Ecology and Environment ›› 2022, Vol. 31 ›› Issue (11): 2180-2188.DOI: 10.16258/j.cnki.1674-5906.2022.11.009
• Research Articles • Previous Articles Next Articles
GUO Lifang1,2(), YANG Rui2, SUN Weimin2,*
Received:
2022-06-27
Online:
2022-11-18
Published:
2022-12-22
Contact:
SUN Weimin
通讯作者:
孙蔚旻
作者简介:
郭丽芳(1995年生),硕士研究生,研究方向为尾矿固氮菌的分离筛选及其促生效应研究。E-mail: 572480672@qq.com
基金资助:
CLC Number:
GUO Lifang, YANG Rui, SUN Weimin. Nitrogen-Fixing Bacteria Isolation from Mine Tailings and Their Plant Growth Promoting Properties[J]. Ecology and Environment, 2022, 31(11): 2180-2188.
郭丽芳, 杨瑞, 孙蔚旻. 尾矿固氮菌的分离筛选及其植物促生效应研究[J]. 生态环境学报, 2022, 31(11): 2180-2188.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.11.009
成分 Composition | 培养基 Medium | |||
---|---|---|---|---|
固体培养基 Jensen’s Medium | 液体培养基 Jensen’s Broth | 固体培养基 Luria-Bertani | 液体培养基 Luria-Bertani | |
蔗糖 Sucrose | 20 | 20 | - | - |
磷酸氢二钾 Dipotassium phosphate | 1 | 1 | - | - |
硫酸镁 Magnesium sulfate | 0.5 | 0.5 | - | - |
氯化钠 Sodium chloride | 0.5 | 0.5 | 10 | 10 |
硫酸亚铁 Ferrous sulfate | 0.1 | 0.1 | - | - |
钼酸钠 Sodium molybdate | 0.005 | 0.005 | - | - |
碳酸钠 Sodium carbonate | 2.0 | 2.0 | - | - |
胰蛋白胨Tryptone | - | - | 10 | 10 |
酵母粉 Yeast powder | - | - | 5 | 5 |
琼脂 Agar | 15 | - | 15 | - |
Table 1 Media composition g·L-1
成分 Composition | 培养基 Medium | |||
---|---|---|---|---|
固体培养基 Jensen’s Medium | 液体培养基 Jensen’s Broth | 固体培养基 Luria-Bertani | 液体培养基 Luria-Bertani | |
蔗糖 Sucrose | 20 | 20 | - | - |
磷酸氢二钾 Dipotassium phosphate | 1 | 1 | - | - |
硫酸镁 Magnesium sulfate | 0.5 | 0.5 | - | - |
氯化钠 Sodium chloride | 0.5 | 0.5 | 10 | 10 |
硫酸亚铁 Ferrous sulfate | 0.1 | 0.1 | - | - |
钼酸钠 Sodium molybdate | 0.005 | 0.005 | - | - |
碳酸钠 Sodium carbonate | 2.0 | 2.0 | - | - |
胰蛋白胨Tryptone | - | - | 10 | 10 |
酵母粉 Yeast powder | - | - | 5 | 5 |
琼脂 Agar | 15 | - | 15 | - |
菌名 Name of the fungus | 菌株表观形状 Apparent shape of the strain |
---|---|
L45 | 黄色不透明,圆形,中间隆起、 边缘较整齐,表面光滑湿润 |
G6 | 黄色不透明,菌落较小,圆形,边缘整齐 |
G18 | 淡黄色,菌落形状不规则,透明边缘较整齐 |
L2+2 | 黄色不透明,边缘较整齐,菌落平坦 |
L31 | 菌落黄色不透明,圆形,光滑,边缘整齐 |
G15 | 淡黄色透明,圆形 |
PC-3 | 黄色不透明,圆形,中间凸起,光滑 |
Table 2 Colony characteristics of the different strains
菌名 Name of the fungus | 菌株表观形状 Apparent shape of the strain |
---|---|
L45 | 黄色不透明,圆形,中间隆起、 边缘较整齐,表面光滑湿润 |
G6 | 黄色不透明,菌落较小,圆形,边缘整齐 |
G18 | 淡黄色,菌落形状不规则,透明边缘较整齐 |
L2+2 | 黄色不透明,边缘较整齐,菌落平坦 |
L31 | 菌落黄色不透明,圆形,光滑,边缘整齐 |
G15 | 淡黄色透明,圆形 |
PC-3 | 黄色不透明,圆形,中间凸起,光滑 |
菌名 Name of the fungus | IAA定性分析 IAA qualitative analysis | 铁载体定性分析 Characterisation of iron-containing carriers | 金属抗性(As) 定性分析 Qualitative analysis of metal resistance (As) |
---|---|---|---|
L45 | - | - | + |
G6 | + | + | + |
G18 | - | + | - |
L2+2 | + | - | + |
L31 | + | - | + |
G15 | - | + | + |
PC-3 | + | + | + |
Table 3 Physiological and biochemical properties of the different strains
菌名 Name of the fungus | IAA定性分析 IAA qualitative analysis | 铁载体定性分析 Characterisation of iron-containing carriers | 金属抗性(As) 定性分析 Qualitative analysis of metal resistance (As) |
---|---|---|---|
L45 | - | - | + |
G6 | + | + | + |
G18 | - | + | - |
L2+2 | + | - | + |
L31 | + | - | + |
G15 | - | + | + |
PC-3 | + | + | + |
Figure 3 Phylogenetic tree constructed from 16S rDNA sequence analysis Phylogenetic trees were drawn using CLUSTAL and MEGA 3.0 software based on 16S rRNA sequence results with the reference genome from the NCBI database, and strains for this experiment are marked with thick solid lines
Figure 4 Effect of inoculation with different strains on plant root length and stem length *, P<0.05; **, P<0.01; indicates a significant difference in root and stem length promotion efficiency of plants between the treatment and control groups
Figure 5 Effect of inoculation with different strains of bacteria on the dry mass of plant roots and stems *, P<0.05; indicates a significant difference in dry weight promotion efficiency of plant roots and stems between the treatment and control groups
Figure 6 Effect of inoculation with different strains on the nitrogen concent of plant roots and stems *, P<0.05; **, P<0.01; indicates significant differences between treatment and control groups for nitrogen content in plant roots and stems
[1] |
HILLER E, LALINSKA B, CHOVAN M, et al., 2012. Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia[J]. Applied Geochemistry, 27(3): 598-614.
DOI URL |
[2] |
HUANG L N, TANG F Z, SONG Y S, et al., 2011. Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings[J]. Fems Microbiology Ecology, 78(3): 439-450.
DOI URL |
[3] |
JANA U, CHASSANY V, BERTRAND G, et al., 2012. Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation[J]. Journal of Environmental Management, 110: 188-193.
DOI PMID |
[4] |
LI X F, BOND P L, VAN NOSTRAND J D, et al., 2015. From lithotroph- to organotroph-dominant: Directional shift of microbial community in sulphidic tailings during phytostabilization[J]. Scientific Reports, 5: 12978.
DOI PMID |
[5] | LI X F, YOU F, BOND P L, et al., 2015. Establishing microbial diversity and functions in weathered and neutral Cu-Pb-Zn tailings with native soil addition[J]. Geoderma, 247: 108-116. |
[6] |
LIN Y C, CHEN J C, C MAN S N, et al., 2012. Modulation of innate immunity and gene expressions in white shrimp Litopenaeus vannamei following long-term starvation and re-feeding[J]. Results in immunology, 2: 148-156.
DOI URL |
[7] |
LIU R F, ZHANG Y, CHEN P, et al., 2017. Genomic and phenotypic analyses of Pseudomonas psychrotolerans PRS08-11306 reveal a turnerbactin biosynthesis gene cluster that contributes to nitrogen fixation[J]. Journal of Biotechnology, 253: 10-13.
DOI PMID |
[8] |
MARASSI F M, 2011. Mycobacterium tuberculosis Rv0899 defines a family of membrane proteins widespread in nitrogen-fixing bacteria[J]. Proteins: Structure, Function, and Bioinformatics, 79(10): 2946-2955.
DOI URL |
[9] |
MENDEZ M O, NEILSON J W, MAIER R M, 2008. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site[J]. Applied and Environmental Microbiology, 74(12): 3899-3907.
DOI PMID |
[10] |
MOYNAHAN O S, ZABINSKI C A, GANNON J E, 2002. Microbial community structure and carbon-utilization diversity in a mine tailings revegetation study[J]. Restoration Ecology, 10(1): 77-87.
DOI URL |
[11] |
NAQQASH T, IMRAN A, HAMEED S, et al., 2020. First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato[J]. Scientific Reports, 10: 12893.
DOI URL |
[12] |
NAVARRO-NOYA Y E, HERNANDEZ-MENDOZA E, MORALES-JIMENEZ J, et al., 2012. Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings[J]. Applied Soil Ecology, 62: 52-60.
DOI URL |
[13] |
OJUEDERIE O B, BABALOLA O O, 2017. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review[J]. International journal of Environmental Research and Public Health, 14(12): 1504.
DOI URL |
[14] |
PASCUAN C, FOX A R, SOTO G, et al., 2015. Exploring the ancestral mechanisms of regulation of horizontally acquired nitrogenases[J]. Journal of Molecular Evolution, 81(3-4):84-89.
DOI PMID |
[15] |
SULTANA M, VOGLER S, ZARGAR K, et al., 2012. New clusters of arseniate oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil[J]. Archives of Microbiology, 194: 623-635.
DOI URL |
[16] |
SUN W M, SUN X X, LI B Q, et al., 2020. Bacterial response to sharp geochemical gradients caused by acid mine drainage intrusion in a terrace: Relevance of C, N, and S cycling and metal resistance[J]. Environment International, 138: 105601.
DOI URL |
[17] |
SUN W M, XIAO E Z, HAGGBLOM M, et al., 2018. Bacterial survival strategies in an alkaline tailing site and the physiological mechanisms of dominant phylotypes as revealed by metagenomic analyses[J]. Environmental Science and Technology, 52(22): 13370-13380.
DOI PMID |
[18] |
SUN X L, LI C A, KUIPER K F, et al., 2016. Human impact on erosion patterns and sediment transport in the Yangtze River[J]. Global and Planetary Change, 143: 88-99.
DOI URL |
[19] |
SUN X X, KONG T L, HAGGBLOM M M, et al., 2020. Chemolithoautotropic diazotrophy dominates the nitrogen fixation process in mine tailings[J]. Environmental Science and Technology, 54(10): 6082-6093.
DOI PMID |
[20] |
SUN X X, SONG B R, XU R, et al., 2021. Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination[J]. Journal of Environmental Sciences, 104(6): 387-398.
DOI URL |
[21] |
TITUS J H, BISHOP J G, 2014. Propagule limitation and competition with nitrogen fixers limit conifer colonization during primary succession[J]. Journal of Vegetation Science, 25(4): 990-1003.
DOI URL |
[22] |
WANG J, LIU G N, WU H, et al., 2018. Temporal-spatial variation and partitioning of dissolved and particulate heavy metal(loid)s in a river affected by mining activities in Southern China[J]. Environmental Science and Pollution Research, 25(10): 9828-9839.
DOI URL |
[23] |
XIAO E Z, CUI J L, SUN W M, et al., 2021. Root microbiome assembly of As-hyperaccumulator Pteris vittata and its efficacy in arsenic requisition[J]. Environmental Microbiology, 23(4): 1959-1971.
DOI PMID |
[24] |
ZHAN J, SUN Q Y, 2012. Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings[J]. MIcrobiological Research, 167(3): 157-165.
DOI PMID |
[25] | 程蓉, 廖祥文, 舒荣波, 等, 2018. 一种降低高硫煤矸石可燃性的方法[J]. 矿产综合利用 (4): 104-108. |
CHENG R, LIAO X W, SHU R B, et al., 2018. Technology for reducing the flammability of high-sulfur coal gangue[J]. Multipurpose Utilization of Mineral Resources (4): 104-108. | |
[26] | 董子阳, 胡佳杰, 胡宝兰, 2019. 微生物铁载体转运调控机制及其在环境污染修复中的应用[J]. 生物工程学报, 35(11): 2189-2200. |
DONG Z Y, HU J J, HU B L, 2019. Regulation of microbial siderophore transport and its application in environmental remediation[J]. Chinese Journal of Biotechnology, 35(11): 2189-2200. | |
[27] | 康贻军, 程洁, 梅丽娟, 等, 2010. 植物根际促生菌作用机制研究进展[J]. 应用生态学报, 21(1): 232-238. |
KANG Y J, CHENG J, MEI L J, et al., 2021. Action mechanisms of plant growth-promoting rhizobacteria (PGPR): A review[J]. The Journal of Applied Ecology, 21(1): 232-238. | |
[28] | 李自刚, 彭爱娟, 屈凌波, 2009. 微生物修复茵剂对复垦金尾矿土壤微生物群落的影响[J]. 湖南农业科学 (5): 46-49. |
LI Z G, PENG A J, QU L B, 2009. Effects of microbial remendiation inocula on microbial community in gold-tailings soil with secondary tillage[J]. Hunan Agricultural Sciences (5): 46-49. | |
[29] | 龙婉婉, 王金凤, 廖永辉, 等, 2020. 一株硫酸铵耐性菌株的分离鉴定及其特征研究[J]. 井冈山大学学报 (自然科学版), 41(6): 33-39. |
LONG W W, WANG J F, LIAO Y H, et al., 2020. Isolation, identification, and characteristization of an ammonium sulfate bacterial strain[J]. Journal of Jinggangshan University (Natural Sciences Edition), 41(6): 33-39. | |
[30] | 栾敏, 胡江, 杨兴明, 等, 2009. 土壤叶杆菌和红球菌菌株的分离鉴定及其自生固氮作用[J]. 土壤学报, 46(3): 541-546. |
LUAN M, HU J, YANG X M, et al., 2009. Isolation and identification of phyllobacterium and rhodococcus strains from soils and their free living nitrogen-fixation[J]. Journal of Soil Science, 46(3): 541-546. | |
[31] | 谭志远, 傅琴梅, 彭桂香, 等, 2012. 青香茅和五节芒内生固氮菌多样性及促生作用[C]// 中国土壤学会第十二届全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集. 成都: 840-851. |
TAN Z Y, FU Q M, PENG G X, et al., 2012. Diversity and plant growth promotion of endophytic diazotrophs isolated from Cymbopogon caesius and Miscanthus[C]// Proceedings of the 12th National Congress of the Soil Society of China and the 9th Cross-Strait Soil and Fertilizer Symposium. Chengdu: 840-851. | |
[32] | 赵兴青, 李成祥, 王汝成, 等, 2009. 安徽铜陵尾矿堆中三价砷抗性菌株的分离、鉴定及16S rDNA分析[J]. 岩石矿物学杂志, 28(6): 513-519. |
ZHAO X Q, LI C X, WANG R C, et al., 2009. Isolation, identification and 16S rDNA sequences analysis of arsenic-resisting bacteria from mine tailing dumps of Tongling in Anhui Province[J]. Acta Petrologica et Mineralogiaca, 28(6): 513-519. | |
[33] | 周德明, 李蓉, 2012. 杉木根际固氮菌筛选及其溶磷性与分泌IAA特性研究[J]. 四川师范大学学报 (自然科学版), 35(4): 562-566. |
ZHOU D M, LI R, 2012. Screening of nitrogen-fixing bacteria in rhizosphere of Cunninghaimia lanceolata and investigation on their properties of phosphate-solubilizing and IAA-producing[J]. Journal of Sichuan Normal University (Natural Science), 35(4): 562-566. | |
[34] | 朱建平, 乐红志, 朱俊阁, 等, 2021. 黄金尾矿材料及环境属性研究[J]. 硅酸盐通报, 40(10): 3457-3463. |
ZHU J P, LE H Z, ZHU J G, et al., 2021. Research on material and environmental properties of gold tailings[J]. Bulletin of the Chinese Ceramic Society, 40(10): 3457-3463. |
[1] | FENG Shuna, LÜ Jialong, HE Hailong. Effect of KI Leaching on the Hg (Ⅱ) Removal of Loess Soil and the Physicochemical Properties of the Soil [J]. Ecology and Environment, 2023, 32(4): 776-783. |
[2] | MA Chuang, WANG Yuyang, ZHOU Tong, WU Longhua. Enrichment Characteristics and Desorption Behavior of Cadmium and Zinc in Particulate Organic Matter of Polluted Soil [J]. Ecology and Environment, 2022, 31(9): 1892-1900. |
[3] | XING Shuwen, XU Jiamin, HUANG Bin, GAO Jingting, HAN Li. Effect of Heavy Metal Pollution on the Community Structure and Diversity of Soil Animals in Tea Garden Located in A Tungsten Mining Area [J]. Ecology and Environment, 2021, 30(9): 1903-1915. |
[4] | NIU Xuekui, WU Xueyong, WANG Wei, AI Zhimin, WANG Shuting, HOU Juan, ZHOU Tao. Study on Enrichment Characteristics of Heavy Metals from Dominant Plants Around the Waste Slag Yard of Lead Smelting in A Typical Blast Furnace [J]. Ecology and Environment, 2021, 30(6): 1293-1298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn