Ecology and Environment ›› 2022, Vol. 31 ›› Issue (11): 2216-2224.DOI: 10.16258/j.cnki.1674-5906.2022.11.013
• Research Articles • Previous Articles Next Articles
LIU Zhijian1,2(), DONG Yuanhua2, ZHANG Xiu3, QING Chengshi4
Received:
2022-06-13
Online:
2022-11-18
Published:
2022-12-22
作者简介:
刘志坚(1987年生),男,高级工程师,硕士,研究方向为环境地质。E-mail: Pannotia@qq.com
基金资助:
CLC Number:
LIU Zhijian, DONG Yuanhua, ZHANG Xiu, QING Chengshi. Contamination and Ecological Risk Assessment of Heavy Metals in the Soil of Agricultural Land in Weining Plain, Northwest China[J]. Ecology and Environment, 2022, 31(11): 2216-2224.
刘志坚, 董元华, 张琇, 卿成实. 卫宁平原农用地土壤重金属污染特征与生态风险研究[J]. 生态环境学报, 2022, 31(11): 2216-2224.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.11.013
元素 Elements/(mg·kg-1) | pH | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Hg | Cr | Ni | Cd | Cu | Pb | Zn | Al | Li | Sc | Ti | ||
检测方法 Detection Method | AFS | ICP-OES | ICP-MS | XRF | ICP-MS | ISE | |||||||
检出限 Detection Limits | 0.2 | 0.0005 | 1.5 | 0.2 | 0.02 | 0.1 | 0.02 | 1 | 0.05 | 1 | 1 | 10 | 0.01 |
Table 1 Analysis items, method and detection limits of samples
元素 Elements/(mg·kg-1) | pH | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | Hg | Cr | Ni | Cd | Cu | Pb | Zn | Al | Li | Sc | Ti | ||
检测方法 Detection Method | AFS | ICP-OES | ICP-MS | XRF | ICP-MS | ISE | |||||||
检出限 Detection Limits | 0.2 | 0.0005 | 1.5 | 0.2 | 0.02 | 0.1 | 0.02 | 1 | 0.05 | 1 | 1 | 10 | 0.01 |
标准因子 Standard factors | 剔除后剩余样本量 Sample size after elimination | 最大值 Max/(mg·kg-1) | 最小值 Min/(mg·kg-1) | 平均值 Ave/(mg·kg-1) | 标准差 Standard deviation | 变异系数 Coefficients of variation |
---|---|---|---|---|---|---|
Al | 2628 | 13.18 | 7.40 | 10.91 | 1.27 | 0.12 |
Li | 2659 | 45.23 | 16.83 | 31.80 | 4.77 | 0.15 |
Ti | 2741 | 3700.20 | 1803.90 | 3171.73 | 354.52 | 0.11 |
Sc | 2711 | 13.07 | 4.79 | 9.73 | 1.59 | 0.16 |
Table 2 Statistical results of stable elements contents in the soils of the research region
标准因子 Standard factors | 剔除后剩余样本量 Sample size after elimination | 最大值 Max/(mg·kg-1) | 最小值 Min/(mg·kg-1) | 平均值 Ave/(mg·kg-1) | 标准差 Standard deviation | 变异系数 Coefficients of variation |
---|---|---|---|---|---|---|
Al | 2628 | 13.18 | 7.40 | 10.91 | 1.27 | 0.12 |
Li | 2659 | 45.23 | 16.83 | 31.80 | 4.77 | 0.15 |
Ti | 2741 | 3700.20 | 1803.90 | 3171.73 | 354.52 | 0.11 |
Sc | 2711 | 13.07 | 4.79 | 9.73 | 1.59 | 0.16 |
元素 Elements | As | Cd | Cr | Hg | Ni | Cu | Pb | Zn |
---|---|---|---|---|---|---|---|---|
Al | 0.77 | 0.80 | 0.58 | 0.78 | 0.87 | 0.90 | 0.88 | 0.92 |
Li | 0.63 | 0.59 | 0.35 | 0.54 | 0.58 | 0.69 | 0.64 | 0.69 |
Sc | 0.58 | 0.52 | 0.38 | 0.47 | 0.54 | 0.63 | 0.57 | 0.61 |
Ti | 0.59 | 0.52 | 0.40 | 0.46 | 0.55 | 0.65 | 0.56 | 0.64 |
Table 3 Correlation coefficients between heavy metal elements and Al, Li, Sc, Ti
元素 Elements | As | Cd | Cr | Hg | Ni | Cu | Pb | Zn |
---|---|---|---|---|---|---|---|---|
Al | 0.77 | 0.80 | 0.58 | 0.78 | 0.87 | 0.90 | 0.88 | 0.92 |
Li | 0.63 | 0.59 | 0.35 | 0.54 | 0.58 | 0.69 | 0.64 | 0.69 |
Sc | 0.58 | 0.52 | 0.38 | 0.47 | 0.54 | 0.63 | 0.57 | 0.61 |
Ti | 0.59 | 0.52 | 0.40 | 0.46 | 0.55 | 0.65 | 0.56 | 0.64 |
重金属 Heavy metals | 标准因子 Standard Factor | 基线方程 Baseline equation | R2 | 基线值 Baseline values/ (mg·kg-1) |
---|---|---|---|---|
As | Al | a=b×1.79-7.52 | 0.734 | 14.51 |
Cd | a=b×0.05-0.35 | 0.688 | 0.29 | |
Cr | a=b×3.4-29.16 | 0.497 | 79.61 | |
Hg | a=b×0.01-0.08 | 0.588 | 0.05 | |
Ni | a=b×3.0-3.9 | 0.762 | 34.57 | |
Cu | a=b×3.5-16.2 | 0.864 | 26.42 | |
Pb | a=b×2.4-6.2 | 0.816 | 23.95 | |
Zn | a=b×10.5-53.4 | 0.866 | 73.49 |
Table 4 The environmental geochemical baseline values of the heavy metal in the soils
重金属 Heavy metals | 标准因子 Standard Factor | 基线方程 Baseline equation | R2 | 基线值 Baseline values/ (mg·kg-1) |
---|---|---|---|---|
As | Al | a=b×1.79-7.52 | 0.734 | 14.51 |
Cd | a=b×0.05-0.35 | 0.688 | 0.29 | |
Cr | a=b×3.4-29.16 | 0.497 | 79.61 | |
Hg | a=b×0.01-0.08 | 0.588 | 0.05 | |
Ni | a=b×3.0-3.9 | 0.762 | 34.57 | |
Cu | a=b×3.5-16.2 | 0.864 | 26.42 | |
Pb | a=b×2.4-6.2 | 0.816 | 23.95 | |
Zn | a=b×10.5-53.4 | 0.866 | 73.49 |
重金属 Elements | ||||||||
---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Hg | Ni | Cu | Pb | Zn | |
范围 Range | 3.89-26.6 | 0.01-0.87 | 31.00-104.0 | 0.01-0.36 | 3.55-89.7 | 9.08-52.2 | 11.70-72.7 | 25.10-307.0 |
平均值 Ave | 12.19±2.62 | 0.19±0.08 | 66.95±6.47 | 0.03±0.03 | 28.61±4.79 | 21.82±4.91 | 20.44±3.84 | 61.78±16.03 |
变异系数 Coefficients of variation | 0.22 | 0.54 | 0.10 | 0.69 | 0.17 | 0.22 | 0.19 | 0.26 |
风险筛查值 Risk screening values | 20 | 0.8 | 250 | 1 | 190 | 100 | 170 | 300 |
黄河流域背景值 Background values of Yellow River Basin | 10.9 | 0.113 | 65 | 0.017 | 28 | 21 | 20 | 59 |
Table 5 Statistical results of heavy metal content in soils mg·kg-1
重金属 Elements | ||||||||
---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Hg | Ni | Cu | Pb | Zn | |
范围 Range | 3.89-26.6 | 0.01-0.87 | 31.00-104.0 | 0.01-0.36 | 3.55-89.7 | 9.08-52.2 | 11.70-72.7 | 25.10-307.0 |
平均值 Ave | 12.19±2.62 | 0.19±0.08 | 66.95±6.47 | 0.03±0.03 | 28.61±4.79 | 21.82±4.91 | 20.44±3.84 | 61.78±16.03 |
变异系数 Coefficients of variation | 0.22 | 0.54 | 0.10 | 0.69 | 0.17 | 0.22 | 0.19 | 0.26 |
风险筛查值 Risk screening values | 20 | 0.8 | 250 | 1 | 190 | 100 | 170 | 300 |
黄河流域背景值 Background values of Yellow River Basin | 10.9 | 0.113 | 65 | 0.017 | 28 | 21 | 20 | 59 |
元素 Elements | |||||||||
---|---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Hg | Ni | Cu | Pb | Zn | ||
无污染 Clean | 7.77 | 31.41 | 1.45 | 29.36 | 3.78 | 9.12 | 0.99 | 10.67 | 10.85 |
轻微污染 Non-contamination | 52.93 | 18.59 | 59.36 | 17.84 | 49.40 | 43.75 | 52.05 | 48.69 | 39.82 |
轻度污染 Slight contamination | 39.30 | 48.20 | 39.19 | 44.49 | 46.71 | 47.03 | 46.78 | 40.39 | 46.01 |
中度污染 Moderate contamination | - | 1.45 | - | 6.47 | 0.11 | 0.11 | 0.11 | 0.14 | 3.32 |
重度污染 Heavy contamination | - | 0.35 | - | 1.84 | - | - | 0.07 | 0.11 | - |
Table 6 Percentage of sample points of different contamination levels %
元素 Elements | |||||||||
---|---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Hg | Ni | Cu | Pb | Zn | ||
无污染 Clean | 7.77 | 31.41 | 1.45 | 29.36 | 3.78 | 9.12 | 0.99 | 10.67 | 10.85 |
轻微污染 Non-contamination | 52.93 | 18.59 | 59.36 | 17.84 | 49.40 | 43.75 | 52.05 | 48.69 | 39.82 |
轻度污染 Slight contamination | 39.30 | 48.20 | 39.19 | 44.49 | 46.71 | 47.03 | 46.78 | 40.39 | 46.01 |
中度污染 Moderate contamination | - | 1.45 | - | 6.47 | 0.11 | 0.11 | 0.11 | 0.14 | 3.32 |
重度污染 Heavy contamination | - | 0.35 | - | 1.84 | - | - | 0.07 | 0.11 | - |
等级 Level | Cd | Hg | |||
---|---|---|---|---|---|
n | Percentage | n | Percentage | ||
中等风险 Moderate Risk | 1264 | 44.66 | 1191 | 42.08 | |
较强风险 Considerable Risk | 41 | 1.45 | 193 | 6.82 | |
强风险 High Risk | 1 | 0.04 | 16 | 0.57 | |
极强风险 Very High Risk | 0 | 0.00 | 5 | 0.18 |
Table 7 Potential ecological risk of Cd and Hg in soils
等级 Level | Cd | Hg | |||
---|---|---|---|---|---|
n | Percentage | n | Percentage | ||
中等风险 Moderate Risk | 1264 | 44.66 | 1191 | 42.08 | |
较强风险 Considerable Risk | 41 | 1.45 | 193 | 6.82 | |
强风险 High Risk | 1 | 0.04 | 16 | 0.57 | |
极强风险 Very High Risk | 0 | 0.00 | 5 | 0.18 |
重金属 Heavy metals | ||||||||
---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Hg | Ni | Cu | Pb | Zn | |
平均值 Ave | 1.01 | 0.97 | 1.02 | 1.12 | 1 | 0.99 | 1.03 | 1 |
范围 Range | 0.42- 3.67 | 0.09- 4.91 | 0.6- 1.77 | 0.14- 11.07 | 0.12- 3.17 | 0.52- 2.09 | 0.71- 3.75 | 0.54- 4.18 |
E>2/% | 0.81 | 5.41 | 0.14 | 18.94 | 0.39 | 0.64 | 0.46 | 0.57 |
Table 8 The enrichment factors evaluation results of heavy metal
重金属 Heavy metals | ||||||||
---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Hg | Ni | Cu | Pb | Zn | |
平均值 Ave | 1.01 | 0.97 | 1.02 | 1.12 | 1 | 0.99 | 1.03 | 1 |
范围 Range | 0.42- 3.67 | 0.09- 4.91 | 0.6- 1.77 | 0.14- 11.07 | 0.12- 3.17 | 0.52- 2.09 | 0.71- 3.75 | 0.54- 4.18 |
E>2/% | 0.81 | 5.41 | 0.14 | 18.94 | 0.39 | 0.64 | 0.46 | 0.57 |
[1] |
ABRAHAM J, 1998. Spatial distribution of major and trace elements in shallow reservoir sediments: an example from Lake Waco, Texas[J]. Environmental Geology, 36(3): 349-363.
DOI URL |
[2] |
DONOGHUE J F, RAGLAND P C, CHEN Z Q, et al., 1998. Standardization of metal concentrations in sediments using regression residuals: an example from a large lake in Florida, USA[J]. Environmental Geology, 36(1): 65-76.
DOI URL |
[3] | NEWMAN, B K, WATLING, R J, 2007. Definition of baseline metal concentrations for assessing metal enrichment of sediment from the south-eastern Cape coastline of South Africa[J]. Water SA, 33(5): 675-692. |
[4] |
SURESH G, SUTHARSAN P, RAMASAMY V, et al., 2012. Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of veeranam lake sediments, India[J]. Ecotoxicology and Environmental Safety, 84: 117-124.
DOI PMID |
[5] |
N'GUESSAN Y M, PROBST J L, BUR T, et al., 2008. Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): Where do they come from[J]. Science of the Total Environment, 407(8): 2939-2952.
DOI URL |
[6] | 胡杰, 赵心语, 王婷婷, 等, 2022. 太原市汾河河岸带土壤重金属分布特征、评价与来源解析[J]. 环境科学, 43(5): 2500-2509. |
HU J, ZHAO X Y, WANG T T, et al., 2022. Distribution characteristic, evaluation, and source analysis of heavy metals in soils of Fenhe Riparian Zone in Taiyuan city[J]. Environmental Science, 43(5): 2500-2509. | |
[7] | 纪小凤, 郑娜, 王洋, 等, 2016. 中国城市土壤重金属污染研究现状及展望[J]. 土壤与作物, 5(1): 42-47. |
JI X F, ZHENG N, WANG Y, et al., 2016. Heavy metal contamination of urban soils in China: recent advances and prospects[J]. Soils and Crops, 5(1): 42-47. | |
[8] | 李梦婷, 沈城, 吴健, 等, 2021. 快速城市化区域不同用地类型土壤重金属含量分布特征及生态风险[J]. 环境科学, 42(10): 4889-4896. |
LI M T, SHEN C, WU J, et al., 2021. Content and ecological risks of heavy metals in soil with different land uses in a rapidly urbanizing area[J]. Environmental Science, 42(10): 4889-4896.
DOI URL |
|
[9] | 李伟迪, 崔云霞, 曾撑撑, 等, 2019. 太滆运河流域农田土壤重金属污染特征与来源解析[J]. 环境科学, 40(11): 5073-5081. |
LI W D, CUI Y X, ZENG C C, et al., 2019. Pollution characteristics and source analysis of heavy metals in farmland soils in the Taige Canal Valley[J]. Environmental Science, 40(11): 5073-5081. | |
[10] | 李一蒙, 马建华, 刘德新, 等, 2015. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 36(3): 1037-1044. |
LI Y M, MA J H, LIU D X, et al., 2015. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China[J]. Environmental Science, 36(3): 1037-1044. | |
[11] | 刘爱华, 2005. 土壤环境中As、Cd、Hg、Pb地球化学背景及通量研究[D]. 北京: 中国地质大学 (北京): 2-3. |
LIU A H, 2005. Research on geochemical background and flux for arsenic, cadmium, mercury and lead in soil environment[D]. Beijing: China University of Geosciences (Beijing): 2-3. | |
[12] | 刘娣, 苏超, 张红, 等, 2022. 典型煤炭产业聚集区土壤重金属污染特征与风险评价[J]. 生态环境学报, 31(2): 391-399. |
LIU D, SU C, ZHANG H, et al., 2022. Pollution characteristics and risk assessment of heavy metal pollution in a typical coal-based industrial cluster zone[J]. Ecology and Environmental Sciences, 31(2): 391-399. | |
[13] | 刘雪松, 王雨山, 尹德超, 等, 2022. 白洋淀内不同土地利用类型土壤重金属分布特征与污染评价[J]. 土壤通报, 53(3): 710-717. |
LIU X S, WANG Y S, YIN D C, et al., 2022. Characteristics and assessment of soil heavy metal pollution under different land-use types in the Baiyangdian Wetland[J]. Chinese Journal of Soil Science, 53(3): 710-717. | |
[14] | 马建华, 朱玉涛, 2008. 嵩山景区旅游活动对土壤组成性质和重金属污染的影响[J]. 生态学报, 28(3): 955-965. |
MA J H, ZHU Y T, 2008. Impacts of tourist activities on components, properties and heavy metal pollution of soils in the Songshan scenic area[J]. Acta Ecologica Sinica, 28(3): 955-965. | |
[15] | 沈仁芳, 颜晓元, 张甘霖, 等, 2020. 新时期中国土壤科学发展现状与战略思考[J]. 土壤学报, 57(5): 1051-1059. |
SHEN R F, YAN X Y, ZHANG G L, et al., 2020. Status quo of and strategic thinking for the development of soil science in China in the new era[J]. Acta Pedologica Sinica, 57(5): 1051-1059. | |
[16] | 史正军, 吴冲, 卢瑛, 2007. 深圳市主要公园及道路绿地土壤重金属含量状况比较研究[J]. 土壤通报, 38(1): 133-136. |
SHI Z J, WU C, LU Y, 2007. Comparative study on soil heavy metal content of urban green ground near parks and roads in Shenzhen city[J]. Chinese Journal of Soil Science, 38(1): 133-136. | |
[17] | 孙帅, 耿柠波, 郭崔崔, 等, 2021. 我国东部沿海地区蔬菜中重金属累积分布特征及居民膳食暴露评估[J]. 环境科学, 42(11): 5519-5525. |
SUN S, GENG N B, GUO C C, et al., 2021. Accumulation characteristics and dietary exposure estimation of heavy metals in vegetables from the eastern coastal region of China[J]. Environmental Science, 42(11): 5519-5525. | |
[18] | 滕彦国, 倪师军, 张成江, 2001. 环境地球化学基线研究简介[J]. 物探化探计算技术, 23(2): 135-139. |
TENG Y G, NI S J, ZHANG C J, 2001. Introduction to the study of environmental geochemical baseline[J]. Geophysical and Geochemical Exploration, 23(2): 135-139. | |
[19] | 滕彦国, 庹先国, 倪师军, 等, 2003. 地球化学基线的确定方法研究—以攀枝花地区为例[J]. 成都理工大学学报 (自然科学版), 30(4): 422-428. |
TENG Y G, TUO X G, NI S J, et al., 2003. Approach of determining geochemical baselines: A study case from Panzhihua region[J]. Journal of Chengdu University of Technology (Science &Technology Edition), 30(4): 422-428. | |
[20] | 滕彦国, 2001. 攀枝花地区土壤环境地球化学基线研究[D]. 成都: 成都理工大学: 26-32. |
TENG Y G, 2001. Study of environmental geochemical baseline in Panzhihua region[D]. Chengdu: Chengdu University of Technology: 26-32. | |
[21] | 王成, 程建华, 孟方, 等, 2017. 中国区域地质志·宁夏志[M]. 北京: 地质出版社: 770-839. |
WANF C, CHENG J H, MENG F, et al., 2017. Regional geology of China-Ningxia annals[M]. Beijing: Geological Publishing House: 770-839. | |
[22] | 王乔林, 宋云涛, 王成文, 等, 2021. 滇西地区土壤重金属来源解析及空间分布[J]. 中国环境科学, 41(8): 3693-3703. |
WANG Q L, SONG Y T, WANG C W, et al., 2021. Source identification and spatial distribution of soil heavy metals in Western Yunnan[J]. China Environmental Science, 41(8): 3693-3703. | |
[23] | 奚小环, 侯青叶, 杨忠芳, 等, 2021. 基于大数据的中国土壤背景值与基准值及其变化特征研究-写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 45(5): 1095-1108. |
XI X H, HOU Q Y, YANG Z F, et al., 2021. Big data based studies of the variation features of Chinese soil’s background value versus reference value: A paper written on the occasion of Soil Geochemical Parameters of China’s publication[J]. Geophysical & Geochemical Exploration, 45(5): 1095-1108. | |
[24] | 杨湜烟, 刘杏梅, 徐建明, 2022. 土壤重金属污染健康风险评估新视角—概率风险评估的源起及展望[J]. 土壤学报, 59(1): 28-37. |
YANG S Y, LIU X M, XU J M, 2022. New perspectives about health risk assessment of soil heavy metal pollution-origin and prospects of probabilistic risk analysis[J]. Acta Pedologica Sinica, 59(1): 28-37. | |
[25] | 曾伟斌, 顾高铨, 万小铭, 等, 2021. 多功能区工业园土壤和地表灰尘重金属污染及生态风险差异分析[J]. 环境科学, 42(3): 1105-1113. |
ZENG W B, GU G Q, WAN X M, et al., 2021. Heavy metal contents of soil and surface dust and its ecological risk analysis in a multifunctional industrial park[J]. Environmental Science, 42(3): 1105-1113. | |
[26] | 张江周, 李奕赞, 李颖, 等, 2022. 土壤健康指标体系与评价方法研究进展[J]. 土壤学报, 59(3): 603-616. |
ZHANG J Z, LI Y Z, LI Y, et al., 2022. Advances in the indicator system and evaluation approaches of soil health[J]. Acta Pedologica Sinica, 59(3): 603-616. | |
[27] | 张磊, 宋凤斌, 王晓波, 2004. 中国城市土壤重金属污染研究现状及对策[J]. 生态环境, 13(2): 258-260. |
ZHANG L, SONG F B, WANG X B, 2004. Heavy metal contamination of urban soils in China: Status and countermeasures[J]. Ecology and Environment, 13(02):258-260. | |
[28] | 张利, 2020. 云南省保山地区土壤和水系沉积物地球化学特征与驱动因素研究[D]. 北京: 中国地质大学 (北京): 90-91. |
ZHNAG L, 2020. A dissertation submitted to China university of geosciences for doctorate degree[D]. Beijing: China University of Geosciences (Beijing): 90-91. | |
[29] | 张秀芝, 鲍征宇, 唐俊红, 2006. 富集因子在环境地球化学重金属污染评价中的应用[J]. 地质科技情报, 25(1): 65-72. |
ZHANG X Z, BAO Z Y, TANG J H, 2006. Application of the enrichment factor in evaluating of heavy metals contamination in the environmental geochemistry[J]. Geological Science and Technology Information, 25(1): 65-72. | |
[30] | 张秀芝, 杨志宏, 马忠社, 等, 2006. 地球化学背景与地球化学基准[J]. 地质通报, 25(5): 626-629. |
ZHANG X Z, YANG Z H, MA Z S, et al., 2006. Geochemical background and geochemical baseline[J]. Geological Bulletin of China, 25(5): 626-629. | |
[31] | 张云芸, 马瑾, 魏海英, 等, 2019. 浙江省典型农田土壤重金属污染及生态风险评价[J]. 生态环境学报, 28(6): 1233-1241. |
ZHANG Y Y, MA J, WEI H Y, et al., 2019. Heavy metals in typical farmland soils of Zhejiang province: levels, sources and ecological risks[J]. Ecology and Environmental Sciences, 28(6): 1233-1241. | |
[32] | 章海波, 骆永明, 2010. 区域尺度土壤环境地球化学基线估算方法及其应用研究[J]. 环境科学, 31(7): 1607-1613. |
ZHANG H B, LUO Y M, et al., 2010. Researches on the estimate methods and applications of soil environmental geochemical baseline at a regional scale[J]. Environmental Science, 31(7): 1607-1613.
DOI URL |
|
[33] | 中华人民共和国国土资源部, 2014. 多目标区域地球化学调查规范(1:250000): DZ/T 0258-2014[S]. 北京: 中国标准出版社: 3-20. |
Ministry of Land and Resources of the People’s Republic of China, 2014. Specification of Multi-Purpose Regional Geochemical Survey:DZ/T 0258-2015[S] Beijing: Geological Publishing House: 3-20. | |
[34] | 中华人民共和国国土资源部, 2016. 土地质量地球化学评价规范: DZ/T0295-2016[S]. 北京: 地质出版社: 5-6. |
Ministry of Land and Resources of the People’s Republic of China, 2016. Specification of land quality geochemical assessment:DZ/T 0295-2016[S] Beijing: Geological Publishing House: 5-6. | |
[35] | 中华人民共和国生态环境部, 2018. 土壤环境质量农用地土壤污染风险管控标准 (试行): GB 15618-2018[S]. 北京: 中国标准出版社: 2-3. |
Ministry of Ecological Environment of the People’ Republic of China, 2018. Soil environmental quality Risk control standard for soil contamination of agricultural land (Trial): GB 15618-2018[S]. Beijing: China Environmental Science Press: 2-3. | |
[36] | 周亚龙, 杨志斌, 王乔林, 等, 2021. 雄安新区农田土壤-农作物系统重金属潜在生态风险评估及其源解析[J]. 环境科学, 42(4): 2003-2015. |
ZHOU Y L, YANG Z B, WANG Q L, et al., 2021. Potential ecological risk assessment and sourceanalysis of heavy metals in soil-crop system in Xiong’an New District[J] Environmental Science, 42(4): 2003-2015. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[3] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[4] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[5] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environment, 2023, 32(4): 660-667. |
[6] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[7] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[8] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[9] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[10] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[11] | QIN Hao, LI Mengai, GAO Jin, CHEN Kailong, ZHANG Yinbo, ZHANG Feng. Composition and Diversity of Soil Bacterial Communities in Shrub at Different Altitudes in Luya Mountain [J]. Ecology and Environment, 2023, 32(3): 459-468. |
[12] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[13] | LIU Kanghan, ZHENG Liugen, ZHANG Liqun, DING Dan, SHAN Shifeng. Effect of Complex Plant Derived Activator on the Remediation of As Contaminated Soil by Pteris vittata [J]. Ecology and Environment, 2023, 32(3): 635-642. |
[14] | FAN Huilin, ZHANG Jiamin, LI Huan, WANG Yanling. Study on the Profile Storage Pattern and Loss Risk of Phosphorus in Sloping Paddy Red Soil [J]. Ecology and Environment, 2023, 32(2): 283-291. |
[15] | SONG Xiaoshuai, DING Wuquan, LIU Xinmin, LI Tingzhen. Study on the Mechanism of Ion Specificity Effect on the Pore Condition of Purple Soil [J]. Ecology and Environment, 2023, 32(2): 292-298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn