Ecology and Environment ›› 2024, Vol. 33 ›› Issue (12): 1827-1836.DOI: 10.16258/j.cnki.1674-5906.2024.12.001
• Research Article [Ecology] • Next Articles
WEI Yu(), HU Ying, LI Xiaozhen, LIAO Jiapei, FU Ruiyu, HU Zhongmin, YANG Yue*(
)
Received:
2024-09-30
Online:
2024-12-18
Published:
2024-12-31
Contact:
YANG Yue
韦钰(), 胡颖, 李小珍, 廖家培, 付瑞玉, 胡中民, 杨岳*(
)
通讯作者:
杨岳
作者简介:
韦钰(2000年生),女,硕士研究生,研究方向为全球变化生态学。E-mail: weiyu@hainanu.edu.cn
基金资助:
CLC Number:
WEI Yu, HU Ying, LI Xiaozhen, LIAO Jiapei, FU Ruiyu, HU Zhongmin, YANG Yue. Spatial Pattern of Net Primary Productivity and Asymmetric Response of Precipitation in Global Grassland Ecosystems[J]. Ecology and Environment, 2024, 33(12): 1827-1836.
韦钰, 胡颖, 李小珍, 廖家培, 付瑞玉, 胡中民, 杨岳. 全球草地生态系统净初级生产力的空间格局及降水非对称响应[J]. 生态环境学报, 2024, 33(12): 1827-1836.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.12.001
缩写 | 环境因子 | 数据来源 |
---|---|---|
MAP | 年平均降水 | Worldclim ( 空间分辨率0.05° |
MAT | 年平均温度 | |
SRAD | 太阳辐射 | |
TMAX | 最高温度 | |
TMIN | 最低温度 | |
VPD | 饱和水汽压差 | |
BD | 土壤容重 | Harmonized World Soil-Database ( 空间分辨率0.05° |
Clay | 黏粒含量 | |
OC | 土壤有机碳 | |
pH | 土壤酸碱度 | |
Sand | 砂粒含量 | |
Silt | 粉粒含量 | |
SWC | 土壤含水量 |
Table 1 Environmental factors and data sources
缩写 | 环境因子 | 数据来源 |
---|---|---|
MAP | 年平均降水 | Worldclim ( 空间分辨率0.05° |
MAT | 年平均温度 | |
SRAD | 太阳辐射 | |
TMAX | 最高温度 | |
TMIN | 最低温度 | |
VPD | 饱和水汽压差 | |
BD | 土壤容重 | Harmonized World Soil-Database ( 空间分辨率0.05° |
Clay | 黏粒含量 | |
OC | 土壤有机碳 | |
pH | 土壤酸碱度 | |
Sand | 砂粒含量 | |
Silt | 粉粒含量 | |
SWC | 土壤含水量 |
[1] | ALBERT J S, CARNAVAL A C, FLANTUA S G A, et al., 2023. Human impacts outpace natural processes in the Amazon[J]. Science, 379(6630): eabo5003. |
[2] |
BAI Y F, COTRUFO M F, 2022. Grassland soil carbon sequestration: Current understanding, challenges, and solutions[J]. Science, 377(6606): 603-608.
DOI PMID |
[3] | BELNAP J, WELTER J R, GRIMM N B, et al., 2005. Linkages between microbial and hydrologic processes in arid and semiarid watersheds[J]. Ecology, 86(2): 298-307. |
[4] | BOUMA T J, BRYLA D R, 2000. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations[J]. Plant and Soil, 227(1): 215-221. |
[5] | BROCKETT B F T, PRESCOTT C E, GRAYSTON S J, 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology and Biochemistry, 44(1): 9-20. |
[6] | CUI J X, WANG Y, D ZHOU T, et al., 2022. Temperature Mediates the Dynamic of MODIS NPP in Alpine Grassland on the Tibetan Plateau, 2001-2019[J]. Remote Sensing, 14(10): 2401. |
[7] | DONG G Y, FAN L, FENSHOLT R, et al., 2023. Asymmetric response of primary productivity to precipitation anomalies in Southwest China[J]. Agricultural and Forest Meteorology, 331: 109350. |
[8] | FENG S, FU Q, 2013. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics, 13(19): 10081-10094. |
[9] | FERNÁNDEZ R J, 2007. On the frequent lack of response of plants to rainfall events in arid areas[J]. Journal of Arid Environments, 68(4): 688-691. |
[10] |
FITTER A H, GRAVES J D, SELF G K, et al., 1998. Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation[J]. Oecologia, 114(1): 20-30.
DOI PMID |
[11] |
GU F X, ZHANG Y D, HUANG M, et al., 2017. Effects of climate warming on net primary productivity in China during 1961-2010[J]. Ecology and Evolution, 7(17): 6736-6746.
DOI PMID |
[12] |
HAVERD V, AHLSTRÖM A, SMITH B, et al., 2017. Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall[J]. Global Change Biology, 23(2): 793-800.
DOI PMID |
[13] | HULME M, 1996. Recent climatic change in the world’s drylands[J]. Geophysical Research Letters, 23(1): 61-64. |
[14] | JAMAN Md S, YU Q, XU C, et al., 2024. Chronic drought decreased organic carbon content in topsoil greater than intense drought across grasslands in Northern China[J]. Geoderma, 443: 116832. |
[15] | LI T, LI M Y, REN F, et al., 2022. Estimation and Spatio-Temporal Change Analysis of NPP in Subtropical Forests: A Case Study of Shaoguan, Guangdong, China[J]. Remote Sensing, 14(11): 2541. |
[16] | LIU Y Y, YANG Y, WANG Q, et al., 2019. Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient[J]. Science of The Total Environment, 652: 671-682. |
[17] | MORTIMORE M, ANDERSON S, COTULA L, et al., 2009. Dryland opportunities: a new paradigm for people, ecosystems and development[M]. IUCN, Gland, Switzerland; IIED, London, UK; UNDP/DDC, Nairobi, Kenya: 10. |
[18] |
MULLER B, PANTIN F, GÉNARD M, et al., 2011. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs[J]. Journal of Experimental Botany, 62(6): 1715-1729.
DOI PMID |
[19] | NAZIR F, PETER P, GUPTA R, et al., 2024. Plant hormone ethylene: A leading edge in conferring drought stress tolerance[J]. Physiologia Plantarum, 176(1): e14151. |
[20] | RISHMAWI K, PRINCE S D, XUE Y, 2016. Vegetation responses to climate variability in the northern arid to sub-humid zones of Sub-Saharan Africa[J]. Remote Sensing, 8(11): 910. |
[21] | ROBY M C, SCOTT R L, MOORE D J P, 2020. High vapor pressure deficit decreases the productivity and water use efficiency of rain‐induced pulses in semiarid ecosystems[J]. Journal of Geophysical Research: Biogeosciences, 125(10): e2020JG005665. |
[22] | SHENG J Y, LI B Y, GAO D X, et al., 2020. Response of ecoenzymatic stoichiometry to soil physicochemical properties after afforestation on loess hilly region[J]. Eurasian Soil Science, 53(11): 1669-1675. |
[23] | STEVENS C J, LIND E M, HAUTIER Y, et al., 2015. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide[J]. Ecology, 96(6): 1459-1465. |
[24] | WANG M J, LIU G, SUN R, et al., 2019. Assessment of NPP dynamics and the responses to climate changes in China from 1982 to 2012 [C/OL]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium: 6602-6605. |
[25] |
WILCOX K R, SHI Z, GHERARDI L A, et al., 2017. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments[J]. Global Change Biology, 23(10): 4376-4385.
DOI PMID |
[26] | XU H J, WANG X P, 2016. Effects of altered precipitation regimes on plant productivity in the arid region of northern China[J]. Ecological Informatics, 31: 137-146. |
[27] |
XU X, SHERRY R A, NIU S L, et al., 2013. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie[J]. Global Change Biology, 19(9): 2753-2764.
DOI PMID |
[28] | YAN Y C, LIU X P, WEN Y Y, et al., 2019. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China[J]. Ecological Indicators, 103: 542-553. |
[29] | YUE D X, ZHOU Y Y, GUO J J, 2022. Relationship between net primary productivity and soil water content in the Shule River Basin[J]. CATENA, 208: 105770. |
[30] | ZHANG L, XIAO J F, ZHENG Y, et al., 2020. Increased carbon uptake and water use efficiency in global semi-arid ecosystems[J]. Environmental Research Letters, 15(3): 034022. |
[31] | ZHANG X N, NIAN L L, LIU X Y, et al., 2022. Spatial-temporal correlations between soil pH and NPP of grassland ecosystems in the Yellow River Source Area, China[J]. International Journal of Environmental Research and Public Health, 19(14): 8852. |
[32] | ZHANG Y, CAI M Y, XIAO X M, et al., 2024. Immediate and lagged vegetation responses to dry spells revealed by continuous solar-induced chlorophyll fluorescence observations in a tall-grass prairie[J]. Remote Sensing of Environment, 305: 114080. |
[33] | ZHANG Z Y, JU W M, ZHOU Y L, 2021. The effect of water stress on net primary productivity in northwest China[J]. Environmental Science and Pollution Research, 28(46): 65885-65898. |
[34] | ZHAO J X, LUO T X, WEI H X, et al., 2019. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe[J]. Agricultural and Forest Meteorology, 279: 107761. |
[35] |
ZHAO M S, RUNNING S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 329(5994): 940-943.
DOI PMID |
[36] | 朴世龙, 方精云, 郭庆华, 2001. 1982-1999年我国植被净第一性生产力及其时空变化[J]. 北京大学学报(自然科学版), 37(4): 563-569. |
PIAO S L, FANG J Y, GUO Q H, et al., 2001. Terrestrial net primary production and its spatio-temporal patterns in China during 1982-1999[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(4): 563-569. | |
[37] | 徐勇, 卢云贵, 戴强玉, 等, 2023. 气候变化和土地利用变化对长江中下游地区植被NPP变化相对贡献分析[J]. 中国环境科学, 43(9): 4988-5000. |
XU Y, LU Y G, DAI Q Y, et al., 2023. Assessment of the relative contribution of climate change and land use change on net primary productivity variation in the middle and lower reaches of the Yangtze River Basin[J]. China Environmental Science, 43(9): 4988-5000. | |
[38] | 杨涵, 吴凯, 陈甲豪, 等, 2024. 2000-2018年海南岛NPP时空变化及气候驱动力[J]. 遥感信息, 39(2): 164-172. |
YANG H, WU K, CHEN J H, et al., 2024. Spatiotemporal variability and climatic drivers of net primary productivity on Hainan Island during 2000-2018[J]. Remote Sensing Information, 39(2): 164-172. | |
[39] |
朱士华, 艳燕, 邵华, 等, 2017. 1980-2014年中亚地区植被净初级生产力对气候和CO2变化的响应[J]. 自然资源学报, 32(11): 1844-1856.
DOI |
ZHU S H, YAN Y, SHAO H, et al., 2017. The responses of the net primary productivity of the dryland ecosystems in Central Asia to the CO2 and climate change during the past 35years[J]. Journal of Natural Resources, 32(11): 1844-1856. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn