Ecology and Environment ›› 2024, Vol. 33 ›› Issue (2): 261-271.DOI: 10.16258/j.cnki.1674-5906.2024.02.010
• Research Article [Environmental Sciences] • Previous Articles Next Articles
LI Gaofan1,2(), XU Wenzhuo1,2, WEI Haoming2, YAN Zaisheng2,*(
), YOU Jia1,2, JIANG Helong2, HUANG Juan1,*(
)
Received:
2022-12-06
Online:
2024-02-18
Published:
2024-04-03
李高帆1,2(), 徐文卓1,2, 卫昊明2, 晏再生2,*(
), 尤佳1,2, 江和龙2, 黄娟1,*(
)
通讯作者:
晏再生。E-mail: 作者简介:
李高帆(1997年生),男,硕士研究生。E-mail: tmtsxmug@163.com
基金资助:
CLC Number:
LI Gaofan, XU Wenzhuo, WEI Haoming, YAN Zaisheng, YOU Jia, JIANG Helong, HUANG Juan. Preparation of 3D Porous Biochar Adsorbent and Its Adsorption Behavior for Phenanthrene[J]. Ecology and Environment, 2024, 33(2): 261-271.
李高帆, 徐文卓, 卫昊明, 晏再生, 尤佳, 江和龙, 黄娟. 三维多孔生物炭吸附剂的制备及其对菲的吸附行为[J]. 生态环境学报, 2024, 33(2): 261-271.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.02.010
模型 | 参数 | LSBC600 | LSBC700 | LSBC800 | LSBC900 |
---|---|---|---|---|---|
伪一级动力学模型 | qe/(mg∙g−1) | 13.3222 | 14.2537 | 15.7122 | 16.2250 |
k1/(min−1) | 0.2341 | 0.2476 | 0.2537 | 0.2948 | |
r2 | 0.9983 | 0.9980 | 0.9985 | 0.9991 | |
伪二级动力学模型 | qe/(mg∙g−1) | 13.9005 | 14.8086 | 16.4262 | 16.9270 |
k2/(g∙mg−1∙min−1) | 0.0307 | 0.0324 | 0.0285 | 0.0335 | |
r2 | 0.9974 | 0.9977 | 0.9981 | 0.9987 | |
颗粒内扩散模型 | kp1/(mg∙g−1∙min−0.5) | 4.8299 | 5.0777 | 5.7019 | 6.0492 |
cp1/(mg∙g−1) | −1.8230 | −1.5146 | −1.7742 | −1.3990 | |
R2 | 0.9987 | 0.9989 | 1.0000 | 0.9927 | |
kp2/(mg∙g−1∙min−0.5) | 2.18838 | 2.19018 | 2.38295 | 2.1317 | |
cp2 (mg∙g−1) | 4.8856 | 5.8150 | 6.5993 | 8.2106 | |
R2 | 0.9678 | 0.9592 | 0.9435 | 0.9335 | |
kpa/(mg∙g−1∙min−0.5) | 0.0059 | 0.0027 | 0.0392 | 0.0353 | |
cpa/(mg∙g−1) | 13.1537 | 14.1329 | 15.3686 | 15.9934 | |
R2 | 0.1234 | 0.0124 | 0.3608 | 0.1687 | |
Elovich 动力学模型 | α/(mg∙g−1∙min−1) | 4.6603 | 5.7140 | 6.4396 | 8.6960 |
β/(g∙mg−1) | 0.1968 | 0.1970 | 0.1789 | 0.1916 | |
R2 | 0.9940 | 0.9939 | 0.9935 | 0.9917 | |
外扩散速率控制模型 | k3/(min−1) | 0.5077 | 0.5019 | 0.3890 | 0.4047 |
b | −1.2618 | −1.1961 | −0.7575 | −0.7166 | |
R2 | 0.9242 | 0.9343 | 0.9717 | 0.9768 | |
Bangham孔道扩散模型 | k4 | 17.4214 | 20.6419 | 22.7866 | 26.9997 |
a | 0.6643 | 0.6376 | 0.6648 | 0.6344 | |
R2 | 0.9842 | 0.9847 | 0.9837 | 0.9724 |
Table 1 Fitting parameters of adsorption kinetics of PHE by LSBC
模型 | 参数 | LSBC600 | LSBC700 | LSBC800 | LSBC900 |
---|---|---|---|---|---|
伪一级动力学模型 | qe/(mg∙g−1) | 13.3222 | 14.2537 | 15.7122 | 16.2250 |
k1/(min−1) | 0.2341 | 0.2476 | 0.2537 | 0.2948 | |
r2 | 0.9983 | 0.9980 | 0.9985 | 0.9991 | |
伪二级动力学模型 | qe/(mg∙g−1) | 13.9005 | 14.8086 | 16.4262 | 16.9270 |
k2/(g∙mg−1∙min−1) | 0.0307 | 0.0324 | 0.0285 | 0.0335 | |
r2 | 0.9974 | 0.9977 | 0.9981 | 0.9987 | |
颗粒内扩散模型 | kp1/(mg∙g−1∙min−0.5) | 4.8299 | 5.0777 | 5.7019 | 6.0492 |
cp1/(mg∙g−1) | −1.8230 | −1.5146 | −1.7742 | −1.3990 | |
R2 | 0.9987 | 0.9989 | 1.0000 | 0.9927 | |
kp2/(mg∙g−1∙min−0.5) | 2.18838 | 2.19018 | 2.38295 | 2.1317 | |
cp2 (mg∙g−1) | 4.8856 | 5.8150 | 6.5993 | 8.2106 | |
R2 | 0.9678 | 0.9592 | 0.9435 | 0.9335 | |
kpa/(mg∙g−1∙min−0.5) | 0.0059 | 0.0027 | 0.0392 | 0.0353 | |
cpa/(mg∙g−1) | 13.1537 | 14.1329 | 15.3686 | 15.9934 | |
R2 | 0.1234 | 0.0124 | 0.3608 | 0.1687 | |
Elovich 动力学模型 | α/(mg∙g−1∙min−1) | 4.6603 | 5.7140 | 6.4396 | 8.6960 |
β/(g∙mg−1) | 0.1968 | 0.1970 | 0.1789 | 0.1916 | |
R2 | 0.9940 | 0.9939 | 0.9935 | 0.9917 | |
外扩散速率控制模型 | k3/(min−1) | 0.5077 | 0.5019 | 0.3890 | 0.4047 |
b | −1.2618 | −1.1961 | −0.7575 | −0.7166 | |
R2 | 0.9242 | 0.9343 | 0.9717 | 0.9768 | |
Bangham孔道扩散模型 | k4 | 17.4214 | 20.6419 | 22.7866 | 26.9997 |
a | 0.6643 | 0.6376 | 0.6648 | 0.6344 | |
R2 | 0.9842 | 0.9847 | 0.9837 | 0.9724 |
模型 | 参数 | LSBC600 | LSBC700 | LSBC800 | LSBC900 |
---|---|---|---|---|---|
Langmuir 模型 | qm/(mg∙g−1) | 16.9101 | 21.1568 | 27.1529 | 26.0305 |
kL/(L∙mg−1) | 0.9154 | 0.8212 | 0.7334 | 0.8954 | |
R2 | 0.9797 | 0.9993 | 0.9983 | 0.9969 | |
Freundlich 模型 | kF/(mg1−1/n∙g∙L1/n) | 7.6477 | 9.0069 | 10.9544 | 11.9168 |
n | 1.5940 | 1.6043 | 1.5111 | 1.5275 | |
R2 | 0.9927 | 0.9935 | 0.9881 | 0.9866 | |
Temkin 模型 | aT/(L∙mg−1) | 6.4957 | 7.6639 | 8.1650 | 9.0868 |
bT/(kJ∙mol−1) | 548.3644 | 514.5045 | 444.6570 | 435.6585 | |
R2 | 0.9365 | 0.9860 | 0.9880 | 0.9809 | |
线性模型 | kd /(L∙g−1) | 6.2115 | 7.3755 | 9.6158 | 10.6594 |
R2 | 0.9807 | 0.9674 | 0.9700 | 0.9656 | |
ΔG/(kJ∙mol−1) | −4.5273 | −4.9531 | −5.6106 | −5.8660 |
Table 2 Fitting parameters of adsorption isotherms of PHE by LSBC
模型 | 参数 | LSBC600 | LSBC700 | LSBC800 | LSBC900 |
---|---|---|---|---|---|
Langmuir 模型 | qm/(mg∙g−1) | 16.9101 | 21.1568 | 27.1529 | 26.0305 |
kL/(L∙mg−1) | 0.9154 | 0.8212 | 0.7334 | 0.8954 | |
R2 | 0.9797 | 0.9993 | 0.9983 | 0.9969 | |
Freundlich 模型 | kF/(mg1−1/n∙g∙L1/n) | 7.6477 | 9.0069 | 10.9544 | 11.9168 |
n | 1.5940 | 1.6043 | 1.5111 | 1.5275 | |
R2 | 0.9927 | 0.9935 | 0.9881 | 0.9866 | |
Temkin 模型 | aT/(L∙mg−1) | 6.4957 | 7.6639 | 8.1650 | 9.0868 |
bT/(kJ∙mol−1) | 548.3644 | 514.5045 | 444.6570 | 435.6585 | |
R2 | 0.9365 | 0.9860 | 0.9880 | 0.9809 | |
线性模型 | kd /(L∙g−1) | 6.2115 | 7.3755 | 9.6158 | 10.6594 |
R2 | 0.9807 | 0.9674 | 0.9700 | 0.9656 | |
ΔG/(kJ∙mol−1) | −4.5273 | −4.9531 | −5.6106 | −5.8660 |
吸附剂 | 模型 | 吸附容量/(mg∙g−1) |
---|---|---|
LSBC900 | Langmuir模型 | 26.03 |
LSBC800 | Langmuir模型 | 27.15 |
LSBC700 | Langmuir模型 | 21.16 |
LSBC600 | Langmuir模型 | 16.91 |
柚皮生物炭 (Li et al., | Langmuir模型 | 68.26 |
稻壳生物炭 (Huang et al., | Langmuir模型 | 3.569 |
Fe3O4-SiO2-2DMDPS纳米复合材料 (Wei et al., | Langmuir 模型 | 47.32 |
CaO@AC纳米复合材料 (Aravind Kumar et al., | Langmuir 模型 | 21.39 |
磁性氧化石墨烯 (Huang et al., | Langmuir模型 | 13.65 |
CTAB改性聚苯乙烯微球 (Wang et al., | Langmuir 模型 | 12.14 |
碱改性向日葵秸秆生物炭 (程文远等, | Langmuir 模型 | 8.62 |
Table 3 Comparison of maximum adsorption capacity of different materials for PHE
吸附剂 | 模型 | 吸附容量/(mg∙g−1) |
---|---|---|
LSBC900 | Langmuir模型 | 26.03 |
LSBC800 | Langmuir模型 | 27.15 |
LSBC700 | Langmuir模型 | 21.16 |
LSBC600 | Langmuir模型 | 16.91 |
柚皮生物炭 (Li et al., | Langmuir模型 | 68.26 |
稻壳生物炭 (Huang et al., | Langmuir模型 | 3.569 |
Fe3O4-SiO2-2DMDPS纳米复合材料 (Wei et al., | Langmuir 模型 | 47.32 |
CaO@AC纳米复合材料 (Aravind Kumar et al., | Langmuir 模型 | 21.39 |
磁性氧化石墨烯 (Huang et al., | Langmuir模型 | 13.65 |
CTAB改性聚苯乙烯微球 (Wang et al., | Langmuir 模型 | 12.14 |
碱改性向日葵秸秆生物炭 (程文远等, | Langmuir 模型 | 8.62 |
[1] |
ABDEL-SHAFY H I, MANSOUR M S M,2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation[J]. Egyptian Journal of Petroleum, 25(1): 107-123.
DOI URL |
[2] |
ABEL S, AKKANEN J,2019. Novel, Activated Carbon-Based Material for in-Situ Remediation of Contaminated Sediments[J]. Environmental Science & Technology, 53(6): 3217-3224.
DOI URL |
[3] |
ALBADARIN A B,2017. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue[J]. Chemical Engineering Journal, 307: 264-272.
DOI URL |
[4] |
ALSBAIEE A, SMITH B J, XIAO L, et al.,2016. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer[J]. Nature, 529(7585): 190-194.
DOI |
[5] |
ARAVIND KUMAR J, KRITHIGA T, VIJAI ANAND K, et al.,2021. Kinetics and regression analysis of phenanthrene adsorption on the nanocomposite of CaO and activated carbon: Characterization, regeneration, and mechanistic approach[J]. Journal of Molecular Liquids, 334: 116080.
DOI URL |
[6] |
BAO Z Z, CHEN Z F, ZHONG Y H, et al.,2021. Adsorption of phenanthrene and its monohydroxy derivatives on polyvinyl chloride microplastics in aqueous solution: Model fitting and mechanism analysis[J]. Science of The Total Environment, 764: 142889.
DOI URL |
[7] |
BEHERA B K, DAS A, SARKAR D J, et al,2018. Polycyclic aromatic hydrocarbons (PAHs) in inland aquatic ecosystems: perils and remedies through biosensors and bioremediation[J]. Environmental Pollution, 241: 212-233.
DOI PMID |
[8] |
CAO H M, ZHANG P, JIA W L, et al.,2021. Adsorption of phenanthrene onto magnetic multi-walled carbon nanotubes (MMWCNTs) influenced by various fractions of humic acid from a single soil[J]. Chemosphere, 277: 130259.
DOI URL |
[9] |
CASTIGLIONI M, RIVOIRA L, INGRANDO I, et al.,2021. Characterization Techniques as Supporting Tools for the Interpretation of Biochar Adsorption Efficiency in Water Treatment: A Critical Review[J]. Molecules, 26(16): 5063.
DOI URL |
[10] |
CHEN B L, ZHOU D D, ZHU L Z,2008. Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures[J]. Environmental Science & Technology, 42(14): 5137-5143.
DOI URL |
[11] |
CHENG Y Y, XIE H, YU F L, et al.,2021. Facile fabrication of three-dimensional porous carbon embedded with SnO2 nanoparticles as a high-performance anode for lithium-ion battery[J]. Ionics, 27(10): 4143-4151.
DOI |
[12] |
DA SILVA JUNIOR F C, FELIPE M B M C, CASTRO D E F de, et al.,2021. A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs[J]. Environmental Pollution, 278: 116838.
DOI URL |
[13] |
GOLOVKO O, REHRL A L, KÖHLER S, et al.,2020. Organic micropollutants in water and sediment from Lake Mälaren, Sweden[J]. Chemosphere, 258: 127293.
DOI URL |
[14] |
HAO Z, WANG Q H, YAN Z S, et al.,2021. Novel magnetic loofah sponge biochar enhancing microbial responses for the remediation of polycyclic aromatic hydrocarbons-contaminated sediment[J]. Journal of Hazardous Materials, 401: 123859.
DOI URL |
[15] |
HUANG D, XU B L, WU J Z, et al.,2019. Adsorption and desorption of phenanthrene by magnetic graphene nanomaterials from water: Roles of pH, heavy metal ions and natural organic matter[J]. Chemical Engineering Journal, 368: 390-399.
DOI URL |
[16] |
HUANG Z Q, HU L C, TANG W, et al.,2020. Effects of biochar aging on adsorption behavior of phenanthrene[J]. Chemical Physics Letters, 759: 137948.
DOI URL |
[17] |
KLOSS S, ZEHETNER F, DELLANTONIO A, et al.,2012. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties[J]. Journal of Environmental Quality, 41(4): 990-1000.
DOI PMID |
[18] |
KUMAR M, BOLAN N S, HOANG S A, et al.,2021. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade?[J]. Journal of Hazardous Materials, 420: 126534.
DOI URL |
[19] |
LI B Q, ZHENG Z R, FANG J Z, et al.,2021. Comparison of adsorption behaviors and mechanisms of methylene blue, Cd2+, and phenanthrene by modified biochars derived from pomelo peel[J]. Environmental Science and Pollution Research, 28(25): 32517-32527.
DOI |
[20] |
LI F, CHEN J J, HU X, et al.,2020. Applications of carbonaceous adsorbents in the remediation of polycyclic aromatic hydrocarbon-contaminated sediments: A review[J]. Journal of Cleaner Production, 255: 120263.
DOI URL |
[21] |
LI Q Y, LIU J J, SUN X, et al.,2019. Hierarchically Porous Melamine-Formaldehyde Resin Microspheres for the Removal of Nanoparticles and Simultaneously As the Nanoparticle Immobilized Carrier for Catalysis[J]. ACS Sustainable Chemistry and Engineering, 7(1): 867-876.
DOI URL |
[22] |
LIU S, XU W H, LIU Y G, et al.,2017. Facile synthesis of Cu(II) impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water[J]. Science of The Total Environment, 592: 546-553.
DOI URL |
[23] |
LÓPEZ-LUNA J, RAMÍREZ-MONTES L E, MARTINEZ-VARGAS S, et al.,2019. Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles[J]. SN Applied Sciences, 1(8): 950.
DOI |
[24] |
LUO Z R, YAO B, YANG X, et al.,2022. Novel insights into the adsorption of organic contaminants by biochar: A review[J]. Chemosphere, 287(Part 2): 132113.
DOI URL |
[25] | MA J, YU F, ZHOU L, et al.,2012. Enhanced Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution by Alkali-Activated Multiwalled Carbon Nanotubes[J]. ACS Applied Materials & Interfaces, 4(11): 5749-5760. |
[26] |
MA Y F, QI Y, LU T M, et al.,2021. Highly efficient removal of imidacloprid using potassium hydroxide activated magnetic microporous loofah sponge biochar[J]. Science of The Total Environment, 765: 144253.
DOI URL |
[27] |
MALETIĆ S P, BELJIN J M, RONČEVIĆ S D, et al.,2019. State of the art and future challenges for polycyclic aromatic hydrocarbons is sediments: sources, fate, bioavailability and remediation techniques[J]. Journal of Hazardous Materials, 365: 467-482.
DOI PMID |
[28] |
MENG X Q, ZHANG C M, ZHUANG J, et al.,2020. Assessment of schwertmannite, jarosite and goethite as adsorbents for efficient adsorption of phenanthrene in water and the regeneration of spent adsorbents by heterogeneous fenton-like reaction[J]. Chemosphere, 244: 125523.
DOI URL |
[29] |
VARJANI S, KUMAR G, RENE E R,2019. Developments in biochar application for pesticide remediation: Current knowledge and future research directions[J]. Journal of Environmental Management, 232: 505-513.
DOI PMID |
[30] |
VAUGHN S F, KENAR J A, THOMPSON A R, et al.,2013. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates[J]. Industrial Crops and Products, 51: 437-443.
DOI URL |
[31] |
WANG L C, CAO Y H,2018. Adsorption behavior of phenanthrene on CTAB-modified polystyrene microspheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 553: 689-694.
DOI URL |
[32] |
WANG X Q, GUO Z Z, HU Z, et al.,2020. Adsorption of phenanthrene from aqueous solutions by biochar derived from an ammoniation-hydrothermal method[J]. Science of The Total Environment, 733: 139267.
DOI URL |
[33] |
WEI Z W, MA X D, ZHANG Y Y, et al.,2022. High-efficiency adsorption of phenanthrene by Fe3O4-SiO2-dimethoxydiphenylsilane nanocomposite: Experimental and theoretical study[J]. Journal of Hazardous Materials, 422: 126948.
DOI URL |
[34] |
XU M M, AN Y J, WANG Q Q, et al.,2021. Construction of hydroxyl functionalized magnetic porous organic framework for the effective detection of organic micropollutants in water, drink and cucumber samples[J]. Journal of Hazardous Materials, 412: 125307.
DOI URL |
[35] |
XU X R, LI X Y,2010. Sorption and desorption of antibiotic tetracycline on marine sediments[J]. Chemosphere, 78(4): 430-436.
DOI URL |
[36] |
YANG D, YANG X N, LIU M, et al.,2022. Cucurbit[5]uril-based porous polymer material for removing organic micropollutants in water[J]. Microporous and Mesoporous Materials, 341: 112023.]
DOI URL |
[37] |
YU J D, JIANG C Y, GUAN Q Q, et al.,2018. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth[J]. Chemosphere, 195: 632-640.
DOI PMID |
[38] |
YUAN Y, ZHOU S G, LIU Y, et al.,2013. Nanostructured Macroporous Bioanode Based on Polyaniline-Modified Natural Loofah Sponge for High-Performance Microbial Fuel Cells[J]. Environmental Science & Technology, 47(24): 14525-14532.
DOI URL |
[39] |
ZHANG M, AHMAD M, LEE S S, et al.,2014. Sorption of Polycyclic Aromatic Hydrocarbons (PAHs) to Lignin: Effects of Hydrophobicity and Temperature[J]. Bulletin of Environmental Contamination and Toxicology, 93(1): 84-88.
DOI PMID |
[40] | ZHANG J, DENG F B, YIN X Q, et al.,2022. Adsorption of Oxytetracycline Hydrochloride and Chloramphenicol in Single and Binary Component Systems by Loofah Sponge-Based Biochar[J]. Water, Air, & Soil Pollution, 233(11): 427. |
[41] |
ZHANG X K, WANG H L, HE L Z, et al.,2013. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants[J]. Environmental Science and Pollution Research, 20(12): 8472-8483.
DOI URL |
[42] |
ZHAO Y L, DAI H, JI J Q, et al.,2022b. Resource utilization of luffa sponge to produce biochar for effective degradation of organic contaminants through persulfate activation[J]. Separation and Purification Technology, 288: 120650.
DOI URL |
[43] |
ZHAO T, WANG M L, YAO Y, et al.,2021. Selective elimination of the reactive groups of porous biochar 3D host for stable lithium anodes[J]. Electrochimica Acta, 388: 138632.
DOI URL |
[44] |
ZHAO Z H, YAO X L, DING Q Q, et al.,2022a. A comprehensive evaluation of organic micropollutants (OMPs) pollution and prioritization in equatorial lakes from mainland Tanzania, East Africa[J]. Water Research, 217: 118400.
DOI URL |
[45] | 常春, 王胜利, 郭景阳, 等,2016. 不同热解条件下合成生物炭对铜离子的吸附动力学研究[J]. 环境科学学报, 36(7): 2491-2502. |
CHANG C, WANG S L, GUO J Y, et al.,2016. Adsorption kinetics and mechanism of copper ion on biochar with different pyrolysis condition[J]. Acta Scientiae Circumstantiae, 36(7): 2491-2502. | |
[46] |
程文远, 李法云, 吕建华, 等,2022. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 31(4): 824-834.
DOI |
CHENG W Y, LI F Y, LÜ J H, et al.,2022. Sorption characteristics of polycyclic aromatic hydrocarbons phenanthrene on sunflower straw biochar modified with alkali[J]. Ecology and Environmental Sciences, 31(4): 824-834. | |
[47] |
丛鑫, 王宇, 李瑶, 等,2022. 生物炭及氧化石墨烯/生物炭复合材料对水中抗生素吸附性能研究[J]. 生态环境学报, 31(2): 326-334.
DOI |
CONG X, WANG Y, LI Y, et al.,2022. Adsorption characteristics of biochars and graphene oxide/biochar composites for antibiotics from aqueous solution[J]. Ecology and Environmental Sciences, 31(2): 326-334. | |
[48] | 邓赟, 王飞,2021. 腐植酸和黑炭的提取及其对菲和芘的吸附行为[J]. 环境工程, 39(8): 88-92, 107. |
DENG Y, WANG F,2021. Extraction of humic acid and black carbon and their adsorption behaviors for phenanthrene and pyrene[J]. Environmental Engineering, 39(8): 88-92, 107. | |
[49] | 黄青友, 全桂香, 沙永浩,2022. 改性硫酸铁铵丝瓜络生物炭对砷的吸附行为研究[J]. 生物化工, 8(1): 131-134. |
HUANG Q Y, QUAN G X, SHA Y H,2022. Arsenic adsorption behavior of loofah biochar modified with ammonium ferric sulfate[J]. Biological Chemical Engineering, 8(1): 131-134. | |
[50] | 秦伟, 白文荣, 周明月, 等,2019. 北运河表层水体中微量有机污染物分布特征及潜在风险[J]. 环境科学学报, 39(3): 649-658. |
QIN W, BAI W R, ZHOU M Y, et al.,2019. Potential risk and distribution characteristics of trace organic pollutants in surface water of Beiyun River[J]. Acta Scientiae Circumstantiae, 39(3): 649-658. | |
[51] | 张默, 贾明云, 卞永荣, 等,2015. 不同温度玉米秸秆生物炭对萘的吸附动力学特征与机理[J]. 土壤学报, 52(5): 1106-1115. |
ZHANG M, JIA M Y, BIAN Y R, et al.,2015. Sorption kinetics and mechanism of naphthalene on corn-stalkderived biochar with different pyrolysis temperature[J]. Acta Pedologica Sinica, 52(5): 1106-1115. |
[1] | WANG Chuanyang, ZHANG Xiaoling, LAN Linhui, PAN Jie. Analysis of the Impact of High Temperature and Drought on the Concentration Changes of Pollutants in the Sichuan Basin in Summer of 2022 [J]. Ecology and Environment, 2024, 33(1): 80-91. |
[2] | YANG Meihuan, YAO Minghao, WANG Tao, LI Yawen, DENG Yanhao, ZHAO Yingying, ZHANG Zhengliang. Analysis of Urban Thermal Environment Change and Its Influencing Factors in Xi’an Based on Local Climate Zone [J]. Ecology and Environment, 2023, 32(9): 1644-1653. |
[3] | CHEN Dongdong, HUO Lili, ZHAO Liang, CHEN Xin, SHU Min, HE Fuquan, ZHANG Yukun, ZHANG Li, LI Qi. Contribution of Water and Heat Factors to Spatial Variability of Soil Microbial Biomass Carbon and Nitrogen in Qinghai Alpine Grassland: Based on Enhanced Regression Tree Model [J]. Ecology and Environment, 2023, 32(7): 1207-1217. |
[4] | LIN Xin, DUAN Kunyu, GUO Hong, JIANG Dongsheng, JI Xiaoting, WANG Hong. The Causes of the Abnormal Increase of Ozone in Fuzhou City under Extreme High Temperature [J]. Ecology and Environment, 2023, 32(2): 320-330. |
[5] | FU Rong, WU Xinmei, CHEN Bin. Analysis on the Spatial Stratified Heterogeneity and Driving Factors Differences of the Urban Land Surface Temperature: A Case Study of Hefei [J]. Ecology and Environment, 2023, 32(1): 110-122. |
[6] | JIANG Tiantian, YANG Chun, LIAO Wei, HU Li, LIU Huanyao, REN Bo, LI Xiaoma. Path Analysis of the Urban Greenspace Landscape Pattern Impacts on Land Surface Temperature: A Case Study in Changsha [J]. Ecology and Environment, 2023, 32(1): 18-25. |
[7] | RUAN Huihua, XU Jianhui, ZHANG Feifei. Spatiotemporal Changes of Vegetation and Land Surface Temperature during 2001 and 2020 in the Guangdong-Hong Kong-Macao Greater Bay Area of China [J]. Ecology and Environment, 2022, 31(8): 1510-1520. |
[8] | CUI Qiao, LI Zongxing, ZHANG Baijuan, ZHAO Yue, NAN Fusen. A Meta-analysis of the Effects of Freezing and Thawing on Soil Dissolved Carbon and Nitrogen and Microbial Biomass Carbon and Nitrogen Contents [J]. Ecology and Environment, 2022, 31(8): 1700-1712. |
[9] | QI Yue, ZHANG Qiang, HU Shujuan, CAI Dihua, ZHAO Funian, ZHANG Kai, WANG Heling, WANG Runyuan. Climate Change and Its Impact on Winter Wheat Potential Productivity of Loess Plateau in China [J]. Ecology and Environment, 2022, 31(8): 1521-1529. |
[10] | LEI Jun, ZHANG Jian, ZHAO Funian, QI Yue, ZHANG Xiuyun, LI Qiang, SHANG Junlin. Response of Photosynthetic Parameters for Spring Wheat at Flowering Stage to Soil Moisture and Temperature [J]. Ecology and Environment, 2022, 31(6): 1151-1159. |
[11] | LI Zhe, CHEN Shengbin, CHEN Zhiyang. Spatial Scale Dependence between Land Surface Temperature and Land Use Types: A Case Study of Chengdu City [J]. Ecology and Environment, 2022, 31(5): 999-1007. |
[12] | CHEN Lijuan, ZHOU Wenjun, YI Yanyun, SONG Qinghai, ZHANG Yiping, LIANG Naishen, LU Zhiyun, WEN Handong, MOHD Zeeshan, SHA Liqing. Characteristics of Soil CH4 Flux in the Subtropical Evergreen Broad-leaved Forest in Ailao Mountain, Yunnan, Southwest China [J]. Ecology and Environment, 2022, 31(5): 949-960. |
[13] | YI Jiahui, HE Chao, YANG Lu, YE Zhixiang, TIAN Ya, KE Biqin, MU Hang, TU Peiyue, HAN Chaoran, HONG Song. Spatial Correlation between Changes in Global Temperature and Major Air Pollutants during the COVID-19 Pandemic [J]. Ecology and Environment, 2022, 31(4): 740-749. |
[14] | CHENG Wenyuan, LI Fayun, LÜ Jianhua, LIN Meixia, WANG Wei. Sorption Characteristics of Polycyclic Aromatic Hydrocarbons Phenanthrene on Sunflower Straw Biochar Modified with Alkali [J]. Ecology and Environment, 2022, 31(4): 824-834. |
[15] | CONG Xin, WANG Yu, LI Yao, HE Yangyang. Adsorption Characteristics of Biochars and Graphene Oxide/biochar Composites for Antibiotics from Aqueous Solution [J]. Ecology and Environment, 2022, 31(2): 326-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn