Ecology and Environment ›› 2022, Vol. 31 ›› Issue (4): 643-651.DOI: 10.16258/j.cnki.1674-5906.2022.04.001
• Research Articles • Next Articles
JIANG Peng1,2(), QIN Mei’ou3, LI Rongping1,*(
), MENG Ying2, YANG Feiyun4, WEN Rihong1, SUN Pei2, FANG Yuan2
Received:
2021-09-01
Online:
2022-04-18
Published:
2022-06-22
Contact:
LI Rongping
姜鹏1,2(), 秦美欧3, 李荣平1,*(
), 孟莹2, 杨霏云4, 温日红1, 孙沛2, 方缘2
通讯作者:
李荣平
作者简介:
姜鹏(1984年生),男,高级工程师,博士,主要从事生态与农业气象科研与教学工作。E-mail: jiangpenglnqx@163.com
基金资助:
CLC Number:
JIANG Peng, QIN Mei’ou, LI Rongping, MENG Ying, YANG Feiyun, WEN Rihong, SUN Pei, FANG Yuan. Seasonal Variability of GPP and Its Influencing Factors in the Typical Ecosystems in China[J]. Ecology and Environment, 2022, 31(4): 643-651.
姜鹏, 秦美欧, 李荣平, 孟莹, 杨霏云, 温日红, 孙沛, 方缘. 中国典型生态系统GPP的季节变异及其影响要素[J]. 生态环境学报, 2022, 31(4): 643-651.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.04.001
参数 Parameters | 站点 Sites | |||||
---|---|---|---|---|---|---|
长白山站 CBS station | 千烟洲站 QYZ station | 鼎湖山站 DHS station | 内蒙古站 NM station | 当雄站 DX station | 海北站 HB station | |
位置 Location | 42°24′N, 128°05′E | 26°44′N, 115°03′E | 23°10′N, 112°34′E | 43°38′N, 116°42′E | 30°41′N, 91°01′E | 37°36′N, 101°19′E |
海拔 Elevation/m | 738.00 | 102.00 | 300.00 | 1100.00 | 4333.00 | 3200.00 |
植被类型 Ecosystem types | 温带针阔混交林 | 亚热带常绿针叶人工林 | 亚热带常绿阔叶林 | 温带草原 | 高寒草甸 | 高寒灌丛-草甸 |
雨热是否同步 Asynchronous | 是 | 否 | 是 | 是 | 是 | 是 |
树冠高度 h(canopy)/m | 26.00 | 12.00 | 20.00 | 0.45 | 0.05 | 0.60/0.05 |
土壤有机质质量分数 w(soil organic matter)/(g∙kg-1) | 62.50 | 21.40 | 47.4 | 14.30 | 18.50 | 106.7 |
Table 1 Basic information of the selected forest eddy covariance sites
参数 Parameters | 站点 Sites | |||||
---|---|---|---|---|---|---|
长白山站 CBS station | 千烟洲站 QYZ station | 鼎湖山站 DHS station | 内蒙古站 NM station | 当雄站 DX station | 海北站 HB station | |
位置 Location | 42°24′N, 128°05′E | 26°44′N, 115°03′E | 23°10′N, 112°34′E | 43°38′N, 116°42′E | 30°41′N, 91°01′E | 37°36′N, 101°19′E |
海拔 Elevation/m | 738.00 | 102.00 | 300.00 | 1100.00 | 4333.00 | 3200.00 |
植被类型 Ecosystem types | 温带针阔混交林 | 亚热带常绿针叶人工林 | 亚热带常绿阔叶林 | 温带草原 | 高寒草甸 | 高寒灌丛-草甸 |
雨热是否同步 Asynchronous | 是 | 否 | 是 | 是 | 是 | 是 |
树冠高度 h(canopy)/m | 26.00 | 12.00 | 20.00 | 0.45 | 0.05 | 0.60/0.05 |
土壤有机质质量分数 w(soil organic matter)/(g∙kg-1) | 62.50 | 21.40 | 47.4 | 14.30 | 18.50 | 106.7 |
Figure 1 Seasonal dynamics of GPP, Dvp, CSW, ta, RPA and P Damxung station: DX; Inner Mongolia station: NM; Haibei station: HB; Changbaishan station: CBS; Qianyanzhou station: QYZ; Dinghushan station: DHS. The same below. The data of variables in the figure is multi-year mean
Figure 2 Correlations between Dvp, CSW, ta, RPA, LAI and GPP basing on Pearson correlation analysis *, **, *** indicate the significant levels are 0.05, 0.01, 0.001, respectively
站点 Sites | 参数 Parameters | ta | Dvp | RPA | CSW | LAI |
---|---|---|---|---|---|---|
DX站 DX Station | 回归系数 | — | -0.27** | — | 5.53*** | 0.53*** |
相对权重 | — | 20.75 | — | 63.58 | 15.66 | |
调整r2 | 0.48 | |||||
NM站 NM Station | 回归系数 | 0.14*** | -0.66*** | — | 15.34*** | 1.09*** |
相对权重 | 25.59 | 6.19 | — | 35.59 | 32.63 | |
调整r2 | 0.56 | |||||
HB站 HB Station | 回归系数 | 0.35*** | — | 0.03*** | — | 0.86*** |
相对权重 | 47.26 | — | 14.48 | — | 38.25 | |
调整r2 | 0.65 | |||||
CBS站 CBS Station | 回归系数 | 0.48*** | -1.37*** | 0.01*** | -1.90** | 0.27*** |
相对权重 | 58.85 | 2.40 | 12.70 | 2.68 | 23.37 | |
调整r2 | 0.70 | |||||
QYZD站 QYZD Station | 回归系数 | 0.10*** | -2.13*** | 0.01*** | 8.88*** | — |
相对权重 | 22.62 | 14.34 | 59.63 | 3.41 | — | |
调整r2 | 0.69 | |||||
QYZN站 QYZN Station | 回归系数 | 0.21*** | — | 0.01*** | 4.23*** | — |
相对权重 | 45.52 | — | 53.15 | 1.42 | — | |
调整r2 | 0.84 | |||||
DHSD站 DHSD Station | 回归系数 | 0.10*** | — | 0.01*** | — | — |
相对权重 | 35.54 | — | 64.46 | — | — | |
调整r2 | 0.65 | |||||
DHSW站 DHSW Station | 回归系数 | 0.04*** | — | 0.01*** | — | — |
相对权重 | 21.95 | — | 78.05 | — | — | |
调整r2 | 0.55 |
Table 2 Correlations between Dvp, CSW, ta, RPA, LAI and GPP based on full subset regression
站点 Sites | 参数 Parameters | ta | Dvp | RPA | CSW | LAI |
---|---|---|---|---|---|---|
DX站 DX Station | 回归系数 | — | -0.27** | — | 5.53*** | 0.53*** |
相对权重 | — | 20.75 | — | 63.58 | 15.66 | |
调整r2 | 0.48 | |||||
NM站 NM Station | 回归系数 | 0.14*** | -0.66*** | — | 15.34*** | 1.09*** |
相对权重 | 25.59 | 6.19 | — | 35.59 | 32.63 | |
调整r2 | 0.56 | |||||
HB站 HB Station | 回归系数 | 0.35*** | — | 0.03*** | — | 0.86*** |
相对权重 | 47.26 | — | 14.48 | — | 38.25 | |
调整r2 | 0.65 | |||||
CBS站 CBS Station | 回归系数 | 0.48*** | -1.37*** | 0.01*** | -1.90** | 0.27*** |
相对权重 | 58.85 | 2.40 | 12.70 | 2.68 | 23.37 | |
调整r2 | 0.70 | |||||
QYZD站 QYZD Station | 回归系数 | 0.10*** | -2.13*** | 0.01*** | 8.88*** | — |
相对权重 | 22.62 | 14.34 | 59.63 | 3.41 | — | |
调整r2 | 0.69 | |||||
QYZN站 QYZN Station | 回归系数 | 0.21*** | — | 0.01*** | 4.23*** | — |
相对权重 | 45.52 | — | 53.15 | 1.42 | — | |
调整r2 | 0.84 | |||||
DHSD站 DHSD Station | 回归系数 | 0.10*** | — | 0.01*** | — | — |
相对权重 | 35.54 | — | 64.46 | — | — | |
调整r2 | 0.65 | |||||
DHSW站 DHSW Station | 回归系数 | 0.04*** | — | 0.01*** | — | — |
相对权重 | 21.95 | — | 78.05 | — | — | |
调整r2 | 0.55 |
[1] |
BEER C, REICHSTEIN M, TOMELLERI E, et al., 2010. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate[J]. Science, 329(5993): 834-838.
DOI URL |
[2] |
BOOTH B-B-B, JONES C-D, COLLINS M, et al., 2012. High sensitivity of future global warming to land carbon cycle processes[J]. Environmental Research Letters, 7(2): 024002.
DOI URL |
[3] |
CHEN N, ZHANG Y J, ZHU J T, et al., 2019. Temperature-mediated responses of carbon fluxes to precipitation variabilities in an alpine meadow ecosystem on the Tibetan Plateau[J]. Ecology and evolution, 9(6237): 9005-9017.
DOI URL |
[4] |
CHEN N, ZHANG Y J, ZHU J T, et al., 2020a. Multiple-scale negative impacts of warming on ecosystem carbon use efficiency across the Tibetan Plateau grasslands[J]. Global Ecology and Biogeography, 30(2): 398-413.
DOI URL |
[5] |
CHEN N, ZHANG Y J, ZU J X, et al., 2020b. The compensation effects of post-drought regrowth on earlier drought loss across the tibetan plateau grasslands[J]. Agricultural and Forest Meteorology, 281: 107822.
DOI URL |
[6] |
CHEN S P, LIN G H, HUANG J H, et al., 2009. Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe[J]. Global Change Biology, 15(10): 2450-2461.
DOI URL |
[7] | DENG Y, WANG X H, WANG K, et al., 2021. Responses of vegetation greenness and carbon cycle to extreme droughts in China[J]. Agricultural and Forest Meteorology, 298-299: 108307. |
[8] |
DING J Z, YANG T, ZHAO Y T, et al., 2018. Increasingly important role of atmospheric aridity on Tibetan alpine grasslands[J]. Geophysical Research Letters, 45(6): 2852-2859.
DOI URL |
[9] |
FU G, SHEN Z X, ZHANG X Z, 2018. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau[J]. Agricultural and Forest Meteorology, 249: 11-21.
DOI URL |
[10] |
HE H L, WANG S Q, ZHANG L, et al., 2019. Altered trends in carbon uptake in China's terrestrial ecosystems under the enhanced summer monsoon and warming hiatus[J]. National Science Review, 6(3): 505-514.
DOI URL |
[11] |
JIANG P P, MEINZER F C, WANG H M, et al., 2020. Below-ground determinants and ecological implications of shrub species' degree of isohydry in subtropical pine plantations[J]. New Phytologist, 226(6): 1656-1666.
DOI URL |
[12] |
KIMM H, GUAN K, GENTINE P, et al., 2020. Redefining droughts for the US Corn Belt: The dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of Maize and Soybean[J]. Agricultural and Forest Meteorology, 287: 107930.
DOI URL |
[13] |
KONINGS A G, GENTINE P, 2017. Global variations in ecosystem-scale isohydricity[J]. Global change biology, 23(2): 891-905.
DOI URL |
[14] |
LI F, PENG Y F, NATALI S M, et al., 2017a. Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients[J]. Ecology, 98(11): 2851-2859.
DOI URL |
[15] |
LI G Y, HAN H Y, DU Y, et al., 2017b. Effects of warming and increased precipitation on net ecosystem productivity: A long-term manipulative experiment in a semiarid grassland[J]. Agricultural and Forest Meteorology, 232: 359-366.
DOI URL |
[16] |
LI H Q, ZHANG F W, LI Y N, et al., 2016. Seasonal and inter-annual variations in CO2 fluxes over 10 years in an alpine shrubland on the Qinghai-Tibetan Plateau, China[J]. Agricultural and Forest Meteorology, 228-229: 95-103.
DOI URL |
[17] |
LI P, SAYER E J, JIA Z, et al., 2020. Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland[J]. Global change biology, 26(5): 3015-3027.
DOI URL |
[18] |
LI X Y, LI Y, CHEN A P, et al., 2019. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China[J]. Agricultural and Forest Meteorology, 269-270: 239-248.
DOI URL |
[19] |
LIU R, CIERAAD E, LI Y, et al., 2016. Precipitation pattern determines the inter-annual variation of herbaceous layer and carbon fluxes in a phreatophyte-dominated desert ecosystem[J]. Ecosystems, 19(4): 601-614.
DOI URL |
[20] |
MARTÍNEZ-VILALTA J, POYATOS R, AGUADÉ D, et al., 2014. A new look at water transport regulation in plants[J]. New phytologist, 204(1): 105-115.
DOI URL |
[21] |
MATHENY A M, BOHRER G, STOY P C, et al., 2014. Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land-surface models: An NACP analysis[J]. Journal of Geophysical Research: Biogeosciences, 119(7): 1458-1473.
DOI URL |
[22] | MONTEITH J L, 1995. A reinterpretation of stomatal responses to humidity[J]. Plant, Cell & Environment, 18(4): 357-364. |
[23] |
PENG S S, PIAO S L, SHEN Z H, et al., 2013. Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A modeling analysis[J]. Agricultural and Forest Meteorology, 178-179: 46-55.
DOI URL |
[24] |
SULMAN B N, ROMAN D T, YI K, et al., 2016. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil[J]. Geophysical Research Letters, 43(18): 9686-9695.
DOI URL |
[25] |
WANG X F, MA M G, HUANG G H, et al., 2012. Vegetation primary production estimation at maize and alpine meadow over the Heihe River Basin, China[J]. International Journal of Applied Earth Observation and Geoinformation, 17(7): 94-101.
DOI URL |
[26] | WOHLFAHRT G, HAMMERLE A, HASLWANTER A, et al., 2008. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: Effects of weather and management[J]. Journal of Geophysical Research: Atmospheres, 113(D8): D08110. |
[27] |
XU M J, WANG H M, WEN X F, et al., 2017. The full annual carbon balance of a subtropical coniferous plantation is highly sensitive to autumn precipitation[J]. Scientific Reports, 7(1): 10025.
DOI URL |
[28] |
YU G R, ZHANG L M, SUN X M, et al., 2008. Environmental controls over carbon exchange of three forest ecosystems in eastern China[J]. Global Change Biology, 14(11): 2555-2571.
DOI URL |
[29] |
ZHANG T, ZHANG Y J, XU M J, et al., 2016. Ecosystem response more than climate variability drives the inter-annual variability of carbon fluxes in three Chinese grasslands[J]. Agricultural and Forest Meteorology, 225: 48-56.
DOI URL |
[30] |
ZHANG T, ZHANG Y J, XU M J, et al., 2018. Water availability is more important than temperature in driving the carbon fluxes of an alpine meadow on the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 256-257: 22-31.
DOI URL |
[31] |
ZHU J T, ZHANG Y J, JIANG L, 2017. Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan alpine meadow[J]. Agricultural and Forest Meteorology, 233: 242-249.
DOI URL |
[32] |
ZU J X, ZHANG Y J, HUANG K, et al., 2018. Biological and climate factors co-regulated spatial-temporal dynamics of vegetation autumn phenology on the Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation, 69: 198-205.
DOI URL |
[33] |
柴曦, 李英年, 段呈, 等, 2018. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 42(1): 6-19.
DOI |
CHAI X, LI Y N, DUAN C, et al., 2018. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau[J]. Chinese Journal of Plant Ecology, 42(1): 6-19.
DOI |
|
[34] | 耿晓东, 旭日, 魏达, 2017. 多梯度增温对青藏高原高寒草甸温室气体通量的影响[J]. 生态环境学报, 26(3): 445-452. |
GENG X D, XU R, WEI D, 2017. Response of greenhouse gases flux to multi-level warming in an alpine meadow of Tibetan Plateau[J]. Ecology and Environmental Sciences, 26(3): 445-452. | |
[35] | 李夏子, 郭春燕, 韩国栋, 2013. 气候变化对内蒙古荒漠化草原优势植物物候的影响[J]. 生态环境学报, 22(1): 50-57. |
LI X Z, GUO C Y, HAN G D, 2013. Impacts of climate change on phenological phases of dominant grass species in the desert steppe in Inner Mongolia[J]. Ecology and Environmental Sciences, 22(1): 50-57. | |
[36] | 孟莹, 姜鹏, 方缘, 2020. 大气水分亏缺对中国两种典型草地生态系统总初级生产力的影响[J]. 生态学杂志, 39(11): 99-108. |
MENG Y, JIANG P, FANG Y, 2020. Contrasting impacts of vapor pressure deficit on gross primary productivity in two typical grassland ecosystems in China[J]. Chinese Journal of Ecology, 39(11): 99-108. | |
[37] | 尹茜茜, 乐旭, 周浩, 等, 2020. 全球FLUXNET站点总初级生产力的年际变化及其主导因子解析[J]. 大气科学学报, 43(6): 1106-1114. |
YIN X X, YUE X, ZHOU H, et al., 2020. Interannual variability of gross primary productivity at global FLUXNET sites and its driving factors[J]. Transactions of Atmospheric Sciences, 43(6): 1106-1114. | |
[38] |
于贵瑞, 张雷明, 孙晓敏, 2014. 中国陆地生态系统通量观测研究网络 (ChinaFLUX) 的主要进展及发展展望[J]. 地理科学进展, 33(7): 903-917.
DOI |
YU G R, ZHANG L M, SUN X M, 2014. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX)[J]. Progress in Geography, 33(7): 903-917. |
[1] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environment, 2023, 32(6): 1007-1015. |
[2] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[3] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[4] | HE Yanhu, GONG Zhenjie, WU Haibin, CAI Yanpeng, YANG Zhifeng, CHEN Xiaohong. Spatiotemporal Evolution of Urban Eco-efficiency and Its Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2023, 32(3): 469-480. |
[5] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[6] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[7] | YUAN Linjiang, LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua. Synergistic Effect of Sulfate Reduction and Ammonia Oxidation in Anaerobic Environment [J]. Ecology and Environment, 2023, 32(1): 207-214. |
[8] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[9] | ZHAO Anzhou, TIAN Xinle. Spatiotemporal Evolution and Influencing Factors of Vegetation Coverage in the Loess Plateau from 1986 to 2021 Based on GEE Platform [J]. Ecology and Environment, 2022, 31(11): 2124-2133. |
[10] | LI Liangliang, DAI Liangyu, GAO Weichang, ZHANG Shuyi, LIU Taoze. The Occurrence Characteristics and Influencing Factors of Residual Mulching Film of Typical Farmland with Plastic Film in Guizhou Province [J]. Ecology and Environment, 2022, 31(11): 2189-2197. |
[11] | LI Shengzeng, HAO Saimei, TAN Luyao, ZHANG Huaicheng, XU Biao, GU Shumao, PAN Guang, WANG Shuyan, YAN Huaizhong, ZHANG Guiqin. Characteristics of Spatiotemporal Variation, and Factors Influencing Secondary Components in PM2.5 in Ji'nan [J]. Ecology and Environment, 2022, 31(1): 100-109. |
[12] | LI Shaoning, TAO Xueying, LI Xiuhong, ZHAO Na, XU Xiaotian, LU Shaowei. Research Progress of Beneficial Biogenic Volatile Organic Compounds Released from Plants [J]. Ecology and Environment, 2022, 31(1): 187-195. |
[13] | CAI Yang, LI Wei, ZUO Xueyan, CUI Lijuan, LEI Yinru, ZHAO Xinsheng, ZHAI Xiajie, LI Jing, PAN Xu. Distribution Characteristics and Influencing Factors of PAHs in Yancheng Coastal Wetland Soil [J]. Ecology and Environment, 2021, 30(6): 1249-1259. |
[14] | TIAN Yichao, YANG Tang, XU Xin. Temporal and Spatial Distribution Characteristics and Influencing Factors of Net Primary Productivity of Vegetation in Typical Basin Entering the Sea in Beibu Gulf [J]. Ecology and Environment, 2021, 30(5): 938-948. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn