Ecology and Environment ›› 2023, Vol. 32 ›› Issue (7): 1325-1332.DOI: 10.16258/j.cnki.1674-5906.2023.07.015
• Reviews • Previous Articles Next Articles
Received:
2023-02-13
Online:
2023-07-18
Published:
2023-09-27
作者简介:
倪广艳(1978年生),女,副研究员,博士,从事入侵植物生理生态学研究。E-mail: guangyan.ni@scbg.ac.cn
基金资助:
CLC Number:
NI Guangyan. Effects of Exotic Plant Invasions on Terrestrial Ecosystems Carbon Cycling[J]. Ecology and Environment, 2023, 32(7): 1325-1332.
倪广艳. 外来植物入侵对生态系统碳循环影响的研究概述[J]. 生态环境学报, 2023, 32(7): 1325-1332.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.07.015
[1] |
BRADLEY B A, HOUGHTON R A, MUSTARD J F, et al., 2006. Invasive grass reduces aboveground carbon stocks in shrublands of the Western US[J]. Global Change Biology, 12(10): 1815-1822.
DOI URL |
[2] |
BRADLEY B A, WILCOVE D S, OPPENHEIMER M, 2010. Climate change increases risk of plant invasion in the Eastern United States[J]. Biological Invasions, 12(6): 1855-1872.
DOI URL |
[3] |
CAI H Y, LU H F, TIAN Y, et al., 2020. Effects of invasive plants on the health of forest ecosystems on small tropical coral islands[J]. Ecological Indicators, 117(Part 2): 106656.
DOI URL |
[4] |
CALLAWAY R M, THELEN G C, RODRIGUEZ A, et al., 2004. Soil biota and exotic plant invasion[J]. Nature, 427(6976): 731-733.
DOI |
[5] |
CHEN B M, PENG S L, NI G Y, 2009. Effects of the invasive plant Mikania micrantha H.B.K. on soil nitrogen availability through allelopathy in South China[J]. Biological Invasions, 11: 1291-1299.
DOI URL |
[6] |
CRAIG M E, LOVKO N, FLORY S L, et al., 2019. Impacts of an invasive grass on soil organic matter pools vary across a tree-mycorrhizal gradient[J]. Biogeochemistry, 144(2): 149-164.
DOI |
[7] |
CRAIG M, PEARSON S M, FRATERRIGO J, 2015. Grass invasion effects on forest carbon depend on landscape-level land use patterns[J]. Ecology, 96(8): 2265-2279.
DOI URL |
[8] |
D’ANTONIO C M, VITOUSEK P M, 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change[J]. Annual Review of Ecology, Systematics, 23: 63-87.
DOI URL |
[9] | DAEHLER C C, 2003. Performance comparisons of co-occurring native and alien invasive plants:implications for conservation and restoration[J]. Annual Review of Ecological Evolution and Systematics, 34(1): 183-211. |
[10] |
DAWSON W M, SCHRAMA A, AUSTIN A. et al., 2016. Identifying the role of soil microbes in plant invasions[J]. Journal of Ecology, 104(5): 1211-1218.
DOI URL |
[11] |
DRENOVSKY R E, BATTEN K M, 2007. Invasion by Aegilops triuncialis (barb goatgrass) slows carbon and nutrient cycling in a serpentine grassland[J]. Biological Invasions, 9: 107-116.
DOI URL |
[12] |
EHRENFELD J, 2003. Effects of exotic plant invasions on soil nutrient cycling processes[J]. Ecosystems, 6(6): 503-523.
DOI URL |
[13] |
EHRENFELD J, JOAN G, 2010. Ecosystem consequences of biological invasions[J]. Annual Review of Ecology, Evolution, and Systematics, 41(1): 59-80.
DOI URL |
[14] |
FENG Y L, LI Y P, WANG R F, et al., 2011. A quicker return energy-use strategy by populations of a subtropical invader in the non-native range: A potential mechanism for the evolution of increased competitive ability[J]. Journal of Ecology, 99(5): 1116-1123.
DOI URL |
[15] |
GAO G F, LI H, SHI Y, et al., 2022. Continental-scale plant invasions reshuffle the soil microbiome of blue carbon ecosystems[J]. Global Change Biology, 28(14): 4423-4438.
DOI URL |
[16] |
HE Y H, ZHOU X H, CHENG W S, et al., 2019. Linking improvement of soil structure to soil carbon storage following invasion by a C4 plant Spartina alterniflora[J]. Ecosystem, 22(4): 859-872.
DOI |
[17] | HOOK B K, OLSON B E, WRAITH J M, 2004. Effects of the invasive forb Centaurea maculosa on grassland carbon and nitrogen pools in Montana, USA[J]. Ecosystems, 7(6): 686-694. |
[18] |
HOU Y P, PENG S L, CHEN B M, et al., 2011. Inhibition of an invasive plant (Mikania micrantha H.B.K.) by soils of three different forests in lower subtropical China[J]. Biological Invasions, 13: 381-391.
DOI URL |
[19] |
HUGHES R F, ARCHER S R, ASNER G P, et al., 2006. Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna[J]. Global Change Biology, 12(9): 1733-1747.
DOI URL |
[20] |
JACKSON R B, BANNER J L, JOBBÁGY E G, et al., 2002. Ecosystem carbon loss with woody plant invasion of grasslands[J]. Nature, 418(6898): 623-626.
DOI URL |
[21] |
KOURTEV P S, EHRENFELD J G, HÄGGBLOM M, 2002. Exotic plant species alter the microbial community structure and function in the soil[J]. Ecology, 83(11): 3152-3166.
DOI URL |
[22] |
KOUTIKA L S, VANDERHOEVEN S, CHAPUIS-LARDY L, et al., 2007. Assessment of changes in soil organic matter after invasion by exotic plant species[J]. Biology and Fertility of Soils, 44(2): 331-341.
DOI URL |
[23] |
LEISHMAN M R, HASLEHURST T, ARES A, et al., 2007. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons[J]. New Phytologist, 176(3): 635-643.
DOI PMID |
[24] |
LEISHMAN M R, THOMSON V P, COOKE J, 2010. Native and exotic invasive plants have fundamentally similar carbon capture strategies[J]. Journal of Ecology, 98(1): 28-42.
DOI URL |
[25] |
LI W H, ZHANG C B, JIANG H B, et al., 2006. Changes in soil microbial community associated with invasion of the exotic weed, Mikania micrantha H.B.K[J]. Plant and Soil, 281: 309-324.
DOI URL |
[26] |
LI W H, ZHANG C B, GAO G J, et al., 2007. Relationship between Mikania micrantha invasion and soil microbial biomass, respiration and functional diversity[J]. Plant and Soil, 296(1-2): 197-207.
DOI URL |
[27] |
LIAO C Z, LUO Y Q, JIANG L F, et al., 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary China[J]. Ecosystem, 10(8): 1351-1361.
DOI URL |
[28] |
LIAO C Z, PENG R L, LUO Y Q, et al., 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta analysis[J]. New Phytologist, 177(3): 706-714.
DOI URL |
[29] |
LITTON C M, SANDQUIST D R, Cordell S, 2006. Effects of non-native grass invasion on aboveground carbon pools and tree population structure in a tropical dry forest of Hawaii[J]. Forest Ecology and Management, 231(1-3): 105-113.
DOI URL |
[30] |
LITTON C M, SANDQUIST D R, CORDELL S, 2008. A non-native invasive grass increases soil carbon flux in a Hawaiian tropical dry forest[J]. Global Change Biology, 14(4): 726-739.
DOI URL |
[31] |
LIU B, YAN J, LI W H, et al., 2020. Mikania micrantha genome provides insights into the molecular mechanism of rapid growth. Nature Communication, 11: 340.
DOI |
[32] |
NASTO M K, MCLEOD M L, BULLINGTON L, et al., 2022. The effect of plant invasion on soil microbial carbon-use efficiency in semi-arid grasslands of the Rocky Mountain[J]. Journal of Ecology, 110(2): 479-493.
DOI URL |
[33] | NI G Y, SONG L Y, ZHANG J L, et al., 2006. Effects of root extracts of Mikania micrantha H.B.K. on soil microbial community[J]. Allelopathy Journal, 17(2): 247-254. |
[34] | NI G Y, ZHAO P, HUANG Q Q, et al., 2020. Mikania micrantha invasion enhances the carbon (C) transfer from plant to soil and mediates the soil C utilization through altering microbial community[J]. Science of the Total Environment, 711: 35020. |
[35] |
NI M, DEANE D C, LI S P, et al., 2021. Invasion success and impacts depend on different characteristics in non-native plants[J]. Diversity and Distributions, 27(7): 1194-1207.
DOI URL |
[36] |
NORRIS M D, BLAIR J M, JPHNSON L C, 2001. Land cover change in eastern Kansas: litter dynamics of closed-canopy eastern redcedar forests in tallgrass prairie[J]. Canadian Journal of Botany, 79(2): 214-222.
DOI URL |
[37] |
OGLE S M, OJIMA D, REINERS W A, 2004. Modeling the impact of exotic annual brome grasses on soil organic carbon storage in a northern mixed grass prairie[J]. Biological Invasions, 6(3): 365-377.
DOI URL |
[38] |
PATTISON R R, GOLDSTEIN G, ARES A, 1998. Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rain-forest species[J]. Oecologia, 117(4): 449-459.
DOI URL |
[39] |
PELTZER D A, ALLEN R B, LOVETT G M, et al., 2010. Effects of biological invasions on forest carbon sequestration[J]. Global Change Biology, 16(2): 732-746.
DOI URL |
[40] |
PORAZINSKA D L, BARDGETT R D, BLAAUW M B, et al., 2003. Relationships at the aboveground- belowground interface: plants, soil biota, and soil processes[J]. Ecological Monographs, 73(3): 377-395.
DOI URL |
[41] |
QIAO H M, LIU W W, ZHANG Y H, et al., 2019. Genetic admixture accelerates invasion via provisioning rapid adaptive evolution[J]. Molecular Ecology, 28(17): 4012-4027.
DOI PMID |
[42] |
ROGERS C, MCCARTY J P, 2000. Climate change and ecosystems of the mid-Atlantic region[J]. Climate Research, 14(3): 235-244.
DOI URL |
[43] |
SAMPAIO J A G, REIS C R G, CUNHA-LIGNON M, et al., 2021. Plant invasion affects vegetation structure and sediment nitrogen stocks in subtropical mangroves[J]. Marine Environmental Research, 172: 105506.
DOI URL |
[44] |
SHEN X J, LIU Y W, LIU B H, et al., 2022. Effect of shrub encroachment on land surface temperature in semi-arid areas of temperate regions of the Northern Hemisphere[J]. Agricultural and Forest Meteorology, 320: 108943.
DOI URL |
[45] |
SUN Y, ZÜST T, SILESTRO D, et al., 2022. Climate warming can reduce biocontrol efficacy and promote plant invasion due to both genetic and transient metabolomic changes[J]. Ecology Letters, 25(6): 1387-1400.
DOI PMID |
[46] |
TORRES N, HERRERA I, FAJARDO L, et al., 2021. Meta-analysis of the impact of plant invasions on soil microbial communities[J]. BMC Ecology and Evolution, 21: 172.
DOI |
[47] |
VALÉRY L, BOUCHARD V, LEFEUVRE J C, 2004. Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh[J]. Wetlands, 24(2): 268-276.
DOI URL |
[48] |
VILÀ M, ESPINAR J, HEJDA M, et al., 2011. Ecological impacts of invasive alien plants: A meta analysis of their effects on species, communities and ecosystems[J]. Ecology Letters, 14(7): 702-708.
DOI URL |
[49] |
VINTON M A, BURKE I C, 1995. Interactions between individual plant species and soil nutrient status in shortgrass steppe[J]. Ecology, 76(4): 1116-1133.
DOI URL |
[50] |
VITOUSEK P M, WALKER L R, 1989. Biological invasion by Myrica faya in Hawaii-plant demography, nitrogen fixation, ecosystem effects[J]. Ecological Monographs, 59(3): 247-265.
DOI URL |
[51] |
YU Y L, CHENG H Y, WANG S, et al., 2022. Drought may be beneficial to the competitive advantage of Amaranthus spinosus[J]. Journal of Plant Ecology, 15(3): 494-508.
DOI URL |
[52] |
WEI H, XU J L, QUAN G M, et al., 2017. Invasion effects of Chromolaena odorata on soil carbon and nitrogen fractions in a tropical savamma[J]. Ecosphere, 8: e01831.
DOI URL |
[53] |
WILCUT J W, TRUELOVE B, DAVIS D E, et al., 1988. Temperature factors limiting the spread of Cogongrass (Imperata cylindrica) and Torpedograss (Panicum repens)[J]. Weed Science, 36(1): 49-55.
DOI URL |
[54] |
WINDHAM L, Weis J S, Weis P, 2004. Metal dynamics of plant litter of Spartina alterniflora and Phragmites australis in metal-contaminated salt marshes. Part 1: patterns of decomposition and metal uptake[J]. Environmental Toxicology and Chemistry, 23(6): 1520-1528.
DOI URL |
[55] |
WINDHAM L, EHRENFELD J G, 2003. Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh[J]. Ecological Applications, 13(4): 883-896.
DOI URL |
[56] |
WINDHAM L, LATHROP R G, 1999. Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica river, New Jersey[J]. Estuaries, 22: 927-935.
DOI URL |
[57] |
WOLKOVICH E M, LIPSON D A, VIRGINIA R A, et al., 2010. Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland[J]. Global Change Biology, 16(4): 1351-1365.
DOI URL |
[58] |
YANG B, CUI M M, DU Z Z, et al., 2022. Influence of multiple global change drivers on plant invasions: additive effects are uncommon[J]. Frontiers in Plant Science, 13: 1020621.
DOI URL |
[59] |
YANG R M, 2019a. Interacting effects of plant invasion, climate, and soils on soil organic carbon storage in coastal wetlands[J]. Journal of Geophysical Research: Biogeosciences, 124(8): 2554-2564.
DOI URL |
[60] |
YANG R M, 2019b. Mechanisms of soil organic carbon storage to Spartina alterniflora invasion and climate change[J]. Science of the Total Environment, 690: 7-15.
DOI URL |
[61] |
ZHANG G L, BAI J H, TEBBE C C, et al., 2022. Plant invasion reconstructs soil microbial assembly and functionality in coastal salt marshes[J]. Molecular Ecology, 31(17): 4478-4494.
DOI PMID |
[62] |
ZHAO M X, LU X F, ZHAO H X, et al., 2019. Agertina adenophora invasions are associated with microbially mediated differences in biogeochemical cycles[J]. Science of the Total Environment, 677: 47-56.
DOI URL |
[63] |
ZHOU G Y, XU S, CIAIS P, et al., 2019. Climate and litter C/N ratio constrain soil organic carbon accumulation[J]. National Science Review, 6(4):746-757.
DOI |
[64] |
陈慧丽, 李玉娟, 李博, 等, 2005. 外来植物入侵对土壤生物多样性和生态系统过程的影响[J]. 生物多样性, 13(6): 555-565.
DOI |
CHEN H L, LI Y J, LI B, et al., 2005. Impacts of exotic plant invasions on soil biodiversity and ecosystem processes[J]. Diversity Science, 13(6): 555-565. | |
[65] | 陈蕾伊, 沈海花, 方精云, 2014. 灌丛化草原: 一种新的植被景观[J]. 自然杂志, 36(6): 391-396. |
CHEN L Y, SHEN H H, FANG J Y, 2014. Shrub-encroached grassland: A new vegetation type[J]. Chinese Journal of Nature, 36(6): 391-396. | |
[66] | 冯玉龙, 廖志勇, 张茹, 等, 2009. 外来入侵植物对环境梯度和天敌逃逸的适应进化[J]. 生物多样性, 17(4): 340-240. |
FENG Y L, LIAO Z Y, ZHANG R, et al., 2009. Adaptive evolution in response to environmental gradients and enemy release in invasive alien plant species[J]. Diversity Science, 17(4): 340-240. | |
[67] | 贺金生, 王政权, 方精云, 2004. 全球变化的地下生态学: 问题与展望[J]. 科学通报, 49(13): 1226-1233. |
HE J S, WANG Z Q, FANG J Y, 2004. Belowground ecology under global change: problems and perspectives[J]. Chinese Science Bulletin, 49(13): 1226-1233.
DOI URL |
|
[68] | 刘宁, 付卫东, 张国良, 等, 2014. 黄顶菊入侵对不同生境地表土壤动物群落的影响[J]. 生态学杂志, 33(1): 176-183. |
LIU N, FU W D, ZHANG G L, et al., 2014. Impacts of Flaveria bidentis invasion on ground-dwelling soil animal community in different habitats[J]. Chinese Journal of Ecology, 33(1): 176-183. | |
[69] | 刘艳杰, 黄伟, 杨强, 等, 2022. 近十年植物入侵生态学重要研究进展[J]. 生物多样性, 30(10): 272-288. |
LIU Y J, HUANG W, YANG Q, et al., 2022. Research advances of plant invasion ecology over the past 10 years[J]. Biodiversity Science, 30(10): 272-288. | |
[70] | 陆建忠, 袭伟, 陈家宽, 等, 2005. 入侵种加拿大一枝黄花对土壤特性的影响[J]. 生物多样性, 13(4): 347-356. |
LU J Z, QIU W, CHEN J K, 2005. Impacts of invasive species on soil properties: Canadian goldenrod (Solidago canadensis) as a case study[J]. Diversity Science, 13(4):347-356. | |
[71] | 王伯荪, 廖文波, 昝启杰, 等, 2003. 薇甘菊Mikania micrantha在中国的传播[J]. 中山大学学报(自然科学版), 42(2): 47-54. |
WANG B S, LIAO W B, ZHAN Q J, 2003. The Spreads of Mikania micrantha in China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 42(2): 47-54. | |
[72] |
王晋萍, 董丽佳, 桑卫国, 2012. 不同氮素水平下入侵种豚草与本地种黄花蒿、蒙古蒿的竞争关系[J]. 生物多样性, 20(1): 3-11.
DOI |
WANG J P, DONG L J, SANG W G, 2012. Effects of different nitrogen regimes on competition between Ambrosia artemisiifolia, an invasive species, and two native species, Artemisia annua and Artemisia mongolica[J]. Biodiversity Science, 20(1): 3-11.
DOI URL |
|
[73] | 闫宗平, 仝川, 2008. 外来植物入侵对陆地生态系统地下碳循环及碳库的影响[J]. 生态学报, 28(9): 4440-4450. |
YAN Z P, TONG C, 2008. Impacts of exotic plant invasions on terrestrial ecosystem below-ground carbon cycling and carbon pools[J]. Acta Ecologica Sinica, 28(9): 4440-4450. | |
[74] | 张祥霖, 石盛莉, 潘根兴, 等, 2008. 互花米草入侵福建漳江口红树林湿地土壤生态化学变化[J]. 地球科学进展, 23(9): 974-980. |
ZHANG X L, SHI S L, PAN G X, et al., 2008. Changes in eco-chemical properties of a mangrove wetland under Spartina invasion from Zhangjiangkou, Fujian, China[J]. Advances in Earth Science, 23(9): 974-980. | |
[75] | 张耀鸿, 张富存, 周晓冬, 等, 2011. 互花米草对苏北滨海湿地表土有机碳更新的影响[J]. 中国环境科学, 31(2): 271-276. |
ZHANG Y H, ZHANG F C, ZHOU X D, et al., 2011. Effects of plant invasion along a Spartina alterniflora chronosequence on organic carbon dynamics in coastal wetland in north Jiangsu[J]. China Environmental Science, 31(2): 271-276. |
[1] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environment, 2023, 32(6): 1007-1015. |
[2] | CHEN Keyi, LIN Tianmiao, WANG Jianjun, HE Youjun, ZHANG Liwen. Effects of Natural Forest Conservation Project on Forest Carbon Pool of Key State-Owned Forest Region of Daxing’anling, Heilongjiang Province in the Past 20 Years [J]. Ecology and Environment, 2023, 32(6): 1016-1025. |
[3] | ZHANG Xingwang, XIE Yanping, WU Xiaomin, LI Yao, XIAO Shuping. Population Structure and Dynamic Characteristics of Wild Plant Species with Extremely Small Populations of Camptotheca acuminata in Mingxi, Fujian Province, China [J]. Ecology and Environment, 2023, 32(6): 1037-1044. |
[4] | DU Caiyan, YANG Peng, FENG Shuxian, MAO Yanting, TAO Qiong, CI Zhulamu, PENG Huiping, HE Jianmei, LI Weilin. Correlation between Quality and Ecological Factors of Weixi Glutinous Yam in Different Ecological Regions [J]. Ecology and Environment, 2023, 32(6): 1053-1061. |
[5] | WENG Shengheng, ZHANG Yuqin, JIANG Dongxin, PAN Weihua, LI Lichun, ZHANG Fangmin. Spatio-temporal Changes and Attribution Analysis of Net Ecosystem Productivity in Forest Ecosystem in Fujian Province [J]. Ecology and Environment, 2023, 32(5): 845-856. |
[6] | WU Chenyu, XU Fanfan, WEI Shibo, FAN Jingjing, LIU Guanpeng, WANG Kun. Study on Response of Surface Vegetation Cover to Climate Change in Weihe River Basin [J]. Ecology and Environment, 2023, 32(5): 835-844. |
[7] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environment, 2023, 32(5): 825-834. |
[8] | LI Yang, HOU Zhiyong, CHEN Wei, YU Xiaoying, XIE Yonghong, HUANG Xin, TAN Peiyang, LI Jicheng, LI Shanglin, YANG Hui. Plant Diversity and Systematic Composition of Alpine Wetlands in Dawei Mountain [J]. Ecology and Environment, 2023, 32(4): 643-650. |
[9] | HU Fang, LIU Jutao, WEN Chunyun, HAN Liu, WEN Hui. Phytoplankton Community Structure and Evaluation of Aquatic Ecological Conditions in Fu River Basin [J]. Ecology and Environment, 2023, 32(4): 744-755. |
[10] | LI Shanjia, WANG Xingmin, LIU Haifeng, SUN Mengge, LEI Yuxin. Diversity of Desert Plants in Hexi Corridor and Its Response to Environmental Factors [J]. Ecology and Environment, 2023, 32(3): 429-438. |
[11] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environment, 2023, 32(3): 439-449. |
[12] | XU Chen, PEI Shunxiang, WU Sha, GUO Hui, MA Shumin, WU Di, ZHANG Yaoxiang, FA Lei. Study on Major Atmospheric BVOCs Composition of Different Forest Types in Jiulong Mountain, Beijing [J]. Ecology and Environment, 2023, 32(2): 245-255. |
[13] | ZHANG Shanwen, YANG Ran, HOU Wenxing, WANG Lili, LIU Shuang, SONG Hanyang, ZHAO Wenji, LI Lingjun. Analysis of Fractional Vegetation Cover Changes and Driving Forces on Both Banks of Yongding River Before and After Ecological Water Replenishment [J]. Ecology and Environment, 2023, 32(2): 264-273. |
[14] | SONG Zhibin, ZHOU Jiacheng, TAN Lu, TANG Tao. Altitudinal Patterns of Benthic Algal Communities in Plateau Rivers: A Case Study of Heiqu and Xuequ in Tibet [J]. Ecology and Environment, 2023, 32(2): 274-282. |
[15] | JIA Zhifeng, LIU Pengcheng, LIU Yu, WU Bobo, CHEN Danzi, ZHANG Xiangfei. Effects of Climatic Change and Human Activities on Vegetation Cover in Songliao River Basin [J]. Ecology and Environment, 2023, 32(1): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn