Ecology and Environment ›› 2021, Vol. 30 ›› Issue (6): 1293-1298.DOI: 10.16258/j.cnki.1674-5906.2021.06.021
• Research Articles • Previous Articles Next Articles
NIU Xuekui1(), WU Xueyong1,*, WANG Wei2, AI Zhimin3, WANG Shuting2, HOU Juan2, ZHOU Tao2
Received:
2021-01-08
Online:
2021-06-18
Published:
2021-09-10
Contact:
WU Xueyong
牛学奎1(), 吴学勇1,*, 王薇2, 艾志敏3, 王舒婷2, 侯娟2, 周涛2
通讯作者:
吴学勇
作者简介:
牛学奎(1985年生),男,高级工程师,博士研究生,研究方向为土壤污染防治与修复治理。E-mail: 446109388@qq.com
基金资助:
CLC Number:
NIU Xuekui, WU Xueyong, WANG Wei, AI Zhimin, WANG Shuting, HOU Juan, ZHOU Tao. Study on Enrichment Characteristics of Heavy Metals from Dominant Plants Around the Waste Slag Yard of Lead Smelting in A Typical Blast Furnace[J]. Ecology and Environment, 2021, 30(6): 1293-1298.
牛学奎, 吴学勇, 王薇, 艾志敏, 王舒婷, 侯娟, 周涛. 典型鼓风炉铅冶炼废渣堆场周边优势植物重金属富集特征研究[J]. 生态环境学报, 2021, 30(6): 1293-1298.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.06.021
种 Species | 科 Family | 样品数量 Sample size/plant |
---|---|---|
三叶鬼针草 Bidens pilosa | 菊科 Compositae | 12 |
车桑子 Dodonaea viscosa | 无患子科Sapindaceae | 11 |
夹竹桃 Nerium oleander | 夹竹桃科 Apocynaceae | 4 |
红花八角 Illicium dunnianum | 木兰科 Magnoliaceae | 4 |
凤尾蕨 Pteris cretica | 凤尾蕨科 Pteridaceae | 7 |
Table 1 Dominant plant species around the slag yard
种 Species | 科 Family | 样品数量 Sample size/plant |
---|---|---|
三叶鬼针草 Bidens pilosa | 菊科 Compositae | 12 |
车桑子 Dodonaea viscosa | 无患子科Sapindaceae | 11 |
夹竹桃 Nerium oleander | 夹竹桃科 Apocynaceae | 4 |
红花八角 Illicium dunnianum | 木兰科 Magnoliaceae | 4 |
凤尾蕨 Pteris cretica | 凤尾蕨科 Pteridaceae | 7 |
项目 Items | Cu | Cr | Zn | Pb | Cd | As | Hg | pH |
---|---|---|---|---|---|---|---|---|
红花八角 Illicium dunnianum | 120.49 | 174.56 | 466.79 | 1434.09 | 29.17 | 792.81 | 1.72 | 4.97 |
三叶鬼针草 Bidens pilosa | 126.08 | 215.98 | 520.00 | 317.03 | 19.10 | 954.93 | 18.16 | 5.61 |
凤尾蕨 Pteris cretica | 30.03 | 57.62 | 80.51 | 44.19 | 11.72 | 51.65 | 0.13 | 5.11 |
夹竹桃 Nerium oleander | 123.94 | 170.13 | 457.40 | 1284.63 | 40.40 | 1098.97 | 2.59 | 5.20 |
车桑子 Dodonaea viscosa | 272.51 | 193.29 | 328.93 | 142.92 | 7.51 | 281.56 | 0.48 | 6.12 |
最小值 Min | 30.03 | 57.62 | 80.51 | 44.19 | 7.51 | 51.65 | 0.13 | 4.97 |
最大值 Max | 272.51 | 215.98 | 520.00 | 1434.09 | 40.40 | 1098.97 | 18.16 | 6.12 |
平均值 Average value | 134.61 | 162.32 | 370.73 | 644.57 | 21.58 | 635.98 | 4.62 | ‒ |
标准差 Standard deviation | 77.90 | 54.79 | 158.11 | 592.02 | 11.94 | 401.93 | 6.83 | ‒ |
云南省土壤背景值 Soil background value in Yunnan Province | 46.30 | 65.20 | 40.60 | 89.70 | 0.22 | 18.40 | 0.06 | ‒ |
筛选值 Filter value | 18000* | 5.7* | 2000** | 800* | 65* | 60* | 38* | ‒ |
管制值 Risk control value | 36000* | 78* | 2000** | 2500* | 172* | 140* | 82* | ‒ |
Table 2 Mass fraction of heavy metals in soil around dominant plants in slag dump mg∙kg-1
项目 Items | Cu | Cr | Zn | Pb | Cd | As | Hg | pH |
---|---|---|---|---|---|---|---|---|
红花八角 Illicium dunnianum | 120.49 | 174.56 | 466.79 | 1434.09 | 29.17 | 792.81 | 1.72 | 4.97 |
三叶鬼针草 Bidens pilosa | 126.08 | 215.98 | 520.00 | 317.03 | 19.10 | 954.93 | 18.16 | 5.61 |
凤尾蕨 Pteris cretica | 30.03 | 57.62 | 80.51 | 44.19 | 11.72 | 51.65 | 0.13 | 5.11 |
夹竹桃 Nerium oleander | 123.94 | 170.13 | 457.40 | 1284.63 | 40.40 | 1098.97 | 2.59 | 5.20 |
车桑子 Dodonaea viscosa | 272.51 | 193.29 | 328.93 | 142.92 | 7.51 | 281.56 | 0.48 | 6.12 |
最小值 Min | 30.03 | 57.62 | 80.51 | 44.19 | 7.51 | 51.65 | 0.13 | 4.97 |
最大值 Max | 272.51 | 215.98 | 520.00 | 1434.09 | 40.40 | 1098.97 | 18.16 | 6.12 |
平均值 Average value | 134.61 | 162.32 | 370.73 | 644.57 | 21.58 | 635.98 | 4.62 | ‒ |
标准差 Standard deviation | 77.90 | 54.79 | 158.11 | 592.02 | 11.94 | 401.93 | 6.83 | ‒ |
云南省土壤背景值 Soil background value in Yunnan Province | 46.30 | 65.20 | 40.60 | 89.70 | 0.22 | 18.40 | 0.06 | ‒ |
筛选值 Filter value | 18000* | 5.7* | 2000** | 800* | 65* | 60* | 38* | ‒ |
管制值 Risk control value | 36000* | 78* | 2000** | 2500* | 172* | 140* | 82* | ‒ |
项目 Items | Cu | Cr | Zn | Pb | Cd | As | Hg |
---|---|---|---|---|---|---|---|
红花八角 Illicium dunnianum | 14.28 | 0.28 | 79.45 | 191.97 | 11.67 | 49.64 | 0.18 |
三叶鬼针草 Bidens pilosa | 19.69 | 0.46 | 191.71 | 355.02 | 32.72 | 89.38 | 0.79 |
凤尾蕨 Pteris cretica | 2.95 | 0.21 | 83.24 | 18.58 | 6.70 | 8.91 | 0.21 |
夹竹桃 Nerium oleander | 29.79 | 0.54 | 160.05 | 768.14 | 9.20 | 287.63 | 1.10 |
车桑子 Dodonaea viscosa | 19.42 | 0.25 | 155.80 | 302.94 | 39.51 | 77.28 | 0.66 |
最小值 Min | 2.95 | 0.21 | 79.45 | 18.58 | 6.70 | 8.91 | 0.18 |
最大值 Max | 29.79 | 0.54 | 191.71 | 768.14 | 39.51 | 287.63 | 1.10 |
平均值 Average value | 17.23 | 0.35 | 134.05 | 327.33 | 19.96 | 102.57 | 0.59 |
中位值 Median | 19.42 | 0.28 | 155.80 | 302.94 | 11.67 | 77.28 | 0.66 |
标准差 Standard deviation | 8.73 | 0.13 | 44.80 | 248.73 | 13.46 | 96.58 | 0.35 |
Table 3 Mass fraction of heavy metals in the aerial parts of dominant plants mg∙kg-1
项目 Items | Cu | Cr | Zn | Pb | Cd | As | Hg |
---|---|---|---|---|---|---|---|
红花八角 Illicium dunnianum | 14.28 | 0.28 | 79.45 | 191.97 | 11.67 | 49.64 | 0.18 |
三叶鬼针草 Bidens pilosa | 19.69 | 0.46 | 191.71 | 355.02 | 32.72 | 89.38 | 0.79 |
凤尾蕨 Pteris cretica | 2.95 | 0.21 | 83.24 | 18.58 | 6.70 | 8.91 | 0.21 |
夹竹桃 Nerium oleander | 29.79 | 0.54 | 160.05 | 768.14 | 9.20 | 287.63 | 1.10 |
车桑子 Dodonaea viscosa | 19.42 | 0.25 | 155.80 | 302.94 | 39.51 | 77.28 | 0.66 |
最小值 Min | 2.95 | 0.21 | 79.45 | 18.58 | 6.70 | 8.91 | 0.18 |
最大值 Max | 29.79 | 0.54 | 191.71 | 768.14 | 39.51 | 287.63 | 1.10 |
平均值 Average value | 17.23 | 0.35 | 134.05 | 327.33 | 19.96 | 102.57 | 0.59 |
中位值 Median | 19.42 | 0.28 | 155.80 | 302.94 | 11.67 | 77.28 | 0.66 |
标准差 Standard deviation | 8.73 | 0.13 | 44.80 | 248.73 | 13.46 | 96.58 | 0.35 |
项目(Items) | Cu | Cr | Zn | Pb | Cd | As | Hg |
---|---|---|---|---|---|---|---|
红花八角 Illicium dunnianum | 0.119 | 0.002 | 0.170 | 0.134 | 0.400 | 0.063 | 0.105 |
三叶鬼针草 Bidens pilosa | 0.156 | 0.002 | 0.369 | 1.120 | 1.731 | 0.094 | 0.044 |
凤尾蕨 Pteris cretica | 0.098 | 0.004 | 1.034 | 0.420 | 0.572 | 0.173 | 1.615 |
夹竹桃 Nerium oleander | 0.240 | 0.003 | 0.350 | 0.598 | 0.228 | 0.262 | 0.425 |
车桑子 Dodonaea viscosa | 0.071 | 0.001 | 0.474 | 2.120 | 5.261 | 0.274 | 1.375 |
Table 4 Dominant plant heavy metal bioconcentration factors
项目(Items) | Cu | Cr | Zn | Pb | Cd | As | Hg |
---|---|---|---|---|---|---|---|
红花八角 Illicium dunnianum | 0.119 | 0.002 | 0.170 | 0.134 | 0.400 | 0.063 | 0.105 |
三叶鬼针草 Bidens pilosa | 0.156 | 0.002 | 0.369 | 1.120 | 1.731 | 0.094 | 0.044 |
凤尾蕨 Pteris cretica | 0.098 | 0.004 | 1.034 | 0.420 | 0.572 | 0.173 | 1.615 |
夹竹桃 Nerium oleander | 0.240 | 0.003 | 0.350 | 0.598 | 0.228 | 0.262 | 0.425 |
车桑子 Dodonaea viscosa | 0.071 | 0.001 | 0.474 | 2.120 | 5.261 | 0.274 | 1.375 |
[1] |
ALI HAZRAT, KHAN EZZAT, SAJAD M A, 2013. Phytoremediation of heavy metals: Concepts and applications[J]. Chemosphere, 91(7): 869-881.
DOI URL |
[2] |
BAKER A J M, 2001. Accumulators and excluders-strategies in the response of plants to heavy metals[J]. Journal of Plant Nutrition, 3(1-4): 643-654.
DOI URL |
[3] |
HABIBOLLAHI, HOSSEIN MOHAMMAD, KARIMYAN, et al., 2019. Extraction and determination of heavy metals in soil and vegetables irrigated with treated municipal wastewater using new mode of dispersive liquid-liquid microextraction based on the solidified deep eutectic solvent followed by GFAAS[J]. Journal of the Science of Food Agriculture, 99(1): 656-665.
DOI URL |
[4] | SILVA MEDEIROS, FABIANO R W, EDUARDO S I, et al., 2020. Fast and effective simultaneous determination of metals in soil samples by ultrasound-assisted extraction and flame atomic absorption spectrometry: assessment of trace elements contamination in agricultural and native forest soils from Parana-Brazil[J]. Environmental Monitoring Assessment, 192(2): 11111-11115. |
[5] |
SUN L U, LIAO X Y, YAN X L, et al., 2014. Evaluation of heavy metal and polycyclic aromatic hydrocarbons accumulation in plants from typical industrial sites: potential candidate in phytoremediation for co-contamination[J]. Environmental Science Pollution Research International, 21(21): 12494-12504.
DOI URL |
[6] |
TROTTA A, FALASCHI P, CORNAE L, et al., 2006. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L.[J]. Chemosphere, 65(1): 74-81.
DOI URL |
[7] | YANG S R, DANEK TOMAS, CHENG X F, et al., 2017. Risk Assessment of Heavy Metal Pollution in Soils of Gejiu Tin Ore and Other Metal Deposits of Yunnan Province[J]. Earth and Environmental Science, 95(4): 1-6. |
[8] |
ZHANG H Z, GUO Q J, YANG J X, et al., 2014. Cadmium accumulation and tolerance of two castor cultivars in relation to antioxidant systems[J]. Journal of Environmental Sciences, 26(10): 2048-2055.
DOI URL |
[9] | 陈秋平, 胥思勤, 陈洁薇, 等, 2014. 锑矿区土壤重金属污染及植物累积特征[J]. 环境科技, 27(2): 1-4. |
CHENG Q P, XU S Q, CHEN J W, et al., 2014. The Pollution of Heavymetals in Soils and Characteristics of Plants Accumulation in Antimony Mining Area[J]. Environmental Science and Technology, 27(2): 1-4.
DOI URL |
|
[10] | 雷梅, 岳庆玲, 陈同斌, 2005. 湖南柿竹园矿区土壤重金属含量及植物吸收特征[J]. 生态学报, 25(5): 1146-1151. |
LEI M, YUE Q L, CHEN T B, 2005. Heavy metal concentrations in soils and plants around Shizhuyuan mining area of Hu'nan Province[J]. Actaecologica Sinica, 25(5): 1146-1151. | |
[11] | 李玫, 1999. 植物对金属镉的吸收及影响因素[J]. 中山大学研究生学刊: 自然科学与医学版 (2): 27-33. |
LI M, 1999. The Absorption, Allocation of Heavy Metal Cadmium in Plants and the Influencing Factors[J]. Natural Science Journal of the Graduates, Sun YAT-SEN University (2): 27-33. | |
[12] | 鲁冬梅, 李雪, 李继芬, 等, 2018. 新平县茶园核心区土壤重金属污染特征及生态风险评价[J]. 云南农业大学学报(自然科学), 33(6): 1154-1162. |
LU D M, LI X, LI J F, et al., 2018. Heavy Metal Pollution Characteristics and Ecological RiskAnalysis for Soil in Tea Core Plantations of Xinping County[J]. Journal of Yunnan Agricultural University (Natural Science), 33(6): 1154-1162. | |
[13] | 牛学奎, 吴学勇, 侯娟, 等, 2018. 典型铅冶炼鼓风炉周边土壤重金属含量及化学形态研究[J]. 四川环境, 37(4): 25-28. |
NIU X K, WU X Y, HOU J, et al., 2016. Study on Heavy Metal Content and Chemical Forms of Soil Around Typical Lead Smelting Blast Furnace[J]. Sichuan Environment, 37(4): 25-28. | |
[14] | 牛学奎, 吴学勇, 吴文卫, 等, 2019. 典型鼓风炉铅冶炼废渣重金属浸出特性及化学形态分析[J]. 环境工程, 37(10): 175-177, 184. |
NIU X K, WU X Y, WU W W, et al., 2019. Analysis of leaching characteristics and chemical speciation of heavy metals in the slag of lead smelting by blast furnace[J]. Environmental Engineering, 37(10): 175-177, 184. | |
[15] | 彭渤, 唐晓燕, 余昌训, 等, 2011. 湘江入湖河段沉积物重金属污染及其Pb同位素地球化学示踪[J]. 地质学报, 85(2): 282-299. |
PENG B, TANG X Y, XU C X, et al., 2011. Heavy Metal Contamination of Inlet Sediments of the Xiangjiang River and Pb Isotopic Geochemical Implication[J]. Acta Geologica Sinica, 85(2): 282-299. | |
[16] | 彭叶棉, 杨阳, 侯素霞, 等, 2020. 外源六价铬在土壤中的有效性及其小麦毒性效应[J]. 生态环境学报, 29(2): 369-377. |
PENG Y M, YANG Y, HOU S X, et al., 2020. The Bioavailability of Exogenous Cr(Ⅵ) in Soils and Its Toxic Effect on Wheat[J]. Ecology and Environmental Sciences, 29(2): 369-377. | |
[17] | 祁珍祯, 李延升, 孙琛, 等, 2020. 电感耦合等离子体质谱法测定金银花中6种有毒元素[J]. 化学分析计量, 29(1): 18-22. |
QI Z Z, LI Y S, SUN S, et al., 2020. Determination of six kinds of toxic elements in honeysuckle by ICP-MS[J]. Chemical Analysis and Meterage, 29(1): 18-22. | |
[18] | 秦丽, 祖艳群, 李元, 等, 2013. 会泽铅锌矿渣堆周边自然发生的植物重金属含量及累积特征研究[C]// 第五届全国农业环境科学学术研讨会论文集. 南京: 184-190. |
QIN L, ZU Y Q, LI Y, et al., 2013. Study on Heavy Metal Contents of Seven Wild Plants Occurring Naturally in the Surrounding of Huize lead-zinc Tailings Deposited[C]// Proceedings of the Fifth National Agricultural Environmental Science Symposium. Nanjing: 184-190. | |
[19] | 秦俊梅, 白中科, 2013. 安太堡露天矿不同复垦基质和植物中重金属含量及污染评价[J]. 水土保持学报, 27(1): 176-181. |
QIN J M, BAI Z K, 2013. The Content and Pollution Assessment of Heavy Metal in Reclaimed Mediums and Plants at Antaibao Opencast Mine[J]. Journal of Soil and Water Conservation, 27(1): 176-181. | |
[20] | 仇荣亮, 仇浩, 雷梅, 等, 2009. 矿山及周边地区多金属污染土壤修复研究进展[J]. 农业环境科学学报, 28(6): 1085-1091. |
QIU R L, QIU H, LEI M, et al., 2009. Advances in Research on Remediation of Multi-metal Contaminated Soil in Mine and Surrounding Area[J]. Journal of Agro-Environment Science, 28(6): 1085-1091. | |
[21] | 时宇, 冉珊珊, 黄黄, 等, 2018. 黄石国家矿山公园草本植物重金属富集能力研究[J]. 生态环境学报, 27(4): 769-775. |
SHI Y, RAN S S, HUANG H, et al., 2018. Enrichment Capability of Herbaceous Plants in Huangshi National Mine Park[J]. Ecology and Environmental Sciences, 27(4): 769-775. | |
[22] | 谭晓娟, 2009. 攀枝花钒钛矿区植被群落调查及植物金属含量分析研究[D]. 成都: 四川农业大学. |
TANG X J, 2009. An Eeological Surveyand Research of Heavy Metal Contents on Vegtation at Panzhihua Lead/Titanium Mine Area in Sichuan Province[D]. Chengdu: Sichuan Agricultural University. | |
[23] | 魏树和, 杨传杰, 周启星, 等, 2008. 三叶鬼针草等7种常见菊科杂草植物对重金属的超富集特征[J]. 环境科学, 29(10): 2912-2918. |
WEI S H, YANG C J, ZHOU Q X, et al., 2008. Hyperaccumulative Characteristics of 7 Widely Distributing Weed Species in Composite Family Especially Bidens pilosa to Heavy Metals[J]. Environmental Science, 29(10): 2912-2918. | |
[24] | 熊国焕, 黄凯, 胡若鹏, 等, 2015. 云南省铅锌冶炼行业现状及发展趋势[J]. 云南冶金, 44(4): 26-29. |
XIONG G H, HUANG K, HU R P, et al., 2015. The Industry Actuality and Development Tendency of Zinc Smelting in Yunnan Province[J]. Yunnan Metallurgy, 44(4): 26-29. | |
[25] | 徐晨茗, 鲍立宁, 张瑾, 等, 2020. 凤尾蕨对铅污染土壤的修复机理研究[J]. 安徽农业大学学报, 47(2): 99-105. |
XU C M, BAO L N, ZHANG J, et al., 2020. Study on the rehabilitation mechanism of Pteris crassipes on lead contaminated soil[J]. Journal of Anhui Agricultural University, 47(2): 99-105. | |
[26] | 张桂芹, 谭路遥, 张怀成, 等, 2020. 济南城市主干道降尘重金属污染特征及生态风险评价[J]. 生态环境学报, 29(1): 156-164. |
ZHANG G Q, TANG L Y, ZHANG H C, et al., 2020. Heavy Metal Pollution Characteristics and Ecological Risk Assessment of Dust Falling on Urban Main Road in Jinan[J]. Ecology and Environmental Sciences, 29(1): 156-164. | |
[27] | 朱光旭, 肖化云, 郭庆军, 等, 2016. 锌冶炼渣堆场优势植物的重金属累积特征研究[J]. 生态环境学报, 25(8): 1395-1400. |
ZHU G X, XIAO H Y, GUO Q J, et al., 2016. Accumulation of Heavy Metals by Dominant Plants in Zinc Smelting Slag Field[J]. Ecology and Environmental Sciences, 25(8): 1395-1400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn