Ecology and Environment ›› 2021, Vol. 30 ›› Issue (6): 1220-1228.DOI: 10.16258/j.cnki.1674-5906.2021.06.013
• Research Articles • Previous Articles Next Articles
HOU Suxia1,*(), ZHANG Jianda2, LI Jing3
Received:
2021-03-23
Online:
2021-06-18
Published:
2021-09-10
Contact:
HOU Suxia
通讯作者:
侯素霞
作者简介:
侯素霞(1981年生),女,副教授,硕士,主要从事废水与污泥处理、大气污染防治技术、土壤污染防治等方面的教学和研究。E-mail: housxhb@foxmail.com
基金资助:
CLC Number:
HOU Suxia, ZHANG Jianda, LI Jing. Analysis of Spatiotemporal Distribution and Correlation Factors of Atmospheric Pollutants in Shanghai City[J]. Ecology and Environment, 2021, 30(6): 1220-1228.
侯素霞, 张鉴达, 李静. 上海市大气污染物时空分布及其相关性因子分析[J]. 生态环境学报, 2021, 30(6): 1220-1228.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.06.013
Pollutant | Variable | VIF | Non-normalized coefficients B | t Value | Significance level |
---|---|---|---|---|---|
PM2.5 | Constant Term | 131.444 | 45.612 | 0.000 | |
CT | 1.151 | -0.090 | -1.947 | 0.052 | |
CRH | 1.195 | -0.706 | -21.102 | 0.000 | |
CAWS | 1.059 | -3.916 | -8.836 | 0.000 | |
CHV | 1.278 | -2.255 | -39.550 | 0.000 | |
PM10 | Constant Term | 195.938 | 47.554 | 0.000 | |
CT | 1.151 | 0.068 | 1.029 | 0.303 | |
CRH | 1.195 | -1.317 | -27.509 | 0.000 | |
CAWS | 1.059 | -4.801 | -7.577 | 0.000 | |
CHV | 1.278 | -2.446 | -30.008 | 0.000 | |
NO2 | Constant Term | 113.473 | 48.524 | 0.000 | |
CT | 1.151 | -0.626 | -16.739 | 0.000 | |
CRH | 1.195 | -0.301 | -11.074 | 0.000 | |
CAWS | 1.059 | -10.112 | -28.120 | 0.000 | |
CHV | 1.278 | -0.979 | -21.166 | 0.000 | |
O3 | Constant Term | 115.874 | 24.398 | 0.000 | |
CT | 1.151 | 1.716 | 22.576 | 0.000 | |
CRH | 1.195 | -1.000 | -18.120 | 0.000 | |
CAWS | 1.059 | 2.935 | 4.019 | 0.000 | |
CHV | 1.278 | -0.588 | -6.261 | 0.000 |
Table 1 Multiple linear regression models
Pollutant | Variable | VIF | Non-normalized coefficients B | t Value | Significance level |
---|---|---|---|---|---|
PM2.5 | Constant Term | 131.444 | 45.612 | 0.000 | |
CT | 1.151 | -0.090 | -1.947 | 0.052 | |
CRH | 1.195 | -0.706 | -21.102 | 0.000 | |
CAWS | 1.059 | -3.916 | -8.836 | 0.000 | |
CHV | 1.278 | -2.255 | -39.550 | 0.000 | |
PM10 | Constant Term | 195.938 | 47.554 | 0.000 | |
CT | 1.151 | 0.068 | 1.029 | 0.303 | |
CRH | 1.195 | -1.317 | -27.509 | 0.000 | |
CAWS | 1.059 | -4.801 | -7.577 | 0.000 | |
CHV | 1.278 | -2.446 | -30.008 | 0.000 | |
NO2 | Constant Term | 113.473 | 48.524 | 0.000 | |
CT | 1.151 | -0.626 | -16.739 | 0.000 | |
CRH | 1.195 | -0.301 | -11.074 | 0.000 | |
CAWS | 1.059 | -10.112 | -28.120 | 0.000 | |
CHV | 1.278 | -0.979 | -21.166 | 0.000 | |
O3 | Constant Term | 115.874 | 24.398 | 0.000 | |
CT | 1.151 | 1.716 | 22.576 | 0.000 | |
CRH | 1.195 | -1.000 | -18.120 | 0.000 | |
CAWS | 1.059 | 2.935 | 4.019 | 0.000 | |
CHV | 1.278 | -0.588 | -6.261 | 0.000 |
[1] | ABDULLAH S, NAPI N N L M, AHMED A N, et al., 2020. Development of Multiple Linear Regression for Particulate Matter (PM10) Forecasting during Episodic Transboundary Haze Event in Malaysia[J]. Atmosphere, 11(3): 1-14. |
[2] |
BASHIR M F, MA B J, BILAL, et al., 2020. Correlation between environmental pollution indicators and COVID-19 pandemic: A brief study in Californian context[J]. Environmental Research, 187: 109652.
DOI URL |
[3] |
BROOK R D, RAJAGOPALAN S, POPE C A, et al., 2010. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association[J]. Circulation, 121(21): 2331-78.
DOI URL |
[4] |
CHAKRABORTY P, JAYACHANDRAN S, PADALKAR P, et al., 2020. Exposure to Nitrogen Dioxide (NO2) from Vehicular Emission Could Increase the COVID-19 Pandemic Fatality in India: A Perspective[J]. Bulletin of Environmental Contamination and Toxicology, 105(2): 198-204.
DOI URL |
[5] |
CHOUBIN B, ABDOLSHAHNEJAD M, MORADI E, et al., 2020. Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2019.134474.
DOI |
[6] |
COHEN A J, BRAUER M, BURNETT R, et al., 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015[J]. The Lancet, 389(10082): 1907-1918.
DOI URL |
[7] |
CONTICINI E, FREDIANI B, CARO D, 2020. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?[J]. Environment Pollution, DOI: 10.1016/j.envpol.2020.114465.
DOI |
[8] |
DE MARCO A, PPOIETTI C, ANAV A, et al., 2019. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy[J]. Environment International, 125: 320-333.
DOI URL |
[9] |
DEDOUSSI I C, EASTHAM S D, MONIER E, et al., 2020. Premature mortality related to United States cross-state air pollution[J]. Nature, 578(7794): 261-265.
DOI URL |
[10] |
LI X, WANG Y T, ZHOU H C, et al., 2020. Has China's war on pollution reduced employment? Quasi-experimental evidence from the Clean Air Action[J]. Journal of Environmental Management, DOI: 10.1016/j.jenvman.2019.109851.
DOI |
[11] |
LIAO K, PARK E S, ZHANG J, et al., 2021. A multiple linear regression model with multiplicative log-normal error term for atmospheric concentration data[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2020.144282.
DOI |
[12] |
LIU J, HAN Y Q, TANG X, et al., 2016. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network[J]. Science of the Total Environment, 568: 1253-1262.
DOI URL |
[13] |
LIU N, ZHOU S, LIU C S, et al., 2019. Synoptic circulation pattern and boundary layer structure associated with PM2.5 during wintertime haze pollution episodes in Shanghai[J]. Atmospheric Research, 228: 186-195.
DOI URL |
[14] |
SAEZ M, TOBIAS A, BARCELO M A, 2020. Effects of long-term exposure to air pollutants on the spatial spread of COVID-19 in Catalonia, Spain[J]. Environmental Research, DOI: 10.1016/j.envres.2020.110177.
DOI |
[15] |
SHINDELL D, SMITH C J, 2019. Climate and air-quality benefits of a realistic phase-out of fossil fuels[J]. Nature, 573(7774): 408-411.
DOI URL |
[16] |
UENO H, TSUNEMATSU N, 2019. Sensitivity of ozone production to increasing temperature and reduction of precursors estimated from observation data[J]. Atmospheric Environment, DOI: 10.1016/j.atmosenv.2019.116818.
DOI |
[17] |
WALLACE J, KANAROGLOU P, 2009. The effect of temperature inversions on ground-level nitrogen dioxide (NO2) and fine particulate matter (PM2.5) using temperature profiles from the Atmospheric Infrared Sounder (AIRS)[J]. Science of the Total Environment, 407(18): 5085-5095.
DOI URL |
[18] |
XIE Y Y, ZHAO B, ZHANG L, et al., 2015. Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3[J]. Particuology, 20: 141-149.
DOI URL |
[19] |
ZHANG S, LI D P, GE S S, et al., 2021. Rapid sulfate formation from synergetic oxidation of SO2 by O3 and NO2 under ammonia-rich conditions: Implications for the explosive growth of atmospheric PM2.5during haze events in China[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2020.144897.
DOI |
[20] | ZHAO R, GU X X, XUE B, et al., 2018. Short period PM2.5 prediction based on multivariate linear regression model[J]. PLoS One, 13(7): 1-15. |
[21] | 陈兵红, 靳全锋, 柴红玲, 等, 2021. 浙江省大气PM2.5时空分布及相关因子分析[J]. 环境科学学报, 41(3): 817-829. |
CHEN H B, JIN Q F, CHAI H L, et al., 2021. Spatiotemporal distribution and correlation factors of PM2.5 concetrations in Zhejiang Province[J]. Acta Scientiae Circumstantiae, 41(3): 817-829. | |
[22] | 郭云, 蒋玉丹, 黄炳昭, 等, 2021. 我国大气PM2.5及O3导致健康效益现状分析及未来10年预测[J]. 环境科学研究, 34(4): 1024-1031. |
GUO Y, JIANG Y D, HUANG B Z, et al., 2021. Health impact of PM2.5 and O3 and forecasts for next 10 years in China[J]. Research of Environmental Sciences, 34(4): 1024-1031. | |
[23] | 沈楠驰, 周丙锋, 李珊珊, 等, 2020. 2015—2019年天津市大气污染物时空变化特征及成因分析[J]. 生态环境学报, 29(9): 1862-1863. |
SHEN N H, ZHOU B F, LI S S, et al., 2020. Temporal and Spatial Variation Characteristics and Origin Analysis of Air Pollutants in Tianjin from 2015 to 2019 [J]. Ecology and Environmental Sciences, 29(9): 1862-1863. | |
[24] | 武晓红, 宋丽红, 李秋玲, 等, 2021. 太原市城区大气PM2.5和PM10时空分布特征[J]. 生态环境学报, 30(4): 756-762. |
WU X H, SONG L H, LI Q L, et al., 2021. Characteristics of Temporal and Spatial Distribution of Atmospheric PM2.5 and PM10 in Urban Taiyuan, China[J]. Ecology and Environmental Sciences, 30(4): 756-762. | |
[25] | 叶延琼, 汪晶, 章家恩, 2019. 广东省大气环境质量的时空分布特征[J]. 生态环境学报, 28(7): 1404-1405. |
YE Y Q, WANG J, ZHANG J E, 2019. Temporal and Spatial Distribution Characteristics of Atmospheric Environmental Quality in Guangdong Province[J]. Ecology and Environmental Sciences, 28(7): 1404-1405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn