Ecology and Environment ›› 2023, Vol. 32 ›› Issue (11): 1942-1951.DOI: 10.16258/j.cnki.1674-5906.2023.11.005
• Research Articles • Previous Articles Next Articles
SU Dan1,*(), LUO Qiaobing1, DONG Yushan1, YANG Caixia1, WANG Xin2
Received:
2022-08-17
Online:
2023-11-18
Published:
2024-01-17
Contact:
SU Dan
苏丹1,*(), 罗桥冰1, 董昱杉1, 杨彩霞1, 王鑫2
通讯作者:
苏丹
作者简介:
苏丹(1980年生),女,教授,博士,硕士研究生导师,研究领域为污染生态与环境工程。E-mail: iamsudan@126.com
基金资助:
CLC Number:
SU Dan, LUO Qiaobing, DONG Yushan, YANG Caixia, WANG Xin. Strengthening Effect of Mixed Biochar on Microbial Remediation of PAHs Contaminated Soil in Cold Areas[J]. Ecology and Environment, 2023, 32(11): 1942-1951.
苏丹, 罗桥冰, 董昱杉, 杨彩霞, 王鑫. 混合型生物炭对寒冷地区PAHs污染土壤微生物修复的强化作用[J]. 生态环境学报, 2023, 32(11): 1942-1951.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.11.005
样品编号 | 处理 |
---|---|
CK | 不加生物炭不接种 |
J | 污染土壤 (4 g)+游离混合菌 |
CW | 污染土壤 (4 g)+混合生物炭 (w=2%) |
C | 污染土壤 (4 g)+固定化混合菌, 载体采用w=2% C500的单一生物炭 |
W | 污染土壤 (4 g)+固定化混合菌, 载体采用w=2% W500的单一生物炭 |
CW1:1 | 污染土壤 (4 g)+固定化混合菌, 载体混合生物炭采用w=1.00% C500与w=1.00% W500 |
CW1:2 | 污染土壤 (4 g)+固定化混合菌,载体混合生物炭采用w=0.67% C500与w=1.34% W500 |
CW2:1 | 污染土壤 (4 g)+固定化混合菌, 载体混合生物炭采用w=1.34% C500与w=0.67% W500 |
Table 1 Treatment design for the soil remediation effect experiment
样品编号 | 处理 |
---|---|
CK | 不加生物炭不接种 |
J | 污染土壤 (4 g)+游离混合菌 |
CW | 污染土壤 (4 g)+混合生物炭 (w=2%) |
C | 污染土壤 (4 g)+固定化混合菌, 载体采用w=2% C500的单一生物炭 |
W | 污染土壤 (4 g)+固定化混合菌, 载体采用w=2% W500的单一生物炭 |
CW1:1 | 污染土壤 (4 g)+固定化混合菌, 载体混合生物炭采用w=1.00% C500与w=1.00% W500 |
CW1:2 | 污染土壤 (4 g)+固定化混合菌,载体混合生物炭采用w=0.67% C500与w=1.34% W500 |
CW2:1 | 污染土壤 (4 g)+固定化混合菌, 载体混合生物炭采用w=1.34% C500与w=0.67% W500 |
生物炭 类型 | pH | 吸水量/ (g∙g−1) | 比表面积/ (m2∙g−1) | 总孔孔容/ (cm3∙g−1) | 平均孔径/ nm |
---|---|---|---|---|---|
C300 | 10.13±0.03 | 1.31±0.02 | 1.473 | 2.283 | 6.201 |
C500 | 9.44±0.03 | 1.37±0.01 | 3.591 | 4.454 | 4.961 |
W300 | 8.38±0.03 | 3.46±0.02 | 1.832 | 4.321 | 9.432 |
W500 | 8.18±0.02 | 3.85±0.01 | 2.929 | 1.674 | 2.286 |
Table 2 pH, water absorption capacity, Specific surface area, total pore volume and average pore diameter of biochar
生物炭 类型 | pH | 吸水量/ (g∙g−1) | 比表面积/ (m2∙g−1) | 总孔孔容/ (cm3∙g−1) | 平均孔径/ nm |
---|---|---|---|---|---|
C300 | 10.13±0.03 | 1.31±0.02 | 1.473 | 2.283 | 6.201 |
C500 | 9.44±0.03 | 1.37±0.01 | 3.591 | 4.454 | 4.961 |
W300 | 8.38±0.03 | 3.46±0.02 | 1.832 | 4.321 | 9.432 |
W500 | 8.18±0.02 | 3.85±0.01 | 2.929 | 1.674 | 2.286 |
生物炭类型 | w(N)/% | w(C)/% | w(H)/% | w(O)/% | w(C)/w(H) | w(C)/w(N) |
---|---|---|---|---|---|---|
C300 | 1.09 | 74.17 | 4.12 | 19.92 | 17.99 | 67.73 |
C500 | 0.81 | 83.70 | 1.80 | 13.35 | 46.25 | 103.33 |
W300 | 0.20 | 72.86 | 4.42 | 22.42 | 16.45 | 364.32 |
W500 | 0.31 | 88.14 | 2.38 | 9.06 | 37.01 | 284.32 |
Table 3 Elemental analysis of biochar
生物炭类型 | w(N)/% | w(C)/% | w(H)/% | w(O)/% | w(C)/w(H) | w(C)/w(N) |
---|---|---|---|---|---|---|
C300 | 1.09 | 74.17 | 4.12 | 19.92 | 17.99 | 67.73 |
C500 | 0.81 | 83.70 | 1.80 | 13.35 | 46.25 | 103.33 |
W300 | 0.20 | 72.86 | 4.42 | 22.42 | 16.45 | 364.32 |
W500 | 0.31 | 88.14 | 2.38 | 9.06 | 37.01 | 284.32 |
处理 | 准一级动力学 | 准二级动力学 | |||||
---|---|---|---|---|---|---|---|
平衡吸附量 (Qe) | 准一级吸附动力学常数 (k1) | 相关系数 (r2) | 平衡吸附量 (Qe) | 准二级吸附动力学常数 (k2) | 相关系数 (r2) | ||
CK-Biochar | 4.473 | 0.561 | 0.88 | 5.249 | 0.129 | 0.99 | |
CWBiochar | 1.015 | 0.037 | 0.91 | 1.273 | 0.030 | 0.99 | |
CW | 26.465 | 0.044 | 0.99 | 33.014 | 0.001 | 0.98 | |
CK-Soil | 25.459 | 0.044 | 0.99 | 30.807 | 0.002 | 0.98 | |
CWSoil | 23.466 | 0.046 | 0.99 | 28.433 | 0.002 | 0.98 |
Table 4 Parameters obtained from pseudo-first-order kinetics model, pseudo-second-order kinetics model for Phe adsorption on biochar and soil
处理 | 准一级动力学 | 准二级动力学 | |||||
---|---|---|---|---|---|---|---|
平衡吸附量 (Qe) | 准一级吸附动力学常数 (k1) | 相关系数 (r2) | 平衡吸附量 (Qe) | 准二级吸附动力学常数 (k2) | 相关系数 (r2) | ||
CK-Biochar | 4.473 | 0.561 | 0.88 | 5.249 | 0.129 | 0.99 | |
CWBiochar | 1.015 | 0.037 | 0.91 | 1.273 | 0.030 | 0.99 | |
CW | 26.465 | 0.044 | 0.99 | 33.014 | 0.001 | 0.98 | |
CK-Soil | 25.459 | 0.044 | 0.99 | 30.807 | 0.002 | 0.98 | |
CWSoil | 23.466 | 0.046 | 0.99 | 28.433 | 0.002 | 0.98 |
[1] |
AGEGNEHU G, SRIVASTAVA A K, MICHAEL I B, 2017. The role of biochar and biochar compost in improving soil quality and crop performance: A review[J]. Applied Soil Ecology, 119: 156-170.
DOI URL |
[2] |
AHMED A, KURIAN J, RAGHAVAN V, 2016. Biochar influences on agricultural soils, crop production, and the environment: A review[J]. Environmental Reviews, 24(4): 495-502.
DOI URL |
[3] |
ALEXANDER M, 1981. Biodegradation of chemicals of environmental concern[J]. Science, 211(4478): 132-138.
PMID |
[4] |
BIANCO F, RACE M, PAPIRIO S, et al., 2021. The addition of biochar as a sustainable strategy for the remediation of PAH-contaminated sediments[J]. Chemosphere, 263: 128274.
DOI URL |
[5] |
BLATT-JANMAAT K L, MACQUARRIE S L, SIT C S, 2020. Does size matter an investigation into the impact of coarse and fine ground inoculated biochar on Hordeum vulgare (barley) growth and yield[J]. Rhizosphere, 13: 100184.
DOI URL |
[6] |
BOLAN S, HOU D Y, WANG L W, et al., 2023. The potential of biochar as a microbial carrier for agricultural and environmental applications[J]. Science of The Total Environment, 886: 163968.
DOI URL |
[7] |
BURRELL L D, ZEHETNER F, RAMPAZZO N, et al., 2016. Long-term effects of biochar on soil physical properties[J]. Geoderma, 282: 96-102.
DOI URL |
[8] |
COXSON D S, PARKINSON D, 1987. Winter respiratory activity in aspen woodland forest floor litter and soils[J]. Soil Biology and Biochemistry, 19(1): 49-59.
DOI URL |
[9] |
FARRELL M, KUHN T K, MACDONALD L M, et al., 2013. Microbial utilisation of biochar-derived carbon[J]. Science of the Total Environment, 465: 288-297.
DOI URL |
[10] |
GARCIA-DELGADO C, ALFARO-BARTA I, EYMAR E, 2015. Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil[J]. Journal of Hazardous Materials, 285: 259-266.
DOI URL |
[11] |
GOROVTSOV A V, MINKINA T M, MANDZHIEVA S S, et al., 2020. The mechanisms of biochar interactions with microorganisms in soil[J]. Environmental Geochemistry and Health, 42(8): 2495-2518.
DOI PMID |
[12] |
GRABER E R, MELLER H Y, KOLTON M, et al., 2010. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J]. Plant and Soil, 337(1): 481-496.
DOI URL |
[13] |
HE M J, XIONG X N, WANG L, et al., 2021. A critical review on performance indications for evaluating soil biota and soil health of biochar-amended soils[J]. Journal of Hazardous Materials, 414: 125378.
DOI URL |
[14] | JUAN Y H, JIANG N, TIAN L L, et al., 2018. Effect of freeze-thaw on a mid-temperate soil bacterial community and the correlation network of its members[J]. BioMed Research, 84: 8412-8429. |
[15] |
KASOZI G N, ZIMMERMAN A R, NKEDI-KIZZA P, et al., 2010. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars)[J]. Environmental Science & Technology, 44(16): 6189-6195.
DOI URL |
[16] |
KOPONEN H T, JAAKKOLA T, KEINANEN-TOIVOLA M M, et al., 2006. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles[J]. Soil Biology and Biochemistry, 38(7): 1861-1871.
DOI URL |
[17] |
KUMAR A, JOSEPH S, TSECHANSKY L, et al., 2018. Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties[J]. Science of the Total Environment, 626: 953-961.
DOI URL |
[18] |
LEA P, ANNA D M, GIUSEPPE N M, et al., 2019. Potential microbial remediation of pyrene polluted soil: the role of biochar[J]. Soil Research, 57(8): 807-813.
DOI URL |
[19] |
LIPSON D A, SCHMIDT S K, 2004. Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains[J]. Applied and Environmental Microbiology, 70(5): 2867-2879.
DOI PMID |
[20] | MARTIENSSEN M, GRUNDL M, 2000. Immobilized microorganisms for the degradation of PAH and hydrocarbons from contaminated soil[J]. Chemical Engineering & Technology, 23(10): 1521-4125. |
[21] |
MUHAMMAD B K, XIAO Q C, GHLAM J, et al., 2020. New insight into the impact of biochar during vermi-stabilization of divergent biowastes: Literature synthesis and research pursuits[J]. Chemosphere, 238: 124679.
DOI URL |
[22] |
PIETIKÄINEN J, KIIKKILÄ O, FRITZE H, 2000. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. Oikos, 89(2): 231-242.
DOI URL |
[23] |
QIAN L B, ZHANG W Y, YAN J C, et al., 2016. Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures[J]. Bioresource Technology, 206: 217-224.
DOI PMID |
[24] | SHAABAN M, ABID M, 2021. Chapter 9- Biochar as a sorbent for organic and inorganic pollutants[J]. Sorbents Materials for Controlling Environmental Pollution, Current State and Trends: 189-208. |
[25] |
SHOR L M, ROCKNE K J, TAGHON G L, et al., 2003. Desorption kinetics for field-aged polycyclic aromatic hydrocarbons from sediments[J]. Environmental Science & Technology, 37(8): 1535-1544.
DOI URL |
[26] |
SU D, LI P J, STAGNITTI F, et al., 2006. Biodegradation of benzo [a] pyrene in soil by Mucor sp. SF06 and Bacillus sp.SB02 co-immobilized on vermiculite[J]. Journal of Environmental Sciences, 18(6): 1204-1209.
DOI URL |
[27] |
WARNOCK D D, LEHMANN J, KUYPER T W, et al., 2001. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and Soil, 300(1): 9-20.
DOI URL |
[28] |
WU M L, LI W, DICK W A, et al., 2017. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination[J]. Chemosphere, 169: 124-130.
DOI PMID |
[29] |
YANG Y Y, YE S J, ZHANG C, et al., 2021. Application of biochar for the remediation of polluted sediments[J]. Journal of Hazardous Materials, 404(Part A): 124052.
DOI URL |
[30] | YASIR H, LIN T, BILAL H, et al., 2020. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review[J]. Science of the Total Environment, 707: 121-136. |
[31] |
ZHU X D, LIU Y C, ZHOU C, et al., 2014. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline[J]. Carbon, 77: 627-636.
DOI URL |
[32] | 陈明华, 2014. 低氧条件下多环芳烃降解菌的筛选及降解特性研究[D]. 上海: 东华大学. |
CHEN M H, 2014. Isolation of bacteria with high efficient biodegradation of polycyclic aromatic hydrocarbons and their biodegradation ability[D]. Shanghai: Donghua University. | |
[33] | 高如琴, 刘迪, 谷一鸣, 等, 2019. 硅藻土/玉米秸秆木质陶瓷制备及其对废水中四环素吸附动力学[J]. 农业工程学报, 35(3): 12-26. |
GAO R Q, LIU D, GU Y M, et al., 2019. Preparation of diatomite/corn straw wood ceramics and its adsorption kinetics for tetracycline in wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 35(3): 204-210. | |
[34] | 巩春娟, 2018. 耐低温混合菌的固定化及其对多环芳烃污染土壤的修复研究[D]. 沈阳: 辽宁大学. |
GONG C Z, 2018. Immobilization of low-temperature mixed bacteria and its remediation of polycyclic aromatic hydrocarbon contaminated soil[D]. Shenyang: Liaoning University. | |
[35] |
姜永海, 韦尚正, 席北斗, 等, 2009. PAHs在我国土壤中的污染现状及其研究进展[J]. 生态环境学报, 18(3): 1176-1181.
DOI |
JIANG Y H, WEI S Z, XI B D, et al., 2009. Polycyclic aromatic hydrocarbons(PAHs) pollution in soils in China: Recent advances and future prospects[J]. Ecology and Environmental Sciences, 18(3): 1176-1181. | |
[36] | 国家质量技术监督局, 1999. 木炭活性炭试验方法pH值的测定: GB/T 12496.7—1999 [S]. 北京: 国家林业局: 1-4. |
The State Bureau of Quality and Technical Supervision, 1999. Test Methods of Wooden Activated Carbon-Determination of pH: GB/T 12496.7—1999 [S]. Beijing: State Forestry Administration: 1-4. | |
[37] | 李力, 刘娅, 陆宇超, 等, 2011. 生物炭的环境效应及其应用的研究进展[J]. 环境化学, 30(8): 1411-1421. |
LI L, LIU Y, LU Y C, et al., 2011. Review on environmental effects and applications of biochar[J]. Environmental Chemistry, 30(8): 1411-1421. | |
[38] | 李娜, 郭美霞, 巩宗强, 等, 2016. Tenax-TA提取和固相微萃取预测土壤中PAHs对蚯蚓的生物有效性[J]. 生态学杂志, 35(7): 1963-1969. |
LI N, GUO M X, GONG Z Q, et al., 2016. Prediction of the bioavailability of PAHs in earthworms by Tenax-TA and solid phase microextraction[J]. Chinese Journal of Ecology, 35(7): 1963-1969. | |
[39] | 李文静, 李军, 张彦灼, 等, 2016. NaCl改性沸石对水中氨氮的吸附机制[J]. 中国环境科学, 36(12): 3567-3575. |
LI W J, LI J, ZHANG Y Z, et al., 2016. Adsorption mechanism of ammonium from aqueous solutions by NaCl modified zeolite[J]. China Environmental Science, 36(12): 3567-3575. | |
[40] | 李晓娜, 宋洋, 贾明云, 等, 2017. 生物质炭对有机污染物的吸附及机理研究进展[J]. 土壤学报, 54(6): 1-14. |
LI X N, SONG Y, JIA M Y, et al., 2017. A review of researches on biochar adsorbing organic contaminants and its mechanism[J]. Acta Pedologica Sinica, 54(6): 1-14. | |
[41] | 刘亮. 2015. 生物炭对土壤微生物及其强化多环芳烃的影响与作用机理研究[D]. 上海: 上海交通大学. |
LIU L, 2015. The influence and mechanism of biochar on soil microbial and enhanced remediation of PAHs contamination[D]. Shanghai: Shanghai Jiaotong University. | |
[42] | 刘伟鹏, 2018. 不同热解温度生物炭对多环芳烃的吸附-解吸附特性研究[D]. 沈阳: 辽宁大学. |
LIU W P, 2018. Study on adsorption-desorption properties of PAHs by biochar with different pyrolysis temperatures[D]. Shenyang: Liaoning University. | |
[43] | 普聿, 2019. 固定化耐低温混合菌修复PAHs污染土壤与作用机理[D]. 沈阳: 辽宁大学. |
PU Y, 2019. Immobilized low temperature resistant mixed bacteria for repairing PAHs contaminated soil and its mechanism[D]. Shenyang: Liaoning University. | |
[44] | 卿敬, 张建强, 关卓, 等, 2017. 农田土壤中生物质炭的老化及其对有机污染物吸附-解析影响的研究进展[J]. 土壤, 49(5): 859-867. |
QING J, ZHANG J Q, GUAN Z, et al., 2017. Biochar ageing in agricultural soils and its influences on sorption and desorption of organic pollutants[J]. Soil, 49(5): 859-867. | |
[45] | 任静, 2020. 生物炭固定化菌剂强化修复多环芳烃污染土壤的机理研究[D]. 上海: 华东理工大学. |
REN J, 2020. Mechanism of immobilized bacteria based on biochar strengthen remediation of polycyclic aromatic hydrocarbon contaminated soil[D]. Shanghai: East China University of Science and Technology. | |
[46] | 苏丹, 巩春娟, 王鑫, 等, 2017. 耐冷腐殖酸吸附态PAHs降解菌筛选及其降解特性[J]. 环境科学学报, 37(10): 3943-3950. |
SU D, GONG C Z, WANG X, et al., 2017. Isolation and characterization of cold-resistance, PAHs-degrading bacterium[J]. Acta Scientiae Circumstantiae, 37(10): 3943-3950. | |
[47] | 苏丹, 2007. 微生物固定化方法修复受多环芳烃污染的土壤[D]. 北京: 中国科学院研究生院. |
SU D, 2007. Bioremediation of the polycyclic aromatic hydrocarbons contaminated medium with immobilized microorganism method[D]. Beijing: Graduate University, Chinese Academy of Sciences. | |
[48] | 王天杰, 2020. 丝瓜络及其固定化微生物对环境中 PAHs 的吸附-降解作用[D]. 沈阳: 辽宁大学. |
WANG T J, 2020. Adsorption and degradation of PAHs in environment by loofah and its immobilized microorganisms[D]. Shenyang: Liaoning University. | |
[49] | 王彤彤, 马江波, 曲东, 等, 2017. 两种木材生物炭对铜离子的吸附特性及其机制[J]. 环境科学, 38(5): 2161-2171. |
WANG T T, MA J B, QU D, et al., 2017. Characteristics and mechanism of copper adsorption from aqueous solutions on biochar produced from sawdust and apple branch[J]. Environmental Science, 38(5): 2161-2171.
DOI URL |
|
[50] | 王银善, 2010. 生物炭固定化白腐真菌修复PAHs污染土壤及作用机理[D]. 杭州: 浙江大学. |
WANG Y S, 2010. Remediation of PAHs contaminated soils by immobilized white-rot fungi with biochar as a carrier and its mechanism[D]. Hangzhou: Zhejiang University. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn