results of 14 d by the artificial soil toxicity bioassay, haloxyfop-R-methyl showed the highest toxicity to E. fetida with LC50 value of 148.9 mg∙kg-1; followed by pretilachlor, MCPA-Na, pendimethalin, and metamifop, the LC50 values were 211.5, 335.0, 342.4, and 345.7 mg∙kg-1, respectively; the other tested herbicides were low toxicity to E. fetida with LC50 values greater than 500 mg∙kg-1. According to the guidelines of environmental safety evaluation for chemical pesticides, the 17 herbicides determined by an artificial soil toxicity bioassay were low toxicity to E. fetida. The results of this study can provide new data information for assessing the ecological risk of herbicides to earthworm, and also provide technical guidance for the safe use of herbicides in agricultural production.

2017, 26 (2): 243-252. DOI: 10.16258/j.cnki.1674-5906.2017.02.009
Abstract1109)      PDF (1609KB)(1362)      
2017, 26 (9): 1619-1626. DOI: 10.16258/j.cnki.1674-5906.2017.09.023
Abstract1073)      PDF (520KB)(2720)      
2017, 26 (2): 189-194. DOI: 10.16258/j.cnki.1674-5906.2017.02.002
Abstract982)      PDF (417KB)(832)      
Consideration about Exploring Pilot Program of Farmland Rotation and Fallow System in China
ZHAO Qiguo, TENG Ying, HUANG Guoqin
2017, 26 (1): 1-5. DOI: 10.16258/j.cnki.1674-5906.2017.01.001
Abstract980)   HTML1)    PDF (408KB)(1916)      

Farmland is fundamental to grain production. Recently, as the grain output increased year by year, resources and environment faced with multiple challenges. The farmland is high-intensity used, seriously overdrawn, deteriorated, and polluted, which severely restrict the agricultural sustainable development in China. It is a specific way to realize the implementation of a food crop production strategy based on farmland management and the application of technology by carrying out farmland rotation and fallow system to expand overall farmland production capacity, which has a strategic significance on promoting the development of green agriculture and guaranteeing national food security. This paper analyses the advancements and practices on farmland rotation and fallow system in and abroad, and put forward the research priorities and objectives on exploring pilot program of farmland rotation and fallow system. Including investigating farmland resources and regionalization suitable for rotation and fallow in key areas, discussing technological approaches to implement farmland rotation and fallow system in key areas, and establishing systems and mechanisms for exploring pilot program of farmland rotation and fallow system. All is to provide consultation for realizing agricultural transition in the 13th Five-Year Plan and assuring grain production capacity and national food security.

2017, 26 (2): 350-356. DOI: 10.16258/j.cnki.1674-5906.2017.02.023
Abstract928)      PDF (364KB)(1122)      
2017, 26 (3): 506-513. DOI: 10.16258/j.cnki.1674-5906.2017.03.021
Abstract906)      PDF (539KB)(984)      
2017, 26 (2): 253-260. DOI: 10.16258/j.cnki.1674-5906.2017.02.010
Abstract896)      PDF (1216KB)(720)      
2017, 26 (5): 896-901. DOI: 10.16258/j.cnki.1674-5906.2017.03.024
Abstract888)      PDF (387KB)(825)      
2017, 26 (8): 1451-1456. DOI: 10.16258/j.cnki.1674-5906.2017.08.022
Abstract885)      PDF (432KB)(679)      
2018, 27 (2): 199-208. DOI: 10.16258/j.cnki.1674-5906.2018.02.001
Abstract878)      PDF (448KB)(528)      
2017, 26 (2): 342-349. DOI: 10.16258/j.cnki.1674-5906.2017.02.022
Abstract875)      PDF (388KB)(1224)      
2017, 26 (9): 1457-1464. DOI: 10.16258/j.cnki.1674-5906.2017.09.001
Abstract873)      PDF (458KB)(691)      
2017, 26 (8): 1292-1300. DOI: 10.16258/j.cnki.1674-5906.2017.08.003
Abstract855)      PDF (895KB)(622)      
2017, 26 (8): 1275-1283. DOI: 10.16258/j.cnki.1674-5906.2017.08.001
Abstract838)      PDF (884KB)(839)      
2017, 26 (1): 27-35. DOI: 10.16258/j.cnki.1674-5906.2017.01.005
Abstract831)      PDF (1402KB)(921)      
2017, 26 (2): 363-364. DOI: 10.16258/j.cnki.1674-5906.2017.02.025
Abstract830)      PDF (171KB)(365)      
2017, 26 (3): 365-370. DOI: 10.16258/j.cnki.1674-5906.2017.03.001
Abstract828)      PDF (408KB)(574)      
2017, 26 (3): 392-399. DOI: 10.16258/j.cnki.1674-5906.2017.03.005
Abstract820)      PDF (442KB)(886)      
Impact Assessment of Climate Change on Climatic Potential Productivity in Global Major Agricultural Regions Based on High Spatial and Temporal Resolution Data
ZHAO Junfang,KONG Xiangna,JIANG Yueqing,QIAN Yonglan
2019, 28 (1): 1-6. DOI: 10.16258/j.cnki.1674-5906.2019.01.001
Abstract819)      PDF (795KB)(814)      
PDF full text can be downloaded.