Ecology and Environment ›› 2023, Vol. 32 ›› Issue (12): 2166-2173.DOI: 10.16258/j.cnki.1674-5906.2023.12.008
• Ecology • Previous Articles Next Articles
XU Lanqing1,2(), CHENG Bingxu1,2,*(
), WANG Chuanxi1,2
Received:
2023-12-12
Online:
2023-12-18
Published:
2024-02-05
Contact:
CHENG Bingxu
通讯作者:
程冰徐
作者简介:
徐兰青(1982年生),女,研究方向纳米农业技术。E-mail: lanqingxu29@126.com
基金资助:
CLC Number:
XU Lanqing, CHENG Bingxu, WANG Chuanxi. Study of the Effect of Biomass Carbon Dots on Corn Photosynthesis and Yield by Foliar Application[J]. Ecology and Environment, 2023, 32(12): 2166-2173.
徐兰青, 程冰徐, 王传洗. 叶面喷施生物质碳点对玉米光合及产量的影响[J]. 生态环境学报, 2023, 32(12): 2166-2173.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.12.008
反应条件 | 产率/ % | |||
---|---|---|---|---|
用量/g | 温度/℃ | 时间/h | 反应体积/mL | |
8 | 180 | 6 | 50 | 50 |
12 | 180 | 6 | 50 | 37.7 |
20 | 180 | 6 | 50 | 31.3 |
12 | 150 | 6 | 50 | 19 |
12 | 180 | 6 | 50 | 37.7 |
12 | 220 | 6 | 50 | 34.9 |
12 | 180 | 3 | 50 | 37.7 |
12 | 180 | 6 | 50 | 33.9 |
12 | 180 | 8 | 50 | 35.8 |
Table 1 Optimal response condition regulation
反应条件 | 产率/ % | |||
---|---|---|---|---|
用量/g | 温度/℃ | 时间/h | 反应体积/mL | |
8 | 180 | 6 | 50 | 50 |
12 | 180 | 6 | 50 | 37.7 |
20 | 180 | 6 | 50 | 31.3 |
12 | 150 | 6 | 50 | 19 |
12 | 180 | 6 | 50 | 37.7 |
12 | 220 | 6 | 50 | 34.9 |
12 | 180 | 3 | 50 | 37.7 |
12 | 180 | 6 | 50 | 33.9 |
12 | 180 | 8 | 50 | 35.8 |
材料 | 单价/(yuan∙kg−1) | 产率/% | 成本/(yuan∙kg−1) |
---|---|---|---|
大豆 | 16.3 | 50 | 32.6 |
柠檬酸 (国药试剂) | 98.6 | 50 | 197.2 |
Table 2 Synthesis costing of different CDs
材料 | 单价/(yuan∙kg−1) | 产率/% | 成本/(yuan∙kg−1) |
---|---|---|---|
大豆 | 16.3 | 50 | 32.6 |
柠檬酸 (国药试剂) | 98.6 | 50 | 197.2 |
[1] |
CHEN W F, SHEN J L, WANG Z, et al., 2021. Turning waste into wealth: facile and green synthesis of carbon nanodots from pollutants and applications to bioimaging[J]. Chemical Science, 12(35): 11722-11729.
DOI PMID |
[2] |
ÐORÐEVIC L, ARCUDI F, CACIOPPO M, et al., 2022. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications[J]. Nature Nanotechnology, 17(2): 112-130.
DOI PMID |
[3] |
GUIRGUIS A, YANG W, CONLAN X A, et al., 2023. Boosting plant photosynthesis with carbon dots: A critical review of performance and prospects[J]. Small, 19(43): 2300671.
DOI URL |
[4] |
HAO W J, WU R B, HUANG H, et al., 2020. Fabrication of practical catalytic electrodes using insulating and eco-friendly substrates for overall water splitting[J]. Energy Environmental Science, 13(1): 102-110.
DOI URL |
[5] |
HE C, XU P, ZHANG X H, et al., 2022. The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective[J]. Carbon, 186: 91-127.
DOI URL |
[6] |
JACKSON R B, MOONEY H A, SCHULZE E D, 1997. A global budget for fine root biomass, surface area, and nutrient contents[J]. Proceedings of the National Academy of Sciences, 94(14): 7362-7366.
DOI URL |
[7] |
LI Y D, XU X K, LEI B F, et al., 2021. Magnesium-nitrogen co-doped carbon dots enhance plant growth through multifunctional regulation in photosynthesis[J]. Chemical Engineering Journal, 422: 130114.
DOI URL |
[8] |
LIU J J, LI R, YANG B, 2020. Carbon dots: A new type of carbon-based nanomaterial with wide applications[J]. ACS Central Science, 6(12): 2179-2195.
DOI PMID |
[9] |
MINTZ K J, BARTOLI M, ROVERE M, et al., 2021. A deep investigation into the structure of carbon dots[J]. Carbon, 173: 433-447.
DOI URL |
[10] |
SAHU S, BEHERA B, MAITI T K, et al., 2012. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents[J]. Chemical Communications (Camb), 48(70): 8835-8837.
DOI URL |
[11] | WANG B Y, WEI Z H, SUI L Z, et al., 2022. Electron-phonon coupling-assisted universal red luminescence of o-phenylenediamine-based carbon dots[J]. Light: Science & Applications, 11(1): 172. |
[12] | WANG C X, LIN H H, XU Z Z, et al., 2016. Tunable carbon-dot-based dual-emission fluorescent nanohybrids for ratiometric optical thermometry in living cells[J]. ACS applied materials & interfaces, 8(10): 6621-6628. |
[13] |
WANG C X, XU Z Z, CHENG H, et al., 2015. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature[J]. Carbon, 82: 87-95.
DOI URL |
[14] | XU X K, MAO X P, ZHUANG J L, et al., 2020. PVA-coated fluorescent carbon dot nanocapsules as an optical amplifier for enhanced photosynthesis of lettuce[J]. Acs Sustainable Chemistry & Engineering, 8(9): 3938-3949. |
[15] | 李卫东, 2020. 生物质碳点的宏量制备及其复合材料的性能研究[D]. 郑州: 郑州大学: 1-141. |
LI W D, 2020. The study on large-scale preparation of biomass carbon dots and their composites performance[D]. Zhengzhou: Zhengzhou University:1-141. | |
[16] | 李向义, 鲁艳, 张爱林, 2022. 不同玫瑰品种叶绿素荧光参数对比研究[J]. 安徽农业科学, 50(1): 50-54. |
LI X Y, LU Y, ZHANG A L, 2022. Comparision of chlorophyll fluorescence parameters among different rosa rugosa varieties[J]. Anhui Agricultural Sciences, 50(1): 50-54. | |
[17] | 李亚东, 许晓凯, 李唯, 等, 2021. 荧光碳点调控植物光合作用研究进展[J]. 发光学报, 42(8): 1172-1181. |
LI Y D, XU X K, LI W, et al., 2022. Progress of carbon dots regulating plant photosynthesis[J]. Chinese Journal of Luminescence, 42(8): 1172-1181.
DOI URL |
|
[18] | 李焰焰, 张紫薇, 黄薇, 等, 2022. 马缨丹光合色素及叶绿素荧光参数分析[J]. 生物学杂志, 39(2): 29-33. |
LI Y Y, ZHANG Z W, HUANG W, et al., 2019. Leaf structure and chlorophyll fluorescence of Lantana camara[J]. Chinese Journal of Biology, 39(2): 29-33. | |
[19] | 李紫琴, 王家强, 2023. 浅谈叶绿素荧光技术在作物长势监测中的应用[J]. 农业与技术, 43(5): 7-9. |
LI Z Q, WANG J Q, 2023. Application of chlorophyll fluorescence technology in crop growth monitoring[J]. Agriculture and Technology, 43(5): 7-9. | |
[20] | 刘振玲, 李亚伟, 杨涵越, 等, 2019. 碳点促进作物种子萌发及生长的机制研究[J]. 安徽农业科学, 49(24): 1-5, 17. |
LIU Z L, LI Y W, YANG H Y, et al., 2019. Study on the mechanism of carbon dots promoting crop seed germination and growth[J]. Anhui Agricultural Sciences, 49(24): 1-5, 17. | |
[21] | 童莘杰, 王孟媛, 于琛, 等, 2020. 碳点的绿色合成以及对染料的吸附研究[J]. 广东化工, 47(12): 4-6. |
TONG X J, WANG M Y, YU C, et al., 2020. Green synthesis of carbon dots with excellent dye adsorption property from biomass wastes[J]. Guangdong Chemical Industry, 47(12): 4-6. | |
[22] | 王士鹏, 董娅慧, 赵浩然, 等, 2022. 生物质基碳点制备及应用研究进展[J]. 发光学报, 43(6): 833-850. |
WANG S P, DONG Y H, ZHAO H R, et al., 2022. Progress in preparation and application of biomass-based carbon quantum dots[J]. Chinese Journal of Luminescence, 43(6): 833-850.
DOI URL |
|
[23] | 魏来, 涂小进, 戴思芮, 等, 2023. 碳点的合成与应用研究进展[J]. 胶体与聚合物, 41(1): 47-50. |
WEI L, TU X J, DAI S R, et al., 2023. Research progress on synthesis and application of carbon dots[J]. Colloid and Polymer, 41(1): 47-50. | |
[24] | 杨涵越, 2022. 氮掺杂碳点对玉米光合和抗旱性的机制研究[D]. 无锡: 江南大学: 1-66. |
YANG H Y, 2022. Mechanism of nitrogen-doped carbon dots on photosynthesis and drought tolerance of maize[D]. Wuxi: Jiangnan University: 1-66. | |
[25] | 袁野梅, 柳隽瑶, 高秀丽, 等, 2022. 温带草原7种针茅植物根系特征及其对环境因子变化的适应[J]. 生态学报, 42(21): 8784-8794. |
YUAN Y M, LIU J Y, GAO X L, et al., 2022. Root traits of seven Stipa species and their relations with environmental factors in temperate grasslands[J]. Acta Ecologica Sinica, 42(21): 8784-8794. |
[1] | ZHAO Haiying, LIU Zhiyuan, YUAN Mengxian, ZHANG Qingwen, ZHANG Qiong, CAO Jiling. Effects of Silver Nanoparticles on FTIR Spectroscopic Characterization of Maize Seedlings [J]. Ecology and Environment, 2023, 32(7): 1285-1292. |
[2] | NI Guangyan. Effects of Exotic Plant Invasions on Terrestrial Ecosystems Carbon Cycling [J]. Ecology and Environment, 2023, 32(7): 1325-1332. |
[3] | ZHU Yongle, TANG Jiaxi, TAN Ting, LI Yu, XIANG Biao. Contaminant Characteristic of Per- and Poly-fluorinated Substances in Maize in the Surrounding of Fluorine Chemical Park [J]. Ecology and Environment, 2023, 32(5): 1001-1006. |
[4] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[5] | XIAO Guoju, LI Xiujing, GUO Zhanqiang, HU Yanbin, WANG Jing. Effects of Soil Organic Carbon on Maize Growth and Water Use at the Eastern Foot of Helan Mountain in Ningxia [J]. Ecology and Environment, 2022, 31(9): 1754-1764. |
[6] | LI Chengcheng, ZHANG Zirui, SONG Xiaoxuan, KONG Juanjuan, HAN Yang, RUAN Yanan. Effects of Ozone Stress on Antioxidant Metabolism and Reproductive Growth of Soybean [J]. Ecology and Environment, 2022, 31(7): 1383-1392. |
[7] | LEI Jun, ZHANG Jian, ZHAO Funian, QI Yue, ZHANG Xiuyun, LI Qiang, SHANG Junlin. Response of Photosynthetic Parameters for Spring Wheat at Flowering Stage to Soil Moisture and Temperature [J]. Ecology and Environment, 2022, 31(6): 1151-1159. |
[8] | LIU Jiang, ZHU Lijie, ZHANG Kai, WANG Xiaoming, WANG Liwei, GAO Xining. Effects of Drought Stress/Rewatering on Photosynthetic Characteristics and Yield of Soybean at Different Growth Stages [J]. Ecology and Environment, 2022, 31(2): 286-296. |
[9] | ZOU Xudong, CAI Fu, LI Rongping, MI Na, ZHAO Hujia, WANG Xiaoying, ZHANG Yunhai, WANG Hongyu, JIA Qingyu. Study on Water and Heat Flux and Energy Change of Maize Field [J]. Ecology and Environment, 2021, 30(8): 1642-1653. |
[10] | ZHOU Yingtong, WANG Yan, SUN Mingyu, SAN Yu, YAO Xingzhou, ZHAO Tianhong. Effect of Ozone Concentration Increasing Near the Ground on Antioxidant System of Parent and Offspring Soybean Leaves [J]. Ecology and Environment, 2021, 30(11): 2195-2203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn