| [1] |
AZEREDO J, AZEVEDO N F, BRIANDET R, et al., 2017. Critical review on biofilm methods[J]. Critical Reviews in Microbiology, 43(3): 313-351.
DOI
URL
|
| [2] |
CAI Y W, SUN T, LI G Y, et al., 2021. Traditional and emerging water disinfection technologies challenging the control of antibiotic-resistant bacteria and antibiotic resistance genes[J]. ACS ES&T Engineering, 1(7): 1046-1064.
|
| [3] |
CHEN M, CAI Y W, LI G Y, et al., 2022. The stress response mechanisms of biofilm formation under sub-lethal photocatalysis[J]. Applied Catalysis B: Environmental, 307: 121200.
DOI
URL
|
| [4] |
CHEN M, WANG J P, XIA L J, et al., 2025. Different fitness costs during biofilm growth from antibiotic-resistant bacteria to antibiotic-sensitive bacteria under the toxicity stress of copper substrate[J]. ACS ES&T Water, 5(4): 1546-1556.
|
| [5] |
ELUMALAI P, GAO X K, CUI J J, et al., 2024. Biofilm formation, occurrence, microbial communication, impact and characterization methods in natural and anthropic systems: A review[J]. Environmental Chemistry Letters, 22(3): 1297-1326.
DOI
|
| [6] |
FLEMMING H C, WINGENDER J, 2010. The biofilm matrix[J]. Nature Reviews Microbiology, 8(9): 623-633.
DOI
|
| [7] |
FLEMMING H C, 2020. Biofouling and me: My Stockholm syndrome with biofilms[J]. Water Research, 173: 115576.
DOI
URL
|
| [8] |
GONZALEZ-PLAZA J J, BLAU K, MILAKOVIC M, et al., 2019. Antibiotic-manufacturing sites are hot-spots for the release and spread of antibiotic resistance genes and mobile genetic elements in receiving aquatic environments[J]. Environment International, 130: 104735.
DOI
URL
|
| [9] |
HOSSAIN M A, LEE S J, PARK N H, et al., 2017. Impact of phenolic compounds in the acyl homoserine lactone-mediated quorum sensing regulatory pathways[J]. Scientific Reports, 7(1): 10618.
DOI
PMID
|
| [10] |
LI S, LIU Y, WU Y, et al., 2022. Antibiotics in global rivers[J]. National Science Open, 1(2): 110-130.
|
| [11] |
LONG L C, BU Y N, CHEN B Y, et al., 2019. Removal of urea from swimming pool water by UV/VUV: The roles of additives, mechanisms, influencing factors, and reaction products[J]. Water Research, 161: 89-97.
DOI
PMID
|
| [12] |
NAGAY B E, DINI C, CORDEIRO J M, et al., 2019. Visible-light-induced photocatalytic and antibacterial activity of TiO2 codoped with nitrogen and bismuth: new perspectives to control implant-biofilm-related diseases[J]. ACS Applied Materials & Interfaces, 11(20): 18186-18202.
|
| [13] |
OLIVEIRA I M, GOMES I B, SIMÕES L C, et al., 2024. A review of research advances on disinfection strategies for biofilm control in drinking water distribution systems[J]. Water Research, 253: 121273.
DOI
URL
|
| [14] |
RICE E W, ROSE L J, 2014. Inactivation of bacterial biothreat agents in water, a review[J]. Journal of Water and Health, 12(4): 618-633.
DOI
PMID
|
| [15] |
RODER H L, OLSEN N M C, WHITELEY M, et al., 2020. Unravelling interspecies interactions across heterogeneities in complex biofilm communities[J]. Environmental Microbiology, 22(1): 5-16.
DOI
PMID
|
| [16] |
SENEVIRATNE C J, WANG Y, JIN L J, et al., 2012. Unraveling the resistance of microbial biofilms: Has proteomics been helpful?[J]. Proteomics, 12(4-5): 651-665.
DOI
PMID
|
| [17] |
SINGH P K, BARTALOMEJ S, HARTMANN R, et al., 2017. Vibrio cholerae combines individual and collective sensing to trigger biofilm dispersal[J]. Current Biology, 27(21): 3359-3366.e7.
DOI
URL
|
| [18] |
VAN BOECKEL T P, PIRES J, SILVESTER R, et al., 2019. Global trends in antimicrobial resistance in animals in low- and middle-income countries[J]. Science, 365(6459): eaaw1944.
|
| [19] |
VERDEROSA A D, TOTSIKA M, FAIRFULL-SMITH K E, 2019. Bacterial biofilm eradication agents: A current review[J]. Frontiers in Chemistry, 7: 824.
DOI
PMID
|
| [20] |
WANG Z, YANG X Z, FU L, et al., 2025. A review of secondary contamination of drinking water quality in distribution systems: Sources, mechanisms, and prospects[J]. AQUA-Water Infrastructure, Ecosystems and Society, 74(1): 118-141.
DOI
URL
|
| [21] |
XIA L J, WANG J Q, CHEN M, et al., 2025. Biofilm formation mechanisms of mixed antibiotic-resistant bacteria in water: Bacterial interactions and horizontal transfer of antibiotic-resistant plasmids[J]. Journal of Hazardous Materials, 481: 136554.
DOI
URL
|
| [22] |
XIAO Y, ZHAO F, 2017. Electrochemical roles of extracellular polymeric substances in biofilms[J]. Current Opinion in Electrochemistry, 4(1): 206-211.
DOI
URL
|
| [23] |
YAN J, SHARO A G, STONE H A, et al., 2016. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging[J]. Proceedings of the National Academy of Sciences, 113(36): E5337-5343.
|
| [24] |
YI Q, WU S L, SOUTHAM G, et al., 2021. Acidophilic iron- and sulfur-oxidizing bacteria, acid thiobacillus ferroxidase, drives alkaline pH neutralization and mineral weathering in Fe ore tailings[J]. Environmental Science & Technology, 55(12): 8020-8034.
DOI
URL
|
| [25] |
YIN H L, LI G Y, CHEN X F, et al., 2020. Accelerated evolution of bacterial antibiotic resistance through early emerged stress responses driven by photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 269: 118829.
DOI
URL
|
| [26] |
ZHANG J P, LI W Y, CHEN J P, et al., 2018. Impact of biofilm formation and detachment on the transmission of bacterial antibiotic resistance in drinking water distribution systems[J]. Chemosphere, 203: 368-380.
DOI
PMID
|
| [27] |
ZHU L, CHEN T, XU L, et al., 2020. Effect and mechanism of quorum sensing on horizontal transfer of multidrug plasmid RP4 in BAC biofilm[J]. Science of The Total Environment, 698: 134236.
DOI
URL
|
| [28] |
李桂英, 刘建莹, 安太成, 2023. 水体消毒过程中活的不可培养细菌的形成与复苏机制研究进展[J]. 生态环境学报, 32(7): 1333-1343.
DOI
|
|
LI G Y, LIU J Y, AN T C, 2023. The formation and resuscitation mechanisms of viable but nonculturable bacteria during water disinfection processes[J]. Ecology and Environmental Sciences, 32(7): 1333-1343.
|
| [29] |
黄慧婷, 张明明, 王敏, 等, 2018. 紫外/氯消毒在饮用水处理中的应用[J]. 净水技术, 37(10): 44-48.
|
|
HUANG H T, ZHANG M M, WANG M, et al., 2018. Application of UV/chlorine disinfection in drinking water treatment[J]. Water Purification Technology, 37(10): 44-48.
|
| [30] |
李双双, 蔡铭灿, 汪庆, 等, 2023. 淡水环境中微塑料与生物膜的相互作用及其生态效应研究进展[J]. 生态环境学报, 32(11): 2041-2049.
DOI
|
|
LI S S, CAI M C, WANG Q, et al., 2023. Research progress on the interaction between microplastics and biofilms and their ecological effects in freshwater environment[J]. Ecology and Environmental Sciences, 32(11): 2041-2049.
|
| [31] |
刘静聪, 方金玉, 朱军莉, 2022. 细菌生物被膜基质的研究进展[J]. 微生物学报, 62(1): 47-56.
|
|
LIU J C, FANG J Y, ZHU J L, 2022. A brief review of biofilm matrix in structured microbial communities[J]. Acta Microbiologica Sinica, 62(1): 47-56.
|
| [32] |
王金花, 吴永红, 冯彦房, 等, 2013. 高浓度氮磷对自然生物膜群落功能和结构的影响[J]. 生态环境学报, 22(7): 1236-1243.
|
|
WANG J H, WU Y H, FENG Y F, et al., 2013. Effects of hyper-entrophic nitrogen and phosphorus additons on the functional and formational diversity of periphyton biofilms[J]. Ecology and Environmental Sciences, 22(7): 1236-1243.
|
| [33] |
王莉萍, 叶成松, 于鑫, 等, 2023. 紫外/氯消毒技术对金黄色葡萄球菌的灭活作用[J]. 中国给水排水, 39(13): 71-75.
|
|
WANG L P, YE C S, YU X, et al., 2023. UV/Chlorine Disinfection for Inactivation of Staphylococcus aureus[J]. China Water & Wastewater, 39(13): 71-75.
|
| [34] |
蒙艳, 刘彤宙, 2019. 紫外氯耦合技术降解环丙沙星的研究[J]. 资源节约与环保 (7): 75-76.
|
|
MENG Y, LIU T Z, 2019. Degradation of ciprofloxacin by UV/Chlorine coupling technology: Mechanisms and efficiency[J]. Resources Economization & Environmental Protection (7): 75-76.
|
| [35] |
赵剑超, 潘献辉, 刘昱, 等, 2016. DPD分光光度法测定水中余氯的标准方法的对比[J]. 中国给水排水, 32(20): 106-110.
|
|
ZHAO J C, PAN X H, LIU Y, et al., 2016. Comparative study of standard methods for the determination of residual chlorine in water using dpd spectrophotometry[J]. China Water & Wastewater, 32(20): 106-110.
|