Ecology and Environment ›› 2022, Vol. 31 ›› Issue (6): 1215-1224.DOI: 10.16258/j.cnki.1674-5906.2022.06.018
• Research Articles • Previous Articles Next Articles
LI Meijiao1,2(), HE Fanneng2,*(
), ZHAO Caishan2,3, YANG Fan4
Received:
2022-03-18
Online:
2022-06-18
Published:
2022-07-29
Contact:
HE Fanneng
李美娇1,2(), 何凡能2,*(
), 赵彩杉2,3, 杨帆4
通讯作者:
何凡能
作者简介:
李美娇(1989年生),女,讲师,博士后,主要从事土地利用/覆被变化及其生态效应研究。E-mail: limj.16b@igsnrr.ac.cn
基金资助:
CLC Number:
LI Meijiao, HE Fanneng, ZHAO Caishan, YANG Fan. Credibility Assessment of Cropland Data in Xinjiang Area in Global Historical LUCC Datasets[J]. Ecology and Environment, 2022, 31(6): 1215-1224.
李美娇, 何凡能, 赵彩杉, 杨帆. 全球历史LUCC数据集新疆地区耕地数据可靠性评估[J]. 生态环境学报, 2022, 31(6): 1215-1224.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.06.018
Figure1 Schematic diagram of the study area The base map was made by using the standard map of the Ministry of Natural Resources,and the map number was GS (2019) 3333. The base map not modified in figure 1 and the following figures
全球数据集 Global land use datasets | 覆盖时段 Temporal coverage | 空间分辨率 Spatial resolution | 历史资料 Historical data | 重建方法 Reconstruction method |
---|---|---|---|---|
HYDE 3.2 | 10000 BC-AD 2015 | 5′×5′ | 人口、零星调查记载、部分地区重建结果 | 以联合国粮农组织1960年人均耕地面积为基准,结合历史人口数量推算区域历史耕地总量;以人口密度、坡度、温度和距水体远近等指标进行空间分配 |
SAGE | 1700-2007 | 0.5°×0.5° | 人口、零星调查记载 | 假设历史时期土地利用分布格局与现代相一致,以联合国粮农组织统计的1992年耕地数据校正DISCover遥感观测数据,得到格网的现代垦殖率;以零星耕地及人口记载估算历史垦殖率,按两个时点平均变化率进行时空插值 |
Table 1 Representative global historical land use datasets
全球数据集 Global land use datasets | 覆盖时段 Temporal coverage | 空间分辨率 Spatial resolution | 历史资料 Historical data | 重建方法 Reconstruction method |
---|---|---|---|---|
HYDE 3.2 | 10000 BC-AD 2015 | 5′×5′ | 人口、零星调查记载、部分地区重建结果 | 以联合国粮农组织1960年人均耕地面积为基准,结合历史人口数量推算区域历史耕地总量;以人口密度、坡度、温度和距水体远近等指标进行空间分配 |
SAGE | 1700-2007 | 0.5°×0.5° | 人口、零星调查记载 | 假设历史时期土地利用分布格局与现代相一致,以联合国粮农组织统计的1992年耕地数据校正DISCover遥感观测数据,得到格网的现代垦殖率;以零星耕地及人口记载估算历史垦殖率,按两个时点平均变化率进行时空插值 |
全球数据集 Global land use datasets | 杨氏数据 Yang-dataset | 张氏数据 Zhang-dataset | |||||
---|---|---|---|---|---|---|---|
1780年 | 1810年 | 1850年 | 1910年 | 1910年 | 1940年 | ||
HYDE 3.2 SAGE | 0.04 1.38 | 0.05 0.67 | 0.07 0.42 | 0.56 1.08 | 3.08 5.12 | 8.95 4.80 |
Table 2 The relative difference ratio (R) of cropland area between HYDE 3.2, SAGE, the Yang-dataset, and the Zhang-datasets
全球数据集 Global land use datasets | 杨氏数据 Yang-dataset | 张氏数据 Zhang-dataset | |||||
---|---|---|---|---|---|---|---|
1780年 | 1810年 | 1850年 | 1910年 | 1910年 | 1940年 | ||
HYDE 3.2 SAGE | 0.04 1.38 | 0.05 0.67 | 0.07 0.42 | 0.56 1.08 | 3.08 5.12 | 8.95 4.80 |
全球数据集 Global land use datasets | 陈氏数据 Chen-dataset | ||||||
---|---|---|---|---|---|---|---|
新疆全域 Xinjiang province | 额敏河地区 Emin River area | 天山北坡地区 The north slope of Tianshan Mountains | 吐鲁番地区 Turpan area | 哈密地区 Hami area | 塔里木河流域 “四源一干” 地区 Tarim River Basin | ||
HYDE 3.2 | 1960年 | 0.75 | 0.61 | 1.04 | 0.51 | 0.32 | 1.10 |
2000年 | 0.67 | 0.50 | 0.60 | 0.60 | 0.27 | 1.06 | |
SAGE | 1960年 | 0.71 | 1.40 | 0.96 | 0.49 | 0.50 | 0.94 |
2000年 | 1.05 | 1.58 | 1.35 | 0.73 | 0.75 | 1.47 |
Table 3 The relative difference ratio (R) of cropland area from HYDE 3.2, SAGE, and the Chen-datasets
全球数据集 Global land use datasets | 陈氏数据 Chen-dataset | ||||||
---|---|---|---|---|---|---|---|
新疆全域 Xinjiang province | 额敏河地区 Emin River area | 天山北坡地区 The north slope of Tianshan Mountains | 吐鲁番地区 Turpan area | 哈密地区 Hami area | 塔里木河流域 “四源一干” 地区 Tarim River Basin | ||
HYDE 3.2 | 1960年 | 0.75 | 0.61 | 1.04 | 0.51 | 0.32 | 1.10 |
2000年 | 0.67 | 0.50 | 0.60 | 0.60 | 0.27 | 1.06 | |
SAGE | 1960年 | 0.71 | 1.40 | 0.96 | 0.49 | 0.50 | 0.94 |
2000年 | 1.05 | 1.58 | 1.35 | 0.73 | 0.75 | 1.47 |
Figure 5 Comparison of the reclamation spatial pattern in reconstruction areas of Xinjiang from HYDE 3.2, SAGE, and the Chen-datasets in 1960 and 2000
Figure 6 The spatial pattern of cropland in Xinjiang region from HYDE 3.2 and SAGE in 1700 (a, b) and 1770 (d, e), and the distribution of land reclamation points during the early (AD1 716-1721) (c) and middle (AD 1756-1778) (f) Qing Dynasty
[1] | ARNETH A, SITCH S, PONGRATZ J, et al., 2017. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed[J]. Nature Geoscience, 10(2): 79-84. |
[2] | BROVKIN V, SITCH S, VON BLOH W, et al., 2004. Role of land cover changes for atmospheric CO2increase and climate change during the last 150 years[J]. Global Change Biology, 10(8): 1253-1266. |
[3] | DIAS L C P, PIMENTA F M, SANTOS A B, et al., 2016. Patterns of land use, extensification, and intensification of Brazilian agriculture[J]. Global Change Biology, 22(8): 2887-2903. |
[4] | FUCHS R, PRESTELE R, VERBURG P H, 2018. A global assessment of gross and net land change dyna- mics for current conditions and future scenarios[J]. Earth System Dynamics, 9(2): 441-458. |
[5] | GAILLARD M J, LETINE A M, MORRISON K, 2015. Land Cover6k: Global anthropogenic land-cover change and its role in past climate[J]. Past Global Change Magazine, 23(1): 38-39. |
[6] |
HARPER A, POWELL T, COX P, et al., 2018. Land-use emissions play a critical role in land-based mitigation for Paris climate targets[J]. Nature Communications, DOI: 10.1038/s41467-018-05340-z.
DOI URL |
[7] | HE F N, LI S C, YANG F, et al., 2018. Evaluating the accuracy of Chinese pasture data in global historical land use datasets[J]. Science China Earth Sciences, 61(11): 1685-1696. |
[8] | KAPLAN J O, KRUMHARDT K M, ELLIS E C, et al., 2011. Holocene carbon emissions as a result of anthropogenic land cover change[J]. The Holocene, 21(5): 775-791. |
[9] | KAPLAN J O, KRUMHARDT K M, GAILLARD M J, et al., 2018. Constraining the deforestation history of Europe: Evaluation of historical land use scenarios with pollen-based land cover reconstructions[J]. Land, 6(4): 91. |
[10] | GOLDEWIJK K K, BEUSEN A, DOELMAN J, et al., 2017. New anthropogenic land use estimates for the Holocene-HYDE 3.2[J]. Earth System Science Data, 9(2): 927-953. |
[11] | LI S C, HE F N, ZHANG X Z, 2016. A spatially explicit reconstruction of cropland cover in China from 1661 to 1996[J]. Regional Environmental Change, 16(2): 417-428. |
[12] | LI S C, HE F N, ZHANG X Z, et al., 2019. Evaluation of global historical land use scenarios based on regional datasets on the qinghai-tibet area[J]. Science of the Total Environment, 657(20): 1615-1628. |
[13] | PENG S S, CIAIS P, MAIGNAN F, et al., 2017. Sensitivity of land use change emission estimates to historical land use and land cover mapping[J]. Global Biogeochemical Cycles, 31(4): 626-643. |
[14] | PONGRATZ J, REICK C, RADDATZ T, et al., 2008. A reconstruction of global agricultural areas and land cover for the last millennium[J]. Global Biogeochemical Cycles, 22(3): 1-16. |
[15] | RAMANKUTTY N, 2012. Global cropland and pasture data from 1700-2007[J/OL]. http://www.geog.mcgill.ca/nramankutty/Datasets/Datasets.html. |
[16] | TIAN H Q, BANGER K, BO T, et al., 2014. History of land use in India during 1880-2010: Large-scale land transformations reconstructed from satellite data and historical archives[J]. Global and Planetary Change, 121: 78-88. |
[17] | TURNER B L II, SKOLE D L, SANDERSON S, et al., 1995. Land-use and land-cover change. Science/research plan[J]. Global Change Report (Sweden), 43(1995): 669-679. |
[18] | WAISANEN P J, BLISS N B, 2002. Changes in population and agricultural land in conterminous United States counties, 1790 to 1997[J]. Global Biogeochemical Cycles, 16(4): 1-19. |
[19] | WEI X Q, WIDGREN M, LI B B, et al., 2020. Dataset of cropland cover from 1690 to 2015 in Scandinavia[J]. Earth System Science Data, https://doi.org/10.5194/essd-2020-187. |
[20] | YU Z, LU C Q, 2018. Historical cropland expansion and abandonment in the continental U.S. during 1850 to 2016[J]. Global Ecology and Biogeography, 27(3): 322-333. |
[21] | ZHANG D Y, FANG X Q, YANG L E, 2021. Comparison of the HYDE cropland data over the past millennium with regional historical evidence from Germany[J]. Regional Environmental Change, 21(1): 1-15. |
[22] | 安成邦, 张曼, 王伟, 等, 2020. 新疆地理环境特征以及农牧格局的形成[J]. 中国科学: 地球科学, 50(2): 295-304. |
AN C B, ZHANG M, WANG W, et al., 2020. Characteristics of geographical environment and formation of farming and pastoral pattern in Xinjiang[J]. Science China Earth Science, 50(2): 295-304. | |
[23] | 曹树基, 2000. 中国人口史: 第五卷[M]. 上海: 复旦大学出版社. |
CAO S J, 2000. The History of Chinese Population:Vol. 5[M]. Shanghai: Fudan University Press. | |
[24] | 陈曦, 2008. 中国干旱区土地利用与土地覆被变化[M]. 北京: 科学出版社. |
CHEN X, 2008. Land Use/Cover Change in Arid Areas in China[M]. Beijing: Science Press. | |
[25] | 方修琦, 赵琬一, 张成鹏, 等, 2020. 全球历史LUCC数据集数据可靠性的评估方法及评估案例[J]. 中国科学: 地球科学, 50(7): 149-160. |
FANG X Q, ZHAO W Y, ZHANG C P, et al., 2020. Methodology for credibility assessment of historical global LUCC datasets[J]. Science China Earth Science, 50(7): 149-160. | |
[26] | 方英楷, 1989. 新疆屯垦史[M]. 乌鲁木齐: 新疆青少年出版社. |
FANG Y K, 1989. History of Immigration Reclamation in Xinjiang[M]. Urumqi: Xinjiang Juvenile Publishing House. | |
[27] |
傅伯杰, 冷疏影, 宋长青, 2015. 新时期地理学的特征与任务[J]. 地理科学, 35(8): 939-945.
DOI |
FU B J, LENG S Y, SONG C Q, 2015. The characteristics and tasks of geography in the new era[J]. Scientia Geographica Sinica, 35(8): 939-945. | |
[28] | 国家统计局, 2012. 新疆维吾尔自治区 2010 年第六次全国人口普查主要数据公报[EB/OL]. [2012-02-28]. http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/dfrkpcgb/201202/t20120228_30407.html. |
NATIONAL BUREAU OF STATISTICS, 2012. The Main Data Bulletin of sixth national census in Xinjiang Uygur Autonomous Region in 2010[EB/OL]. [2012-02-28]. http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/dfrkpcgb/201202/t20120228_30407.html. | |
[29] | 郭蓉, 刘峰贵, 陈琼, 等, 2021. 北宋后期黄河上游地区耕地格局重建--以河湟谷地为例[J]. 自然资源学报, 36(1): 27-37. |
GUO R, LIU F G, CHEN Q, et al., 2021. Reconstruction of cultivated land pattern in the upper reaches of the Yellow River in the late Northern Song Dynasty: Take Hehuang Valley as an example[J]. Journal of Natural Resources, 36(1): 27-37. | |
[30] | 韩艳莉, 陈克龙, 于德永, 2019. 土地利用变化对青海湖流域生境质量的影响[J]. 生态环境学报, 28(10): 2035-2044. |
HAN Y L, CHEN K L, YU D Y, 2019. Evaluation on the impact of land use change on habitat quality in Qinghai Lake basin[J]. Ecology and Environmental Sciences, 28(10): 2035-2044. | |
[31] | 何凡能, 李士成, 张学珍, 等, 2012. 中国传统农区过去300年耕地重建结果的对比分析[J]. 地理学报, 67(9): 1190-1200. |
HE F N, LI S C, ZHANG X Z, et al., 2012. Comparisons of reconstructed cropland area from multiple datasets for the traditional cultivated region of China in the last 300 years[J]. Acta Geograpgica Sinica, 67(9): 1190-1200. | |
[32] | 华立, 1998. 清代新疆农业开发史[M]. 哈尔滨: 黑龙江教育出版社. |
HUA L, 1998. History of the Agricultural Development in Xinjiang in the Qing Dynasty[M]. Harbin: Heilongjiang Education Publishing House. | |
[33] | 李蓓蓓, 方修琦, 叶瑜, 等, 2010. 全球土地利用数据集精度的区域评估--以中国东北地区为例[J]. 中国科学: 地球科学, 40(8): 1048-1059. |
LI B B, FANG X Q, YE Y, et al., 2010. Accuracy assessment of global historical cropland datasets based on regional reconstructed historical data: A case study in Northeast China[J]. Science China Earth Sciences, 40(8): 1048-1059. | |
[34] |
李美娇, 何凡能, 杨帆, 等, 2020. 明代省域耕地数量重建及时空特征分析[J]. 地理研究, 39(2): 447-460.
DOI |
LI M J, HE F N, YANG F, et al., 2020. Reconstruction of provincial cropland area and its spatial-temporal characteristics in the Ming Dynasty[J]. Geographical Research, 39(2): 447-460. | |
[35] | 刘强, 杨众养, 陈毅青, 等, 2021. 基于CA-Markov多情景模拟的海南岛土地利用变化及其生态环境效应[J]. 生态环境学报, 30(7): 1522-1531. |
LIU Q, YANG Z Y, CHEN Y Q, et al., 2021. Multi-scenario simulation of land use change and its eco-environmental effect in Hainan Island based on CA-Markov model[J]. Ecology and Environment, 30(7): 1522-1531. | |
[36] |
杨帆, 何凡能, 李美娇, 等, 2019. 全球历史森林数据中国区域的可靠性评估[J]. 地理学报, 74(5): 923-934.
DOI |
YANG F, HE F N, LI M J, et al., 2019. Reliability assessment of global historical forest data in China[J]. Acta Geographica Sinica, 2019, 74(5): 923-934.
DOI |
|
[37] | 杨越, 2012. 清代奇台-济木萨地区的农业开发及其环境影响[D]. 西安: 陕西师范大学. |
YANG Y, 2012. The Agricultural Development and Environmental Change of Qitai-Jimusar Region in Qing Dynasty[D]. Xi'an: Shaanxi Normal University. | |
[38] | 叶瑜, 方修琦, 任玉玉, 等, 2009. 东北地区过去300 a耕地覆盖变化[J]. 中国科学: 地球科学, 39(3): 340-350. |
YE Y, FANG X Q, REN Y Y, et al., 2009. Cropland cover change in Northeast China during the past 300 years[J]. Science China Earth Science, 39(3): 340-350. | |
[39] |
张莉, 刘建杰, 2020. 清末民国时期新疆玛纳斯河流域耕地格局重建[J]. 资源科学, 42(7): 1428-1437.
DOI |
ZHANG L, LIU J J, 2020. Reconstruction of cropland spatial patterns of the Manas River Basin of Xinjiang in the late Qing and Republican period[J]. Resources Science, 42(7): 1428-1437.
DOI |
|
[40] | 赵予征, 2009. 丝绸之路屯垦研究[M]. 乌鲁木齐: 新疆人民出版社. |
ZHAO Y Z, 2009. Immigrant Reclamation of Silk Road[M]. Urumqi: Xinjiang People's Publishing House. |
[1] | ZHOU Yuxiang, ZHAO Yu, NIE Rendong, DING Ding, GUO Lihua, ZHOU Jiazheng. Characterization and Prediction of Land Desertification in the Lower Liaohe River Plain [J]. Ecology and Environment, 2023, 32(6): 1133-1139. |
[2] | WANG Lin, WEI Wei. Characteristics and Driving Factors of Ecosystem Services Changes in A Typical County of the Loess Plateau [J]. Ecology and Environment, 2023, 32(6): 1140-1148. |
[3] | LI Haipeng, HUANG Yuehua, SUN Xiaodong, CAO Qimin, FU Fangxing, SUN Chuhan. Correlation Analysis of the Occurrence of the Tomato Bacterial Wilt and Different Types of Texture of Latosols and Its Bacterial Community in Cropland in Hainan [J]. Ecology and Environment, 2023, 32(6): 1062-1069. |
[4] | LIU Xia, GUO Shu, WANG Lin. Study on the Value of Land Use and Ecological Services in the Region of Regional Integration: Take Shuanglai Pilot Area as An Example [J]. Ecology and Environment, 2023, 32(6): 1163-1172. |
[5] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[6] | WANG Chao, YANG Qiannan, ZHANG Chi, LIU Tongxu, ZHANG Xialong, CHEN Jing, LIU Kexue. The Characteristics of Soil Phosphorus Fractions and Their Availability under Different Land Use Types in Danxia Mountain [J]. Ecology and Environment, 2023, 32(5): 889-897. |
[7] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[8] | LIU Ziwei, GE Jiwen, WANG Yuehuan, YANG Shiyu, YAO Dong, XIE Jinlin. Variation Pattern and Influential Factors of Methane Flux in the Dajiuhu Peatland [J]. Ecology and Environment, 2023, 32(4): 706-714. |
[9] | WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed [J]. Ecology and Environment, 2023, 32(4): 722-732. |
[10] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environment, 2023, 32(4): 660-667. |
[11] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[12] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[13] | SONG Xiaoshuai, DING Wuquan, LIU Xinmin, LI Tingzhen. Study on the Mechanism of Ion Specificity Effect on the Pore Condition of Purple Soil [J]. Ecology and Environment, 2023, 32(2): 292-298. |
[14] | LIU Xilin, ZHUO Ruina. Influential Factors and Their Critical Thresholds of Initial Runoff Production Time on the Benggang Colluvial Slopes [J]. Ecology and Environment, 2023, 32(1): 36-46. |
[15] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn