Ecology and Environment ›› 2023, Vol. 32 ›› Issue (3): 599-608.DOI: 10.16258/j.cnki.1674-5906.2023.03.017
• Research Articles • Previous Articles Next Articles
YANG Qili(), DOU Weili, LIU Zhiwen, GUO Jing, LÜ Gang
Received:
2022-12-24
Online:
2023-03-18
Published:
2023-06-02
作者简介:
杨奇丽(1982年出生),男,讲师,博士,主要研究方向为环境地球化学和环境变化。E-mail: yangqili@lntu.edu.cn
基金资助:
CLC Number:
YANG Qili, DOU Weili, LIU Zhiwen, GUO Jing, LÜ Gang. Analysis of Petroleum Hydrocarbon Pollution Characteristics and Influencing Factors Based on N-alkanes Tracing in the River Channel of Fuxin Xihe River[J]. Ecology and Environment, 2023, 32(3): 599-608.
杨奇丽, 窦韦丽, 刘之文, 郭景, 吕刚. 正构烷烃示源的阜新细河河道石油烃类污染特征及其影响因素分析[J]. 生态环境学报, 2023, 32(3): 599-608.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.03.017
样点 | pH | 附近环境 | 样点 | pH | 附近环境 |
---|---|---|---|---|---|
HD-1 | 7.75 | 有施工,河底有腐烂落叶和植物根茎 | ST-1 | 7.29 | 水质发黑有恶臭,周围有树木 |
HD-2 | 8.12 | 河底有苔藓类植物 | ST-2 | 8.14 | 桥下取样,车流量大 |
HD-3 | 8.18 | 桥下取样,水中有生活垃圾和油渍 | ST-3 | 7.95 | 杂草多,周围树多,水流量不大 |
HD-4 | 7.59 | 截流坝取样,周边有生活垃圾,水中有植物残体 | ST-4 | 7.38 | 桥附近取样,人流量大 |
HD-5 | 7.67 | 水中有荷花残叶,人流量大 | ST-5 | 7.12 | 桥附近,远处有电厂,水流量大 |
HD-6 | 8.08 | 有排污管,1 km处有火力发电厂,每天都有排污 | ST-6 | 7.16 | 公园取样,杂草多,人流量多 |
HD-7 | 8.19 | 截流坝取样,样品有苔绿,水生植物 | ST-7 | 7.19 | 桥附近取样,周围杂草少 |
HD-8 | 7.01 | 公园取样,周边有生活垃圾,落叶 | ST-8 | 7.17 | 有水生植物,周围有居民楼 |
HD-9 | 8.01 | 排污口旁边取样,机械工厂旁,恶臭,样品黑色 | ST-9 | 7.13 | 桥附近取样,水中有植物 |
HD-10 | 8.45 | 两岸有高大树木,水中有植物残体 | ST-10 | 7.34 | 杂草少,有施工队,水流平缓 |
HD-11 | 7.91 | 学校旁边取样,植被茂盛,远处有杨树林 | ST-11 | 7.14 | 低桥附近取样,人类活动多 |
HD-12 | 7.73 | 周围有很多杂草 | ST-12 | 7.01 | 杂草多,水流平缓,附近有选煤厂 |
ST-13 | 7.15 | 杂草多,水流小 |
Table 1 Sampling site number, pH and surrounding environment of river bottom sediments and water bodies
样点 | pH | 附近环境 | 样点 | pH | 附近环境 |
---|---|---|---|---|---|
HD-1 | 7.75 | 有施工,河底有腐烂落叶和植物根茎 | ST-1 | 7.29 | 水质发黑有恶臭,周围有树木 |
HD-2 | 8.12 | 河底有苔藓类植物 | ST-2 | 8.14 | 桥下取样,车流量大 |
HD-3 | 8.18 | 桥下取样,水中有生活垃圾和油渍 | ST-3 | 7.95 | 杂草多,周围树多,水流量不大 |
HD-4 | 7.59 | 截流坝取样,周边有生活垃圾,水中有植物残体 | ST-4 | 7.38 | 桥附近取样,人流量大 |
HD-5 | 7.67 | 水中有荷花残叶,人流量大 | ST-5 | 7.12 | 桥附近,远处有电厂,水流量大 |
HD-6 | 8.08 | 有排污管,1 km处有火力发电厂,每天都有排污 | ST-6 | 7.16 | 公园取样,杂草多,人流量多 |
HD-7 | 8.19 | 截流坝取样,样品有苔绿,水生植物 | ST-7 | 7.19 | 桥附近取样,周围杂草少 |
HD-8 | 7.01 | 公园取样,周边有生活垃圾,落叶 | ST-8 | 7.17 | 有水生植物,周围有居民楼 |
HD-9 | 8.01 | 排污口旁边取样,机械工厂旁,恶臭,样品黑色 | ST-9 | 7.13 | 桥附近取样,水中有植物 |
HD-10 | 8.45 | 两岸有高大树木,水中有植物残体 | ST-10 | 7.34 | 杂草少,有施工队,水流平缓 |
HD-11 | 7.91 | 学校旁边取样,植被茂盛,远处有杨树林 | ST-11 | 7.14 | 低桥附近取样,人类活动多 |
HD-12 | 7.73 | 周围有很多杂草 | ST-12 | 7.01 | 杂草多,水流平缓,附近有选煤厂 |
ST-13 | 7.15 | 杂草多,水流小 |
样点 | 峰型 | 类型 | 主碳峰 | 次主峰 | 样点 | 峰型 | 类型 | 主碳峰 | 次主峰 |
---|---|---|---|---|---|---|---|---|---|
HD-1 | 双峰型 | Ⅱ | nC20 | nC31 | ST-1 | 双峰型 | Ⅲ | nC29 | nC15 |
HD-2 | 双峰型 | Ⅱ | nC20 | nC31 | ST-2 | 双峰型 | Ⅳ | nC31 | nC15 |
HD-3 | 双峰型 | Ⅰ | nC19 | nC32 | ST-3 | 双峰型 | Ⅳ | nC29 | nC17 |
HD-4 | 双峰型 | Ⅳ | nC31 | nC19 | ST-4 | 单峰型 | Ⅳ | nC29 | |
HD-5 | 双峰型 | Ⅴ | nC19 | nC31 | ST-5 | 单峰型 | Ⅳ | nC29 | nC15 |
HD-6 | 双峰型 | Ⅰ | nC17 | nC29 | ST-6 | 双峰型 | Ⅴ | nC15 | nC26 |
HD-7 | 双峰型 | Ⅰ | nC29 | nC17 | ST-7 | 双峰型 | Ⅴ | nC17 | nC26 |
HD-8 | 双峰型 | Ⅰ | nC17 | nC27 | ST-8 | 单峰型 | Ⅱ | nC20 | |
HD-9 | 单峰型 | Ⅱ | nC20 | ST-9 | 双峰型 | Ⅳ | nC27 | nC17 | |
HD-10 | 双峰型 | Ⅰ | nC32 | nC17 | ST-10 | 双峰型 | Ⅳ | nC31 | nC15 |
HD-11 | 单峰型 | Ⅱ | nC20 | ST-11 | 双峰型 | Ⅲ | nC15 | nC25 | |
HD-12 | 双峰型 | Ⅳ | nC17 | nC29 | ST-12 | 单峰型 | Ⅲ | nC15 | |
ST-13 | 双峰型 | Ⅳ | nC15 | nC29 |
Table 2 Main carbon peaks of n-alkanes in river bottom sediments and water
样点 | 峰型 | 类型 | 主碳峰 | 次主峰 | 样点 | 峰型 | 类型 | 主碳峰 | 次主峰 |
---|---|---|---|---|---|---|---|---|---|
HD-1 | 双峰型 | Ⅱ | nC20 | nC31 | ST-1 | 双峰型 | Ⅲ | nC29 | nC15 |
HD-2 | 双峰型 | Ⅱ | nC20 | nC31 | ST-2 | 双峰型 | Ⅳ | nC31 | nC15 |
HD-3 | 双峰型 | Ⅰ | nC19 | nC32 | ST-3 | 双峰型 | Ⅳ | nC29 | nC17 |
HD-4 | 双峰型 | Ⅳ | nC31 | nC19 | ST-4 | 单峰型 | Ⅳ | nC29 | |
HD-5 | 双峰型 | Ⅴ | nC19 | nC31 | ST-5 | 单峰型 | Ⅳ | nC29 | nC15 |
HD-6 | 双峰型 | Ⅰ | nC17 | nC29 | ST-6 | 双峰型 | Ⅴ | nC15 | nC26 |
HD-7 | 双峰型 | Ⅰ | nC29 | nC17 | ST-7 | 双峰型 | Ⅴ | nC17 | nC26 |
HD-8 | 双峰型 | Ⅰ | nC17 | nC27 | ST-8 | 单峰型 | Ⅱ | nC20 | |
HD-9 | 单峰型 | Ⅱ | nC20 | ST-9 | 双峰型 | Ⅳ | nC27 | nC17 | |
HD-10 | 双峰型 | Ⅰ | nC32 | nC17 | ST-10 | 双峰型 | Ⅳ | nC31 | nC15 |
HD-11 | 单峰型 | Ⅱ | nC20 | ST-11 | 双峰型 | Ⅲ | nC15 | nC25 | |
HD-12 | 双峰型 | Ⅳ | nC17 | nC29 | ST-12 | 单峰型 | Ⅲ | nC15 | |
ST-13 | 双峰型 | Ⅳ | nC15 | nC29 |
样点 | 实际水体中 质量浓度/(ng·L-1) | 模拟沉积物中 质量浓度/(μg·g-1) | 模拟水体中 质量浓度/(ng·L-1) |
---|---|---|---|
ST-1 | 815.3 | 2.31 | 454.5 |
ST-2 | 201.5 | 21.5 | 2.05×103 |
ST-3 | 39.5 | 1.09 | 353.5 |
ST-4 | 399.4 | 2.11 | 437.9 |
ST-5 | 232.0 | 2.80 | 495.3 |
ST-6 | 114.9 | 1.97 | 426.4 |
ST-7 | 127.4 | 4.80 | 660.7 |
ST-8 | 8.13×103 | 5.48 | 717.4 |
ST-9 | 114.7 | 2.28 | 452.0 |
Table 3 Simulated sediment-water n-alkanes mass concentration conversion
样点 | 实际水体中 质量浓度/(ng·L-1) | 模拟沉积物中 质量浓度/(μg·g-1) | 模拟水体中 质量浓度/(ng·L-1) |
---|---|---|---|
ST-1 | 815.3 | 2.31 | 454.5 |
ST-2 | 201.5 | 21.5 | 2.05×103 |
ST-3 | 39.5 | 1.09 | 353.5 |
ST-4 | 399.4 | 2.11 | 437.9 |
ST-5 | 232.0 | 2.80 | 495.3 |
ST-6 | 114.9 | 1.97 | 426.4 |
ST-7 | 127.4 | 4.80 | 660.7 |
ST-8 | 8.13×103 | 5.48 | 717.4 |
ST-9 | 114.7 | 2.28 | 452.0 |
[1] |
AICHNER B, FEAKINS S J, LEE J E, et al., 2015. High resolution leaf wax carbon and hydrogen isotopic record of late Holocene paleoclimate in arid Central Asia[J]. Climate of the Past, 11(4): 619-633.
DOI URL |
[2] |
AICHNER B, WILKES H, HERZSCHUH U, et al., 2010. Biomarker and compound-specific δ13C evidence for changing environmental conditions and carbon limitation at Lake Koucha, eastern Tibetan Plateau[J]. Journal of Paleolimnology, 43(4): 873-899.
DOI URL |
[3] |
AMBADE B, SANKAR T K, KUMAR A, et al., 2020. Characterization of PAHs and n-alkanes in atmospheric aerosol of Jamshedpur City, India[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 24(2): 4020003.
DOI URL |
[4] |
BLIEDTNER M, SUCHODOLETZ H V, SCHÄFER I, et al., 2020. Age and origin of leaf wax n-alkanes in fluvial sediment-paleosol sequences and implications for paleoenvironmental reconstructions[J]. Hydrology and Earth System Sciences, 24: 2105-2120.
DOI URL |
[5] |
CHEN Y, WANG Y H, YU K K, et al., 2022. Occurrence characteristics and source appointment of polycyclic aromatic hydrocarbons and n-alkanes over the past 100 years in southwest China[J]. Science of the Total Environment, 808: 151905.
DOI URL |
[6] |
CRANWELL P A, EGLINTON G, ROBINSON N, 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments—II[J]. Organic Geochemistry, 11(6): 513-527.
DOI URL |
[7] | FANG J D, WU F C, XIONG Y Q, et al., 2014. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China[J]. Science of the Total Environment, 473-474: 410-421. |
[8] |
FARID N A, MAHMOUD S A, AHMED O E, 2015. Occurrence and distribution of aliphatic and polycyclic aromatic hydrocarbons in surface waters along coastal area of Suez Gulf[J]. Egyptian Journal of Chemistry, 58(1): 43-69.
DOI URL |
[9] |
FREIMUTH ERIKA J, DIEFENDORF AARON F, LOWELL THOMAS V, et al., 2021. Centennial-scale age offsets of plant wax n-alkanes in Adirondack lake sediments[J]. Geochimica et Cosmochimica Acta, 300(1): 119-136.
DOI URL |
[10] | LI J J, LÜ L G, WANG R, et al., 2022. Spatial distribution of n-alkanes in the catchment and sediments of Lake Lugu, Southwest China: Implications for palaeoenvironment reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology: An International Journal for the Geo-Sciences, 592: 110895. |
[11] |
LIU Y, HE Y, LIU Y, et al., 2022. Assessing spatiotemporal sources of biogenic and anthropogenic sedimentary organic matter from the mainstream Haihe River, China: Using n-alkanes as indicators[J]. The Science of the total environment, 834: 155382.
DOI URL |
[12] | PU Y, NACE T, MEYERS P A, et al., 2013. Paleoclimate changes of the last 1000 yr on the eastern Qinghai-Tibetan Plateau recorded by elemental, isotopic, and molecular organic matter proxies in sediment from glacial Lake Ximencuo[J]. Palaeogeography Palaeoclimatology Palaeoecology, 379-380: 39-53. |
[13] |
PU Y, ZHANG H C, LEI G L, et al., 2010. Climate variability recorded by n-alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS3[J]. Science China Earth Sciences, 53(6): 863-870.
DOI URL |
[14] | SCHEFU E, RATMEYER V, JBW S, et al., 2003. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J]. Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society, 67(10): 1757-1767. |
[15] |
YIN Y C, HAO L B, GU X, et al., 2020. Source tracing of n-alkanes in Songhua Lake, based on correspondence analysis and geochemical index[J]. Environmental Geochemistry and Health, 42(5): 1347-1357.
DOI PMID |
[16] |
ZHAN S, WU J L, ZHANG H L, et al., 2022. Occurrence, sources and spatial distribution of n-alkanes in surface soils from the Amu Darya Delta, Uzbekistan, arid Central Asia[J]. Environmental Research, 214(Part 3): 114063.
DOI URL |
[17] |
ZHANG Y, LIU X T, LIN Q X, et al., 2014. Vegetation and climate change over the past 800 years in the monsoon margin of northeastern China reconstructed from n-alkanes from the Great Hinggan Mountain ombrotrophic peat bog[J]. Organic Geochemistry, 76: 128-135.
DOI URL |
[18] |
ZOU Y M, WANG C Y, LIU X L, et al., 2022. Spatial distribution, compositional pattern and source apportionment of n-alkanes in surface sediments of the Bohai Sea, Yellow Sea, and East China Sea and implications of carbon sink[J]. Marine pollution bulletin, 178: 113639.
DOI URL |
[19] |
迟明慧, 秦延文, 杨晨晨, 等, 2022. 潮白河中游沉积物氮磷和有机质分布特征及评价[J]. 地学前缘, 29(4): 448-454.
DOI |
CHI M H, QING Y W, YANG C C, et al., 2022. Distribution and evaluation of nitrogen, phosphorus and organic matter in sediments of the middle reaches of the Chaobai River[J]. Earth Science Frontiers, 29(4): 448-454.
DOI |
|
[20] | 邓宏文, 钱凯, 1993. 沉积地球化学与环境分析[M]. 兰州: 甘肃科学技术出版社:35- 67. |
DENG H W, QIAN K, 1993. Sedimentary geochemistry and environmental analysis[M]. Lanzhou: Gansu Science and Technology Press:35- 67. | |
[21] | 冯精兰, 席楠楠, 张飞, 等, 2016. 黄河河南段水体中正构烷烃的分布特征与来源解析[J]. 环境科学, 37(3): 893-899. |
FENG J L, XI N N, ZHANG F, et al., 2016. Distribution characteristics and source apportionment of n-Alkanes in water from Yellow River in Henan section[J]. Environmental Science, 37(3): 893-899. | |
[22] | 郭景, 杨奇丽, 解壮, 等, 2018. 阜新市主城区降尘中有机污染物来源分析[J]. 环境保护科学, 44(5): 63-67. |
GUO J, YANG Q L, XIE Z, et al., 2018. Source analysis of organic pollutants in the dustfall from the main urban areas of Fuxin City[J]. Environmental Protection Science, 44(5): 63-67. | |
[23] | 韩通, 谭志海, 高博, 等, 2020. 灞河主干表层土壤中正构烷烃浓度的分布特征[J]. 西安工程大学学报, 34(6): 33-39. |
HAN T, TAN Z H, GAO B, et al., 2020. Distribution characteristics of n-alkanes in surface soil of Bahe River's main trunk[J]. Journal of Xi'an Polytechnic University, 34(6): 33-39. | |
[24] | 侯读杰, 冯子辉, 2010. 油气地球化学[M]. 北京: 石油工业出版社:201-223. |
HOU D J, FENG Z H, 2010. Petroleum geochemistry[M]. Beijing: Petroleum Industry Press:201-223. | |
[25] | 邝伟明, 陈文锋, 陈金民, 2017. 厦门海域正构烷烃组成特征及石油烃污染情况研究[J]. 海洋环境科学, 36(1): 76-80. |
KUANG W M, CHEN W F, CHEN J M, 2017. The characteristic parameters of n-alkanes and petroleum pollution of Xiamen bay[J]. Marine Environmental Science, 36(1): 76-80. | |
[26] | 黎明, 顾艳雯, 杨赛克, 2011. 水体污染物在水和底泥中的分布研究现状[J]. 科技创新导报 (12):131-132. |
LI M, GU Y W, YANG S K, 2011. Research status of the distribution of water pollutants in water and sediment[J]. Science and Technology Innovation Herald (12): 131-132. | |
[27] | 梁作兵, 孙玉川, 王尊波, 等, 2015. 青木关地下河系统中不同含水介质下正构烷烃对比研究[J]. 环境科学, 36(8): 2857-2862. |
LIANG Z B, SUN Y C, WANG Z B, et al., 2015. Comparison study of the alkanes in different aquifer medium under Qingmuguan Underground System[J]. Environmental Science, 36(8): 2857-2862. | |
[28] | 刘虎, 2019. 中国湖泊水生植物叶蜡氢同位素地球化学[D]. 北京: 中国科学院大学(中国科学院地球环境研究所): 3-11. |
LIU H, 2019. Hvdrogen isotopic geochemistry of leaf waxes in aquatic plants from Chinese Lakes[D]. Beijing: University of Chinese Academy of Sciences (Institute of Earth Environment, Chinese Academy of Sciences):3-11. | |
[29] | 刘宁坤, 孙玉川, 刘跃, 等, 2018. 旱雨季岩溶地表河不同河段正构烷烃相态组成变化和来源解析[J]. 环境科学学报, 38(12): 4728-4736. |
LIU N K, SUN Y C, LIU Y, et al., 2018. Phase composition changes and sources of n-alkanes in the upper and lower reaches of Karst surface river during dry & rainy season[J]. Acta Scientiae Circumstantiae, 38(12): 4728-4736. | |
[30] | 鲁倩, 2016. 长江中下游典型湖泊沉积物中正构烷烃、多环芳烃的源汇解析与生物风险评估[D]. 武汉: 中南民族大学: 1-51. |
LU Q, 2016. The occurrence, source apportionment and ecological risk assessment of n-alkanes and polycyclic aromatic hydrocarbons in typical middle and lower reaches of the Yangtze River Lake[D]. Wuhan: South-central University for Nationalities: 1-51. | |
[31] | 孟培, 王永莉, 王自翔, 等, 2014. 东北地区向海湖泊沉积物正构烷烃单体碳同位素特征及其古环境意义[J]. 地球科学与环境学报, 36(2): 110-120. |
MENG P, WANG Y L, WANG Z X, et al., 2014. Compound-specific carbon isotopic characteristics of n-alkanes in Xianghai Lake sediments of Northeast China and their paleoenvironmental implications[J]. Journal of Earth Sciences and Environment, 36(2): 110-120. | |
[32] | 欧杰, 王延华, 杨浩, 等, 2012. 湖泊沉积物中正构烷烃和碳同位素的分布特征及其环境意义[J]. 南京师大学报(自然科学版), 35(3): 98-105. |
OU J, WANG Y H, YANG H, et al., 2012. Distribution characteristics of n-alkanes and δ13C in the lake sediments and their environmental significance[J]. Journal of Nanjing Normal University (Natural Science Edition), 35(3): 98-105. | |
[33] | 彭红霞, 詹成, 马瑞元, 等, 2019. 江西九江红土生物标志化合物的分布特征及其古气候环境意义[J]. 地球学报, 40(3): 447-455. |
PENG H X, ZHAN C, MA R Y, et al., 2019. Characteristics of biomarkers in pleistocene red earth of Jiujing, Jiangxi province and its paleoclimatic and environmental significance[J]. Acta Geoscientica Sinica, 40(3): 447-455. | |
[34] | 邱金伟, 陈训龙, 蒲诃夫, 2022. 污染底泥原位覆盖中可降解有机污染物扩散解析解[J]. 东南大学学报(自然科学版), 52(5): 924-932. |
QIU J W, CHEN X L, PU H F, 2022. Analytical solutions for degradable organic contaminant diffusion in in-situ capping of contaminated sediments[J]. Journal of Southeast University (Natual Science Edition), 52(5): 924-932. | |
[35] | 沈贝贝, 吴敬禄, 曾海鳌, 等, 2017. 网湖沉积物正构烷烃分布特征及其记录的环境变化[J]. 环境科学, 38(9): 3682-3688. |
SHEN B B, WU J L, ZENG H A, et al., 2017. Distribution of n-alkanes from Lake Wanghu sediments in relation to environmental changes[J]. Environmental Science, 38(9): 3682-3688. | |
[36] | 万彬彬, 2022. 浅谈阜新市细河常见水生植物[J]. 现代园艺, 45(5): 131-133. |
WANG B B, 2022. Common aquatic plants in Xihe River of Fuxin City[J]. Modern Horticulture, 45(5): 131-133. | |
[37] | 杨奇丽, 郭景, 2016. 兰州市典型湿地沉积物中正构烷烃的来源分析[J]. 地球与环境, 44(4): 441-446. |
YANG Q L, GUO J, 2016. Source analysis of n-alkanes from typical wetlands sediment in Lanzhou City, China[J]. Earth and Environment, 44(4): 441-446. | |
[38] | 杨泽玉, 鲁倩, 吴来燕, 等, 2014. 城市湖泊底泥沉积柱中正构烷烃的分布特征与来源解析[J]. 环境科学与技术, 37(6): 115-119, 147. |
YANG Z Y, LU Q, WU L Y, et al., 2014. Occurrence and source apportionment of alkanes in the sediment core in an urbanized lake[J]. Environment Science & Technology, 37(6): 115-119, 147. | |
[39] | 袁红香, 孙惠玲, 段立曾, 等, 2021. 抚仙湖悬浮颗粒物正构烷烃来源及季节特征[J]. 中国环境科学, 41(6): 2812-2820. |
YUAN H X, SUN H L, DUAN L Z, et al., 2021. The sources and seasonal variation characteristics of n-alkanes in suspended particulate matter in Fuxian Lake[J]. China Environmental Science, 41(6): 2812-2820. | |
[40] | 张慧娟, 杨桂芳, 陈正洪, 等, 2018. 北京延庆古湖正构烷烃分布特征及古气候意义[J]. 地球科学, 43(11): 4120-4127. |
ZHANG H J, YANG G F, CHEN Z H, et al., 2018. Distribution of n-alkane indicative paleoclimatic change in Paleolake of Yangqing, Beijing[J]. Earth Science, 43(11): 4120-4127. | |
[41] | 张淑红, 杨广礼, 梁峰, 2010. 商丘市包河沉积物中正构烷烃的分析[J]. 环境保护科学, 36(5): 33-35. |
ZHANG S H, YANG G L, LIANG F, 2010. Analysis on n-alkanes in sediment of Baohe River, Shangqiu city[J]. Environmental Protection Science, 36(5): 33-35. | |
[42] | 张枝焕, 陶澍, 沈伟然, 等, 2004. 天津地区主要河流表层沉积物中饱和烃的组成与分布特征[J]. 地球化学, 33(3): 291-300. |
ZHANG Z H, TAO S, SHEN W R, et al., 2004. Characterization of saturated hydrocarbon in surface sediments from rivers in Tianjin, China[J]. Geochinmica, 33(3): 291-300. | |
[43] | 张枝焕, 陶澍, 吴水平, 等, 2007. 天津地区河流沉积物中中等分子量正构烷烃的分布特征[J]. 沉积学报, 25(4): 632-639. |
ZHANG Z H, TAO S, WU S P, et al., 2007. Composition and distribution of middle-molecular weight nonmal alkane compounds in sediments from some rivers in Tianjin, Northern China[J]. Acta Sedimentologica Sinica, 25(4): 632-639. | |
[44] | 赵佳玉, 王淑贤, ANDREY DARIN, 等, 2021. 新疆阿尔泰全新世双湖沉积物正构烷烃分布及其环境意义[J]. 第四纪研究, 41(4): 965-975. |
ZHAO J Y, WANG S X, DARIN A, et al., 2021. N-alkane distribution and their paleoenvironmental implications during holocene in lacustrine sediments in Lake Shuang, Xinjiang[J]. Quaternary Sciences, 41(4): 965-975. | |
[45] | 朱秀敏, 2009. 苔藓植物化学元素营养富集与开发利用[J]. 今日科苑, 187(17): 112, 117. |
ZHU X M, 2009. Enrichment and utilization of chemical elements in bryophytes[J]. Modern Science, 187(17): 112, 117. |
[1] | WANG Quanchao, JI Hengkuan, LI Simin, LI Caisheng, HOU Zhengwei, DENG Wangang, WU Zhipeng, WANG Dengfeng. Molecular Characteristics and Interfacial Transformation Mechanism of Dissolved Black Carbon in Soil-Stream Continuum in Dongzhai Harbor Watershed of Hainan Province [J]. Ecology and Environment, 2023, 32(1): 139-149. |
[2] | YANG Danli, LUO Ji, JIA Longyu, CHEN Yunfei. Historical Records of Pb Accumulation in Primary Succession Ecosystem of Hailuogou Glacier Retreat Area [J]. Ecology and Environment, 2022, 31(12): 2393-2402. |
[3] | QIAN Xueshi, LI Yong, QIAN Zhuangzhuang, GE Xiaomin, TANG Luozhong. Changes of Cadmium, Lead and Arsenic Contents during Precipitation in the Secondary Broad-leaved Forest in the Eastern Area of North Subtropics, China [J]. Ecology and Environment, 2022, 31(5): 979-989. |
[4] | WANG Yujie, LEI Qinkai, BU Hongling, TONG Hui, DONG Leheng, CHEN Manjia, LIU Chengshuai. The Study of the Interaction of Aqueous Fe(II) and Lepidocrocite-humic Acid Compounds and the Phase Transformation [J]. Ecology and Environment, 2022, 31(4): 777-784. |
[5] | HAO Lihong, LIU Guiqing, ZHANG Shichen, MIAO Yuping. Spatial Distribution Characteristics of Typical Organic Pollutants in Urban Petrol Station [J]. Ecology and Environment, 2021, 30(11): 2175-2184. |
[6] | CHEN Bufeng, XIAO Yihua, WANG Xinyi. The Geochemical Characteristics of Rainstorm PAHs and TOC of the Forest Ecosystem in Maofeng Mountain of Guangzhou, China [J]. Ecology and Environment, 2021, 30(10): 2042-2053. |
[7] | WANG Jin, CHEN Shutao, DING Sicheng, ZHANG Miaomiao, HU Zhenghua. Effects of the Soil and Climate Factors on the Mean Turnover Times of Soil Organic Carbon [J]. Ecology and Environment, 2021, 30(6): 1192-1201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn