Ecology and Environment ›› 2021, Vol. 30 ›› Issue (7): 1368-1374.DOI: 10.16258/j.cnki.1674-5906.2021.07.005
• Research Articles • Previous Articles Next Articles
CHEN Yuqin1,2(), CHEN Guantao1,2,3, WANG Yu1,2, CHEN Huixin1,2, LI Qinghua1,2, TU Lihua1,2,*(
)
Received:
2020-10-21
Online:
2021-07-18
Published:
2021-10-09
Contact:
TU Lihua
陈雨芩1,2(), 陈冠陶1,2,3, 王宇1,2, 陈蕙心1,2, 李青桦1,2, 涂利华1,2,*(
)
通讯作者:
涂利华
作者简介:
陈雨芩(1995年生),女,硕士研究生,主要从事森林土壤、森林生态等领域研究。E-mail: 18064921368@163.com
基金资助:
CLC Number:
CHEN Yuqin, CHEN Guantao, WANG Yu, CHEN Huixin, LI Qinghua, TU Lihua. Effect of Ten-year Simulated Nitrogen Deposition on Aluminium Fractions of Rhizospheric and Bulk Soils in A Pleioblastus amarus Plantation[J]. Ecology and Environment, 2021, 30(7): 1368-1374.
陈雨芩, 陈冠陶, 王宇, 陈蕙心, 李青桦, 涂利华. 10年模拟氮沉降对苦竹林根际与非根际土壤铝组分的影响[J]. 生态环境学报, 2021, 30(7): 1368-1374.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.07.005
Fig. 1 Effect of nitrogen addition on rhizospheric and bulk soil pH value n=3; CK: Control; LN: Low nitrogen; MN: Medium nitrogen; HN: High nitrogen; N: Nitrogen treatment effect; R: Rhizospheric and bulk soil effect; N×R: Interaction between nitrogen treatment and rhizospheric and bulk soil; Different small letters show rhizospheric soil is treated with different N treatment represent significant differences. Different capital letters show bulk soil is treated with different N treatment represent significant differences. The same below
Index | Exchangeable Al | Carbonate Al | Iron-manganese oxides Al | Organically bound Al | Residual Al |
---|---|---|---|---|---|
Rhizosphere soil pH | -0.791** | -0.515 | -0.385 | -0.582* | 0.053 |
Bulk soil pH | -0.714** | -0.267 | -0.211 | 0.059 | 0.139 |
Table 1 Correlation analysis of pH and Al fractions in rhizosphere and bulk soil
Index | Exchangeable Al | Carbonate Al | Iron-manganese oxides Al | Organically bound Al | Residual Al |
---|---|---|---|---|---|
Rhizosphere soil pH | -0.791** | -0.515 | -0.385 | -0.582* | 0.053 |
Bulk soil pH | -0.714** | -0.267 | -0.211 | 0.059 | 0.139 |
Soil type | Treatment | Exchangeable Al/Al | Carbonate Al/Al | Iron-manganese oxides Al/Al | Organically bound Al/Al | Residual Al/Al |
---|---|---|---|---|---|---|
Rhizospheric soil | CK | 0.06±0.00a | 0.16±0.01a | 12.48±1.98a | 35.73±0.83ab | 51.57±2.82a |
LN | 0.06±0.01a | 0.17±0.01a | 11.40±1.32a | 35.00±0.91a | 53.37±1.27a | |
MN | 0.06±0.01ab | 0.17±0.01a | 10.92±1.07a | 38.59±0.97b | 50.26±2.04a | |
HN | 0.09±0.01b | 0.16±0.00a | 14.59±0.77a | 38.20±0.86b | 46.95±1.58a | |
Bulk soil | CK | 0.07±0.01a | 0.15±0.01a | 11.37±0.94a | 36.10±0.60a | 52.31±1.01a |
LN | 0.05±0.01a | 0.17±0.01a | 11.35±1.10a | 38.16±3.16a | 50.27±2.52a | |
MN | 0.04±0.01a | 0.15±0.02a | 12.72±1.13a | 35.27±0.41a | 51.82±0.93a | |
HN | 0.08±0.01a | 0.17±0.01a | 13.99±0.66a | 35.08±1.35a | 50.69±0.80a |
Table 2 Effect of nitrogen addition on mass fraction of each Aluminum fractions in total Aluminum
Soil type | Treatment | Exchangeable Al/Al | Carbonate Al/Al | Iron-manganese oxides Al/Al | Organically bound Al/Al | Residual Al/Al |
---|---|---|---|---|---|---|
Rhizospheric soil | CK | 0.06±0.00a | 0.16±0.01a | 12.48±1.98a | 35.73±0.83ab | 51.57±2.82a |
LN | 0.06±0.01a | 0.17±0.01a | 11.40±1.32a | 35.00±0.91a | 53.37±1.27a | |
MN | 0.06±0.01ab | 0.17±0.01a | 10.92±1.07a | 38.59±0.97b | 50.26±2.04a | |
HN | 0.09±0.01b | 0.16±0.00a | 14.59±0.77a | 38.20±0.86b | 46.95±1.58a | |
Bulk soil | CK | 0.07±0.01a | 0.15±0.01a | 11.37±0.94a | 36.10±0.60a | 52.31±1.01a |
LN | 0.05±0.01a | 0.17±0.01a | 11.35±1.10a | 38.16±3.16a | 50.27±2.52a | |
MN | 0.04±0.01a | 0.15±0.02a | 12.72±1.13a | 35.27±0.41a | 51.82±0.93a | |
HN | 0.08±0.01a | 0.17±0.01a | 13.99±0.66a | 35.08±1.35a | 50.69±0.80a |
[1] |
ÁLVAREZ E, FERNÁNDEZ-SANJURJO M, OTERO X L, et al., 2011. Aluminum speciation in the bulk and rhizospheric soil solution of the species colonizing an abandoned copper mine in Galicia (NW Spain)[J]. Journal of Soils and Sediments, 11(2): 221-230.
DOI URL |
[2] |
BARCELÓ J, POSCHENRIEDER C, 2002. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: A review[J]. Environmental and Experimental Botany, 48(1): 75-92.
DOI URL |
[3] |
BLASER P, WALTHERT L, PANNATIER E G, 2008. The sensitivity of Swiss forest soils to acidification and the risk of aluminum toxicity[J]. Journal Plant Nutrition and Soil Science, 171(4): 605-612.
DOI URL |
[4] | BRADY N C, WEIL R R, 2017. The Nature and Properties of Soils[M]. The fifteenth edition. England: Pearson Education: 397-404. |
[5] |
CHEN F M, AI H L, WEI M T, et al., 2018a. Distribution and phytotoxicity of soil labile aluminum fractions and aluminum species in soil water extracts and their effects on tall fescue[J]. Ecotoxicology and Environmental Safety, 163: 180-187.
DOI URL |
[6] |
CHEN G T, TU L H, CHEN G S, et al., 2018b. Effect of six-year nitrogen additions on soil chemistry in a subtropical Pleioblastus amarus forest, southwest China[J]. Journal of Forestry Research, 29(6): 1657-1664.
DOI URL |
[7] |
CHEN G T, TU L H, PENG Y, et al., 2017. Effect of nitrogen additions on root morphology and chemistry in a subtropical bamboo forest[J]. Plant and Soil, 412(1-2): 441-451.
DOI URL |
[8] |
COLLIGNON C, BOUDOT J P, TURPAULT M P, 2012. Time change of aluminium toxicity in the acid bulk soil and the rhizosphere in Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) stands[J]. Plant and Soil, 357(1-2): 259-274.
DOI URL |
[9] |
CUENCA G, HERRERA R, MEDINA E, 1990. Aluminium tolerance in trees of a tropical cloud forest[J]. Plant and Soil, 125(2): 169-175.
DOI URL |
[10] |
DELHAIZE E, GRUBER B D, RYAN P R, 2007. The roles of organic anion permeases in aluminium resistance and mineral nutrition[J]. FEBS Letters, 581(12): 2255-2262.
DOI URL |
[11] |
DELHAIZE E, RYAN P R, 1995. Aluminum toxicity and tolerance in plants[J]. Plant Physiology, 107(2): 315-321.
DOI URL |
[12] |
DRABEK O, MLADKOVA L, BORUVKA L, et al., 2005. Comparison of water-soluble and exchangeable forms of Al in acid forest soils[J]. Journal of Inorganic Biochemistry, 99(9): 1788-1795.
DOI URL |
[13] |
LU X K, MO J M, GUNDERSERN P, et al., 2009. Effect of simulated N deposition on soil exchangeable cations in three forest types of subtropical China[J]. Pedosphere, 19(2): 189-198.
DOI URL |
[14] |
LUCAS R W, KLAMINDER J, FUTTER M N, et al., 2011. A meta-analysis of the effects of nitrogen additions on base cations: Implications for 21 plants, soils, and streams[J]. Forest Ecology Management, 262(2): 95-104.
DOI URL |
[15] |
MA J F, FURUKAWA J, 2003. Recent progress in the research of external Al detoxification in higher plants: A minireview[J]. Journal of Inorganic Biochemistry, 97(1): 46-51.
DOI URL |
[16] |
MATÚŠ P, KUBOVÁ J, BUJDOŠ M, 2006. Free aluminium extraction from various reference materials and acid soils with relation to plant availability[J]. Talanta, 70(5): 996-1005.
DOI URL |
[17] |
NIU H, LENG Y F, RAN S M, et al., 2020. Toxicity of soil labile aluminum fractions and aluminum species in soil water extracts on the rhizosphere bacterial community of tall fescue[J]. Ecotoxicology and Environmental Safety, 187: 109828.
DOI URL |
[18] |
NOGUEIROL R C, MONTEIRO F A, AZEVEDO R A, 2015. Tropical soils cultivated with tomato: Fractionation and speciation of Al[J]. Environmental Monitoring and Assess, DOI: 10.1007/s10661-015-4366-0.
DOI |
[19] |
RYAN P R, DELHAIZE E, 2001. Aluminium tolerance in plants and the complexing role of organic acids[J]. Trends in Plant Science, 6(6): 273-278.
DOI URL |
[20] |
SCHAEDLE M, THORNTON F C, RAYNAL D J, et al., 1989. Response of tree seedlings to aluminum[J]. Tree Physiology, 5(3): 337-356.
DOI URL |
[21] | SIECINSKA J, NOSALEWICZ A, 2016. Aluminium Toxicity to Plants as Influenced by the Properties of the Root Growth Environment Affected by Other Co-Stressors: A Review[M]// In: Gunther F A, de Voogt P eds Reviews of Environmental Contamination and Toxicology Volume 243. Switzerland: Springer International Publishing. https://doi.org/10.1007/398_2016_15 . |
[22] |
SIECIŃSKAA J, WIĄCEKA D, PRZYSUCHA B, et al., 2019. Drought in acid soil increases aluminum toxicity especially of the Al-sensitive wheat[J]. Environmental and Experimental Botany, 165: 185-195.
DOI URL |
[23] |
STREET R, DRÁBEK O, SZÁKOVA J, et al., 2007. Total content and speciation of aluminium in tea leaves and tea infusions[J]. Food Chemistry, 104(4): 1662-1669.
DOI URL |
[24] |
TEKLEHAIMANOT Z, MMOLOTSI R, 2007. Contribution of red alder to soil nitrogen input in a silvopastoral system[J]. Biology and Fertility of Soils, 43: 843-848.
DOI URL |
[25] |
TESSIER A, CAMPBELL P G C, BISSON M, 1979. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 51(7): 844-851.
DOI URL |
[26] |
TIAN D S, NIU S L, 2015. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, DOI: 10.1088/ 1748-9326/10/2/024019.
DOI |
[27] |
TU L H, HU T X, ZHANG J, et al., 2013. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition[J]. PloS One, 8(10): e75862.
DOI URL |
[28] | WALNA B, SIEPAK J, DRZYMAŁA S, et al., 2005. Research on aluminium speciation in poor forest soils using the sequential extraction method[J]. Polish Journal of Environmental Studies, 14(2): 243-250. |
[29] | 陈雨芩, 陈冠陶, 梁政, 等, 2018. 10年氮添加未显著影响苦竹林土壤磷组分[J]. 生态环境学报, 27(4): 677-684. |
CHEN Y Q, CHEN G T, LIANG Z, et al., 2018. Ten-year nitrogen addition did not significantly affect soil phosphorus fractions in a Pleioblastus amarus plantation[J]. Ecology and Environmental Sciences, 27(4): 677-684. | |
[30] | 胡波, 王云琦, 王玉杰, 等, 2015. 模拟氮沉降对土壤酸化及土壤酸缓冲能力的影响[J]. 环境科学研究, 28(3): 418-424. |
HU B, WANG Y Q, WANG Y J, et al., 2015. Effects of simulated nitrogen deposition on soil acidification and soil buffering capacity[J]. Research of Environmental Sciences, 28(3): 418-424. | |
[31] | 孔晓玲, 季国亮, 1992. 我国南方土壤的酸度与交换性氢铝的关系[J]. 土壤通报, 23(5): 203-204. |
KONG X L, JI G L, 1992. Relationship between soil acidity and exchangeable hydrogen and aluminum in southern China[J]. Chinese Journal of Soil Science, 23(5): 203-204. | |
[32] | 罗承德, 1993. 森林土壤酸化及其化学研究方法[M]. 成都: 四川大学出版社: 92-102. |
LUO C D, 1993. Forest soil acidification and its characteristics[M]. Chengdu: Sichuan University Press: 92-102. | |
[33] | 森林土壤pH值的测定: LY/T 1239— 1999 [S]. |
Determination of pH value in forest soil: LY/T 1239— 1999 [S]. | |
[34] | 森林植物与森林枯枝落叶层全硅、铁、铝、钙、镁、钾、钠、磷、硫、锰、铜、锌的测定: LY/T 1270— 1999 [S]. |
Determination of total silica, iron, aluminium, calcium, magnesium, potassium, sodium, phosphorus, sulphur, manganese, copper and zinc in forest plant and forest floor: LY/T 1270— 1999 [S]. | |
[35] | 沈仁芳, 2008. 铝在土壤-植物中的行为及植物的适应机制[M]. 北京: 科学出版社: 4-6. |
SHEN R F, 2008. The behavior of aluminum in soil-plants and the mechanisms of plant adaptation[M]. Beijing: Science Press: 4-6. | |
[36] | 单文俊, 付琦, 邢亚娟, 等, 2019. 氮沉降对长白山白桦山杨天然次生林土壤微生物量碳氮和可溶性有机碳氮的影响[J]. 生态环境学报, 28(8): 1522-1530. |
SHAN W J, FU Q, XING Y J, et al., 2019. Effects of nitrogen deposition on soil microbial biomass carbon/nitrogen and dissolved organic carbon/nitrogen in natural secondary forests of Betula platyphylla and Populus davidiana in Changbai Mountains[J]. Ecology and Environmental Sciences, 28(8): 1522-1530. | |
[37] | 孙晓, 庄舜尧, 桂仁意, 等, 2013. 连续浸提法测定集约经营下雷竹林土壤铝的形态及变化[J]. 土壤通报, 44(5): 1118-1122. |
SUN X, ZHUANG S Y, GUI R Y, et al., 2013. Al Distribution in Soils Planted Lei Bamboo (Phyllostachy spraecox. Preveynalis) under Intensive Management with a Continuous Extraction Method[J]. Chinese Journal of Soil Science, 44(5): 1118-1122. | |
[38] | 涂利华, 胡庭兴, 张健, 等, 2009. 华西雨屏区苦竹林土壤酶活性对模拟氮沉降的响应[J]. 应用生态学报, 20(12): 2943-2948. |
TU L H, HU T X, ZHANG J, et al., 2009. Soil enzyme activities in a Pleioblastus amurus plantation in Rainy Area of West China under simulated nitrogen deposition[J]. Chinese Journal of Applied Ecology, 20(12):2943-2948. | |
[39] | 王平, 毕树平, 2007. 植物根际微生态区域中铝的环境行为研究进展[J]. 生态毒理学报, 2(2): 150-157. |
WANG P, BI S P, 2007. Progress in research on the environmental behaviors of aluminum in plant rizosphere[J]. Asian Journal of Ecotoxicology, 2(2): 150-157. | |
[40] | 周思婕, 王平, 张敏, 等, 2019. 酸胁迫对马尾松幼苗生长及根际铝形态的影响[J]. 应用与环境生物学报, 25(6): 1292-1300. |
ZHOU S J, WANG P, ZHANG M, et al., 2019. Effects of acid stress on growth and aluminum speciation in the rhizosphere of Masson pine (Pinus massoniana L.) seedlings[J]. Chinese Journal of Applied & Environmental Biology, 25(6): 1292-1300. |
[1] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[2] | YANG Rui, SUN Weimin, LI Yongbin, GUO Lifang, JIAO Nianyuan. Isolation, Identification and Plant Growth Promotion of Rhizosphere Phosphorus-dissolving Bacteria from Tailings Pioneer Plants [J]. Ecology and Environment, 2023, 32(1): 166-174. |
[3] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[4] | ZHAO Junyu, HUANG Xiaorui, SHI Yuanyuan, SONG Xianchong, QIN Zuoyu, TANG Jian. FTIR Characteristics of Rhizosphere Soil of Multi-generation Continuous Eucalyptus Plantation in South Subtropical Region [J]. Ecology and Environment, 2022, 31(4): 688-694. |
[5] | SONG Xianchong, CAI Xuemei, CHEN Tao, PAN Wen, SHI Yuanyuan, TANG Jian, CAO Jizhao. Variation Characteristics of Rhizosphere and Non-rhizosphere Soil Nutrient in Successive Eucalyptus Plantation [J]. Ecology and Environment, 2021, 30(9): 1814-1820. |
[6] | HAN Fang, BAO Yuanyuan, LIU Xiangyu, ZHANG Xinyong, WEI Denghui, ZHANG Haoran, TIAN Qinglong. Effects of Different Potato Rotation Patterns on Fungal Community Structure in Rhizosphere Soil [J]. Ecology and Environment, 2021, 30(7): 1412-1419. |
[7] | CHA Lijuan, ZHOU Dandan, FENG Hongjuan, ZHAO Shuyuan, FENG Kaiping. Research on the Bioaccumulation Characteristics of Two Kinds of Wild Edible Fungi to Soil Heavy Metals [J]. Ecology and Environment, 2021, 30(10): 2093-2099. |
[8] | GE Yinglan, SUN Ting. Soil Microbial Community Structure and Diversity of Potato in Rhizosphere and Non-rhizosphere Soil [J]. Ecology and Environment, 2020, 29(1): 141-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn