Ecology and Environment ›› 2021, Vol. 30 ›› Issue (5): 938-948.DOI: 10.16258/j.cnki.1674-5906.2021.05.006
• Research Articles • Previous Articles Next Articles
TIAN Yichao1,2,3(), YANG Tang1, XU Xin1
Received:
2020-02-15
Online:
2021-05-18
Published:
2021-08-06
作者简介:
田义超(1986年生),男,副教授,博士,主要从事资源环境遥感及海岸带生态环境监测的相关研究。E-mail:tianyichao1314@yeah.net
基金资助:
CLC Number:
TIAN Yichao, YANG Tang, XU Xin. Temporal and Spatial Distribution Characteristics and Influencing Factors of Net Primary Productivity of Vegetation in Typical Basin Entering the Sea in Beibu Gulf[J]. Ecology and Environment, 2021, 30(5): 938-948.
田义超, 杨棠, 徐欣. 北部湾典型入海流域植被净初级生产力时空分布特征及其影响因素[J]. 生态环境学报, 2021, 30(5): 938-948.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.05.006
植被变化趋势 Vegetation change trend | NPP变化趋势 NPP change trend | 面积 Area/km2 | 百分比 Proportion/% | |
---|---|---|---|---|
Sen趋势 Sen trend | P值 P value | |||
明显改善 Significant improvement | >0 | P<0.01 | 6225.88 | 0.33 |
中度改善 Moderate improvement | >0 | 0.01≤P<0.05 | 2195.31 | 0.12 |
轻微改善 Slight improvement | >0 | P≥0.05 | 5667.00 | 0.31 |
轻微减少 Slightly decrease | <0 | P≥0.05 | 3042.25 | 0.16 |
中度减少 Moderate decrease | <0 | 0.01≤P<0.05 | 612.88 | 0.03 |
严重减少 Seriously decrease | <0 | P<0.01 | 970.31 | 0.05 |
Table 1 Statistics of NPP trend changes in typical basins entering the sea of Beibu Gulf from 2000 to 2017
植被变化趋势 Vegetation change trend | NPP变化趋势 NPP change trend | 面积 Area/km2 | 百分比 Proportion/% | |
---|---|---|---|---|
Sen趋势 Sen trend | P值 P value | |||
明显改善 Significant improvement | >0 | P<0.01 | 6225.88 | 0.33 |
中度改善 Moderate improvement | >0 | 0.01≤P<0.05 | 2195.31 | 0.12 |
轻微改善 Slight improvement | >0 | P≥0.05 | 5667.00 | 0.31 |
轻微减少 Slightly decrease | <0 | P≥0.05 | 3042.25 | 0.16 |
中度减少 Moderate decrease | <0 | 0.01≤P<0.05 | 612.88 | 0.03 |
严重减少 Seriously decrease | <0 | P<0.01 | 970.31 | 0.05 |
土地利用 land use | 年份 Year | 平均值 Average | |||
---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | ||
耕地 Arable land | 383.16 | 428.70 | 451.52 | 468.61 | 433.00 |
灌木 Bushwood | 605.96 | 669.00 | 721.35 | 798.66 | 698.74 |
林地 Woodland | 651.18 | 732.47 | 759.20 | 846.37 | 747.31 |
草地 Grassland | 345.15 | 389.14 | 385.58 | 338.38 | 364.56 |
湿地 Wetland | 289.36 | 269.49 | 290.12 | 309.15 | 289.53 |
其他用地 Other land | 256.50 | 273.68 | 211.55 | 187.14 | 232.22 |
Table 2 Average NPP of different covering types in typical basins entering the sea of Beibu Gulf g·m-2·a-1
土地利用 land use | 年份 Year | 平均值 Average | |||
---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | ||
耕地 Arable land | 383.16 | 428.70 | 451.52 | 468.61 | 433.00 |
灌木 Bushwood | 605.96 | 669.00 | 721.35 | 798.66 | 698.74 |
林地 Woodland | 651.18 | 732.47 | 759.20 | 846.37 | 747.31 |
草地 Grassland | 345.15 | 389.14 | 385.58 | 338.38 | 364.56 |
湿地 Wetland | 289.36 | 269.49 | 290.12 | 309.15 | 289.53 |
其他用地 Other land | 256.50 | 273.68 | 211.55 | 187.14 | 232.22 |
海拔类别 Gradient classfication | 年份 Year | 平均值 Average | |||
---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | ||
第一梯度 First gradient (<250 m) | 441.23 | 495.07 | 529.13 | 566.05 | 500.62 |
第二梯度 Second gradient (250‒500 m) | 799.81 | 863.38 | 870.13 | 971.28 | 853.54 |
第三梯度 Third gradient (500‒800 m) | 828.25 | 884.71 | 883.75 | 974.88 | 865.89 |
第四梯度 Fourth gradient (>800 m) | 768.98 | 848.74 | 750.80 | 890.09 | 776.52 |
Table.3 Altitude gradient difference of NPP in typical basins entering the sea in Beibu Gulf g∙m-2∙a-1
海拔类别 Gradient classfication | 年份 Year | 平均值 Average | |||
---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | ||
第一梯度 First gradient (<250 m) | 441.23 | 495.07 | 529.13 | 566.05 | 500.62 |
第二梯度 Second gradient (250‒500 m) | 799.81 | 863.38 | 870.13 | 971.28 | 853.54 |
第三梯度 Third gradient (500‒800 m) | 828.25 | 884.71 | 883.75 | 974.88 | 865.89 |
第四梯度 Fourth gradient (>800 m) | 768.98 | 848.74 | 750.80 | 890.09 | 776.52 |
坡度分类 Slope classification | 坡度 Slope/ (°) | NPPave/ (g∙m-2∙a-1) | 面积 Area/ km2 | 比例 Proportion/% |
---|---|---|---|---|
缓倾斜坡 Gentle slope | <5 | 454.95 | 13449.44 | 71.87 |
中等斜坡 Medium slope | 5‒8 | 684.08 | 1868.75 | 9.98 |
斜坡 Slope | 8‒15 | 789.30 | 2288.38 | 12.23 |
陡坡 Steep slope | 15‒25 | 887.06 | 914.69 | 4.89 |
急坡 Sharp slope | 25‒35 | 905.10 | 187.50 | 1.00 |
急陡坡 Sharp steep slope | >35 | 842.96 | 4.88 | 0.03 |
Table 4 Gradient difference of slope in typical Basins entering the sea in Beibu Gulf
坡度分类 Slope classification | 坡度 Slope/ (°) | NPPave/ (g∙m-2∙a-1) | 面积 Area/ km2 | 比例 Proportion/% |
---|---|---|---|---|
缓倾斜坡 Gentle slope | <5 | 454.95 | 13449.44 | 71.87 |
中等斜坡 Medium slope | 5‒8 | 684.08 | 1868.75 | 9.98 |
斜坡 Slope | 8‒15 | 789.30 | 2288.38 | 12.23 |
陡坡 Steep slope | 15‒25 | 887.06 | 914.69 | 4.89 |
急坡 Sharp slope | 25‒35 | 905.10 | 187.50 | 1.00 |
急陡坡 Sharp steep slope | >35 | 842.96 | 4.88 | 0.03 |
[1] | ALESSANDRI A, NAVARRA A, 2008. On the coupling between vegetation and rainfall inter-annual anomalies: Possible contributions to seasonal rainfall predictability over land areas[J]. Geophysical Research Letters, 35(2): 209-212. |
[2] |
CHEN X F, CHEN J M, AN S Q, et al., 2007. Effects of topography on simulated net primary productivity at landscape scale[J]. Journal of Environmental Management, 85(3): 585-596.
DOI URL |
[3] | CRAMER W, FIELD C B, 1995. Comparing global models of terrestial net primary productivity (NPP): Introduction[J]. Global Change Biology, 5(s1): 3-4. |
[4] |
FIELD C B, RANDERSON J T, MALMSTROEM C M, 1995. Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing of Environment, 51(1): 74-88.
DOI URL |
[5] |
HURST H E, 1951. Closure to long-term storage capacity of reservoirs[J]. Transactions of the American Society of Civil Engineers, 116: 804-808.
DOI URL |
[6] | MONTEITH J L, MOSS C J, 1977. Climate and the Efficiency of Crop Production in Britain and Discussion[J]. Philosophical Transactions of the Royal Society of London, 281(980): 277-294. |
[7] |
MONTEITH J L, 1972. Solar Radiation and Productivity in Tropical Ecosystems[J]. Journal of Applied Ecology, 9(3): 747-766.
DOI URL |
[8] | PENG S L, GUO Z H, WANG B S, 2000. Use of GIS and RS to estimate the light utilization efficiency of the vegetation in Guangdong, China[J]. Acta Ecologica Sinica, 20(6): 903-909. |
[9] |
POTTER C S, RANDERSON J T, FIELD C B, et al., 1993. Terrestrial ecosystemproduction: a process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 7(4): 811-841.
DOI URL |
[10] |
UCHIJIMA Z, SEINO H, 1985. Agroclimatic Evaluation of Net Primary Productivity of Natural Vegetations:(1) Chikugo Model for Evaluating Net Primary Productivity[J]. Journal of Agricultural Meteorology, 40(4): 343-352.
DOI URL |
[11] | 车风, 黄国清, 刘韬, 等, 2019. 2004—2015年湖北省植被NPP时空分布特征及其与气候因素关系[J]. 水土保持研究, 26(6): 198-204, 225. |
CHE F, HUANG G Q, LIU T, et al., 2019. Spatiotemporal distribution of net primary productivity and its correlation with meteorological factors in Hubei province from 2004 to 2015 [J]. Research of Soil and Water Conservation, 26(6): 198-204, 225. | |
[12] | 陈强, 陈云浩, 王萌杰, 等, 2014. 2001—2010年黄河流域生态系统植被净第一性生产力变化及气候因素驱动分析[J]. 应用生态学报, 25(10): 2811-2818. |
CHEN Q, CHEN Y H, WANG M J, et al., 2014. Change of vegetation net primary productivity in Yellow River watersheds from 2001-2010 and its climatic driving factors analysis [J]. Chinese Journal of Applied Ecology, 25(10): 2811-2818. | |
[13] | 董丹, 倪健, 2011. 利用CASA模型模拟西南喀斯特植被净第一性生产力[J]. 生态学报, 31(7): 1855-1866. |
DONG D, NI J, 2011. Modeling changes of net primary productivity of karst vegetation in southwestern China using the CASA model[J]. Acta Ecologica Sinica, 31(7): 1855-1866. | |
[14] | 韩王亚, 张超, 曾源, 等, 2018. 2000—2015年拉萨河流域NPP时空变化及驱动因子[J]. 生态学报, 38(24): 8787-8798. |
HAN W Y, ZHANG C, ZENG Y, et al., 2018. Spatio-temporal changes and driving factors in net primary productivity of Lhasa River Basin from 2000 to 2015 [J]. Acta Ecologica Sinica, 38(24): 8787-8798. | |
[15] | 侯英雨, 柳钦火, 延昊, 等, 2007. 我国陆地植被净初级生产力变化规律及其对气候的响应[J]. 应用生态学报, 18(7): 1546-1553. |
HOU Y Y, LIU Q H, YAN H, et al., 2007. Variation trends of China terrestrial vegetation net primary productivity and its responses to climate factors in 1982-2000 [J]. Chinese Journal of Applied Ecology, 18(7): 1546-1553. | |
[16] | 李燕丽, 潘贤章, 王昌昆, 等, 2014. 2000—2011年广西植被净初级生产力时空分布特征及其驱动因素[J]. 生态学报, 34(18): 5220-5228. |
LI Y L, PAN X Z, WANG C K, et al., 2014. Change of vegetation net primary productivity and its driving factors from 2000 to 2011 in Guanxi, China[J]. Acta Ecologica Sinica, 34(18): 5220-5228. | |
[17] | 刘海江, 尹思阳, 孙聪, 等, 2015. 2000—2010年锡林郭勒草原NPP时空变化及其气候响应[J]. 草业科学, 32(11): 1709-1720. |
LIU H J, YIN S Y, SUN C, et al., 2015. Temporal and variation of net primary productivity (NPP) and its presponses with climatic changes in the Xilingol grassland from 2000-2010 [J]. Pratacultural Science, 32(11): 1709-1720. | |
[18] | 刘洋, 李诚志, 刘志辉, 等, 2016. 1982—2013年基于GIMMS-NDVI的新疆植被覆盖时空变化[J]. 生态学报, 36(19): 6198-6208. |
LIU Y, LI C Z, LIU Z H, et al., 2016. Assessment of spatio-temporal variations in vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI[J]. ActaEcologica Sinica, 36(19): 6198-6208. | |
[19] | 苗茜, 黄枚, 李仁强, 2010. 长江流域植被净初级生产力对未来气候变化的相应[J]. 自然资源学报, 25(8): 1296-1305. |
MIAO Q, HUANG M, LI R Q, 2010. The impacts of climate change on vegetation net primary productivity of the Yangtze River Basin[J]. Journal of Natural Resources, 25(8): 1296-1305. | |
[20] | 莫建飞, 莫伟华, 陈燕丽, 2019. 基于净初级生产力的广西喀斯特区生物多样性维护功能评价[J]. 科学技术与工程, 19(29): 371-377. |
MO J F, MO W H, CHEN Y L, 2019. Evaluation of biodiversity maintenance function in karst area of Guangxi based on NPP[J]. Science Technology and Engineering, 19(29): 371-377. | |
[21] | 苏宗明, 1998. 广西植被的自然环境条件对广西植被的影响[J]. 广西科学, 5(1): 51-57. |
SU Z M, 2019. Influence of natural environmental conditions on the vegetation in Guangxi[J]. Guangxi Science, 5(1): 51-57. | |
[22] | 索玉霞, 王正兴, 刘闯, 等, 2009. 中亚地区1982年至2002年植被指数与气温和降水的相关性分析[J]. 资源科学, 31(8): 1422-1429. |
SUO Y X, WANG Z X, LIU C, et al., 2009. Relationship between NDVI and Precipitation and Temperature in Middle Asia during 1982-2002 [J]. Resources Science, 31(8): 1422-1429. | |
[23] | 宋艺, 李小军, 江涛, 2017. 2008—2014年植被覆盖变化对黑河流域净初级生产力的影响研究[J]. 水土保持研究, 24(4): 204-209, 218. |
SONG Y, LI X J, JIANG T, 2017. Effects of vegetation coverage change on net primary productivity of Heihe river basin during 2008-2014 [J]. Research of Soil and Water Conservation, 24(4): 204-209, 208. | |
[24] | 孙红雨, 王长耀, 牛铮, 等, 1998. 中国地表植被覆盖变化及其与气候因子关系——基于NOAA时间序列数据分析[J]. 遥感学报, 2(3): 204-210. |
SUN H Y, WANG C Y, NIU Z, et al., 1998. Analysis of the vegetation cover change and the relationship between NDVI and environment factors by using NOAA time series data[J]. Journal of Remote Sensing, 2(3): 204-210. | |
[25] | 田慧文, 毕如田, 朱洪芬, 等, 2019. 汾河流域植被净初级生产力的驱动因素及梯度效应[J]. 生态学杂志, 38(10): 3066-3074. |
TIAN H W, BI R T, ZHU H F, et al., 2019. Driving factors and gradient effect of net primary productivity in Fenhe River Basin[J]. Chinese Journal of Ecology, 38(10): 3066-3074. | |
[26] | 田义超, 黄远林, 张强, 等, 2019. 北部湾南流江流域植被净初级生产力时空分布及其驱动因素[J]. 生态学报, 39(11): 1-16. |
TIAN Y C, HUANG Y L, ZHANG Q, et al., 2019. Spatiotemporal distribution of net primary productivity and its driving factors in the Nanliu River basin in the Beibu Gulf[J]. Acta Ecologica Sinica, 39(21): 1-16.
DOI URL |
|
[27] | 田义超, 梁铭忠, 2016. 北部湾沿海地区植被覆盖对气温和降水的旬响应特征[J]. 自然资源学报, 31(3): 488-502. |
TIAN Y C, LIANG M Z, 2016. The NDVI Characteristics of Vegetation and Its Ten-day Response to Temperature and Precipitation in Beibu Gulf Coastal Region[J]. Journal of Natural Resources, 31(3): 488-502. | |
[28] | 信忠保, 许炯心, 郑伟, 2007. 气候变化和人类活动对黄土高原植被覆盖变化的影响[J]. 中国科学 (D辑),37(11): 1504-1514. |
XIN Z B, XU J X, ZHENG W, 2007. Effects of climate change and human activities on vegetation cover change in the Loess Plateau[J]. Science in China (Series D: Earth Sciences), 37(11): 1504-1514. | |
[29] | 王强, 张婷斌, 易桂花, 等, 2017. 横断山区2004—2014年植被NPP时空变化及其驱动因子[J]. 生态学报, 37(9): 3084-3095. |
WANG Q, ZHANG T B, YI G H, et al., 2017. Tempo-spatial variation and driving factors analysis of net primary productivity in the Hengduan mountain area from 2004 to 2014 [J]. Acta Ecologica Sinica, 37(9): 3084-3095. | |
[30] | 许静, 陈迪, 李文龙, 等, 2019. 基于光能利用率模型的甘南州植被净初级生产力研究[J]. 草业科学, 36(10): 2455-2465. |
XU J, CHEN D, LI W L, et al., 2019. Study of vegetation net primary productivity in Gannan based on light use efficiency model[J]. Pratacultural Science, 36(10): 2455-2465. | |
[31] | 赵国帅, 王军邦, 范文义, 等, 2011. 2000—2008年中国东北地区植被净初级生产力的模拟及季节变化[J]. 应用生态学报, 22(3): 621-630. |
ZHAO G S, WANG J B, FAN W Y, et al., 2011. Vegetation net primary productivity in Northeast China in 2000-2008 [J]. Chinese Journal of Applied Ecology, 22(3): 621-630. | |
[32] | 赵苗苗, 刘熠, 杨吉林, 等, 2019. 基于HASM的中国植被NPP时空变化特征及其与气候的关系[J]. 生态环境学报, 28(2): 215-225. |
ZHAO M M, LIU Y, YANG J L, et al., 2019. Spatio-temporal patterns of NPP and its ralations to climate in China based on HASM[J]. Ecology and Environmental Sciences, 28(2): 215-225. | |
[33] | 周爱萍, 向悟生, 姚月锋, 等, 2014. 广西植被净初级生产力 (NPP) 时空演变及主要影响因素分析[J]. 广西植物, 34(5): 622-628. |
ZHOU A P, XIANG W S, YAO Y F, et al., 2014. Analyzing variation characteristics of vegetation net primary productivity (NPP) in Guangxi[J]. Guihaia, 34(5): 622-628. | |
[34] | 周广胜, 张新时, 1996. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 20(1): 11-19. |
ZHOU G S, ZHANG X S, 1996. Study on NPP of natural vegetation in china under global climate change[J]. Acta Phytoecologica Sinica, 20(1): 11-19. | |
[35] | 朱士华, 艳燕, 邵华, 等, 2017. 1980—2014年中亚地区植被净初级生产力对气候和CO2变化的响应[J]. 自然资源学报, 32(11): 1844-1856. |
ZHU S H, YAN Y, SHAO H, et al., 2017. The responses of the net primary productivity of the dryland ecosystems in central Asia to the CO2 and climate changes during the past 35 years[J]. Journal of Natural Resources, 32(11): 1844-1856. | |
[36] | 朱文泉, 潘耀忠, 阳小琼, 等, 2007a. 气候变化对中国陆地植被净初级生产力的影响分析[J]. 科学通报, 52(21): 2535-2541. |
ZHU W Q, PAN Y Z, YANG X Q, et al., 2007. Impact of climate change on net primary productivity of terrestril vegetation in china[J]. Chinese Science Bulletin, 52(3): 2535-2541. | |
[37] | 朱文泉, 潘耀忠, 张锦水, 2007b. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 31(3): 413-424. |
ZHU W Q, PAN Y Z, ZHANG J S, 2007. Estimation of net primary productivity of chinese terrestrial vegetation based on remote sensing[J]. Journal of Plant Ecology, 31(3): 413-424. |
[1] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environment, 2023, 32(5): 825-834. |
[2] | LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area [J]. Ecology and Environment, 2023, 32(4): 697-705. |
[3] | ZHANG Lin, QI Shi, ZHOU Piao, WU Bingchen, ZHANG Dai, ZHANG Yan. Study on Influencing Factors of Soil Organic Carbon Content in Mixed Broad-leaved and Coniferous Forests Land in Beijing Mountainous Areas [J]. Ecology and Environment, 2023, 32(3): 450-458. |
[4] | HE Yanhu, GONG Zhenjie, WU Haibin, CAI Yanpeng, YANG Zhifeng, CHEN Xiaohong. Spatiotemporal Evolution of Urban Eco-efficiency and Its Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2023, 32(3): 469-480. |
[5] | HAO Jinhu, WEI Wei, LI Shengnan, MA Muyuan, LI Xiaoxia, YANG Hongguo, JIANG Qiyu, CHAI Peidong. GEE Based Evaluation of the Spatial-temporal Pattern and Drivers of Long-term Water Body in Beijing-Tianjin-Hebei [J]. Ecology and Environment, 2023, 32(3): 556-566. |
[6] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[7] | YUAN Linjiang, LI Mengbo, LENG Gang, ZHONG Bingbing, XIA Dapeng, WANG Jinghua. Synergistic Effect of Sulfate Reduction and Ammonia Oxidation in Anaerobic Environment [J]. Ecology and Environment, 2023, 32(1): 207-214. |
[8] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[9] | LI Dengke, WANG Zhao. Quantitative Analysis of the Impact of Climate Change and Human Activities on Vegetation NPP in Shaanxi Province [J]. Ecology and Environment, 2022, 31(6): 1071-1079. |
[10] | JIANG Peng, QIN Mei’ou, LI Rongping, MENG Ying, YANG Feiyun, WEN Rihong, SUN Pei, FANG Yuan. Seasonal Variability of GPP and Its Influencing Factors in the Typical Ecosystems in China [J]. Ecology and Environment, 2022, 31(4): 643-651. |
[11] | SHI Zhiyu, WANG Yating, ZHAO Qing, ZHANG Lianpeng, ZHU Changming. The Spatiotemporal Changes of NPP and Its Driving Mechanisms in China from 2001 to 2020 [J]. Ecology and Environment, 2022, 31(11): 2111-2123. |
[12] | ZHAO Anzhou, TIAN Xinle. Spatiotemporal Evolution and Influencing Factors of Vegetation Coverage in the Loess Plateau from 1986 to 2021 Based on GEE Platform [J]. Ecology and Environment, 2022, 31(11): 2124-2133. |
[13] | LI Liangliang, DAI Liangyu, GAO Weichang, ZHANG Shuyi, LIU Taoze. The Occurrence Characteristics and Influencing Factors of Residual Mulching Film of Typical Farmland with Plastic Film in Guizhou Province [J]. Ecology and Environment, 2022, 31(11): 2189-2197. |
[14] | YANG Yan, ZHOU Decheng, GONG Zhaoning, LIU Ziyuan, ZHANG Liangxia. Ecological Vulnerability and Its Drivers of the Loess Plateau Based on Vegetation Productivity [J]. Ecology and Environment, 2022, 31(10): 1951-1958. |
[15] | LI Shengzeng, HAO Saimei, TAN Luyao, ZHANG Huaicheng, XU Biao, GU Shumao, PAN Guang, WANG Shuyan, YAN Huaizhong, ZHANG Guiqin. Characteristics of Spatiotemporal Variation, and Factors Influencing Secondary Components in PM2.5 in Ji'nan [J]. Ecology and Environment, 2022, 31(1): 100-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn