Ecology and Environment ›› 2024, Vol. 33 ›› Issue (11): 1686-1695.DOI: 10.16258/j.cnki.1674-5906.2024.11.003
• Papers on Carbon Cycling and Carbon Emission Reduction • Previous Articles Next Articles
LI Tian(), MIAO Shujie, YU Jie, ZHAO Yudie, QIAO Yunfa*(
)
Received:
2024-08-17
Online:
2024-11-18
Published:
2024-12-06
Contact:
QIAO Yunfa
通讯作者:
乔云发
作者简介:
李天(1999年生),男,硕士研究生,从事土壤碳周转研究。E-mail: leetian1999@163.com
基金资助:
CLC Number:
LI Tian, MIAO Shujie, YU Jie, ZHAO Yudie, QIAO Yunfa. The Influence of Litter C/N Ratios on Soil Organic Carbon Mineralization[J]. Ecology and Environment, 2024, 33(11): 1686-1695.
李天, 苗淑杰, 余洁, 赵玉蝶, 乔云发. 凋落物C/N对土壤有机碳矿化的影响[J]. 生态环境学报, 2024, 33(11): 1686-1695.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.11.003
土壤 | pH | 土壤有机碳质量分数/(g·kg-1) | 土壤全氮质量分数/(g·kg-1) | 土壤全磷质量分数/(g·kg-1) | 碳氮比 |
---|---|---|---|---|---|
低肥力土 (LF) | 5.35±0.01a | 23.39±0.27b | 2.53±0.04b | 0.82±0.03b | 9.25±0.05a |
高肥力土 (HF) | 5.28±0.01a | 41.46±0.85a | 4.42±0.05a | 1.01±0.00a | 9.38±0.15a |
Table 1 Physical and chemical properties of low- and high-fertility soils
土壤 | pH | 土壤有机碳质量分数/(g·kg-1) | 土壤全氮质量分数/(g·kg-1) | 土壤全磷质量分数/(g·kg-1) | 碳氮比 |
---|---|---|---|---|---|
低肥力土 (LF) | 5.35±0.01a | 23.39±0.27b | 2.53±0.04b | 0.82±0.03b | 9.25±0.05a |
高肥力土 (HF) | 5.28±0.01a | 41.46±0.85a | 4.42±0.05a | 1.01±0.00a | 9.38±0.15a |
编号 | 凋落物种类 | 碳质量分数/(g·kg-1) | 氮质量分数/(g·kg-1) | 磷质量分数/(g·kg-1) | 碳氮比 |
---|---|---|---|---|---|
CN1 | 水稻地上部 Shoot of Oryza sativa L. | 293.70±2.54c | 25.19±0.19a | 2.97±0.19a | 11.66±0.17e |
CN2 | 水稻根 Root of Oryza sativa L. | 261.07±5.79d | 16.24±0.12c | 2.56±0.06b | 16.08±0.34d |
CN3 | 小麦地上部 Shoot of Triticum aestivum L. | 355.33±1.73b | 19.92±0.17b | 1.87±0.03c | 17.85±0.22d |
CN4 | 小麦根 Root of Triticum aestivum L. | 332.74±4.90b | 13.36±0.46d | 0.71±0.01e | 24.99±1.25c |
CN5 | 山油柑 Acronychia pedunculata (L.) Miq. | 337.81±7.10b | 12.16±0.07e | 2.35±0.11b | 27.77±0.53c |
CN6 | 厚壳桂 Cryptocarya chinensis (Hance) Hemsl. | 418.44±3.20a | 11.69±0.21e | 1.27±0.01d | 35.81±0.87b |
CN7 | 木荷 Schima superba Gardner & Champ. | 399.36±6.52a | 9.47±0.04f | 1.17±0.04d | 42.15±0.50a |
Table 2 Physical and chemical properties of litters
编号 | 凋落物种类 | 碳质量分数/(g·kg-1) | 氮质量分数/(g·kg-1) | 磷质量分数/(g·kg-1) | 碳氮比 |
---|---|---|---|---|---|
CN1 | 水稻地上部 Shoot of Oryza sativa L. | 293.70±2.54c | 25.19±0.19a | 2.97±0.19a | 11.66±0.17e |
CN2 | 水稻根 Root of Oryza sativa L. | 261.07±5.79d | 16.24±0.12c | 2.56±0.06b | 16.08±0.34d |
CN3 | 小麦地上部 Shoot of Triticum aestivum L. | 355.33±1.73b | 19.92±0.17b | 1.87±0.03c | 17.85±0.22d |
CN4 | 小麦根 Root of Triticum aestivum L. | 332.74±4.90b | 13.36±0.46d | 0.71±0.01e | 24.99±1.25c |
CN5 | 山油柑 Acronychia pedunculata (L.) Miq. | 337.81±7.10b | 12.16±0.07e | 2.35±0.11b | 27.77±0.53c |
CN6 | 厚壳桂 Cryptocarya chinensis (Hance) Hemsl. | 418.44±3.20a | 11.69±0.21e | 1.27±0.01d | 35.81±0.87b |
CN7 | 木荷 Schima superba Gardner & Champ. | 399.36±6.52a | 9.47±0.04f | 1.17±0.04d | 42.15±0.50a |
[1] |
AVERILL C, HAWKES C V, 2016. Ectomycorrhizal fungi slow soil carbon cycling[J]. Ecology Letters, 19(8): 937-947.
DOI PMID |
[2] | BASTIDA F, ELDRIDGE D J, GARCIA C, et al., 2021. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes[J]. The ISME Journal, 15(7): 2081-2091. |
[3] | BLAGODATSKAYA E, KUZYAKOV Y, 2013. Active microorganisms in soil: Critical review of estimation criteria and approaches[J]. Soil Biology and Biochemistry, 67: 192-211. |
[4] | CHAO L, LIU Y, FRESCHET G T, et al., 2019. Litter carbon and nutrient chemistry control the magnitude of soil priming effect[J]. Functional Ecology, 33(5): 876-888. |
[5] | FONTAINE S, HENAULT C, AAMOR A, et al., 2011. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect[J]. Soil Biology and Biochemistry, 43(1): 86-96. |
[6] | GIARDINA C P, RYAN M G, HUBBARD R M, et al., 2001. Tree species and soil textural controls on carbon and nitrogen mineralization rates[J]. Soil Science Society of America Journal, 65(4): 1272-1279. |
[7] | HART S C, NASON G E, MYROLD D D, et al., 1994. Dynamics of gross nitrogen transformations in an old-growth forest: The carbon connection[J]. Ecology, 75(4): 880-891. |
[8] | KUZYAKOV Y, BOL R, 2006. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar[J]. Soil Biology and Biochemistry, 38(4): 747-758. |
[9] | LENKA S, TRIVEDI P, SINGH B, et al., 2019. Effect of crop residue addition on soil organic carbon priming as influenced by temperature and soil properties[J]. Geoderma, 347: 70-79. |
[10] | LI C, XIAO C W, LI M X, et al., 2023. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 432: 116385. |
[11] |
LIN J J, ZHU B, CHENG W X, 2015. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon[J]. Global Change Biology, 21(12): 4602-4612.
DOI PMID |
[12] | MORETTO A S, DISTEL R A, DIDONE N G, 2001. Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland[J]. Applied Soil Ecology, 18(1): 31-37. |
[13] | RASUL M, CHO J W, SHIN H S, et al., 2022. Biochar-induced priming effects in soil via modifying the status of soil organic matter and microflora: A review[J]. Science of The Total Environment, 805: 150304. |
[14] | SCHLESINGER W H, 1977. Carbon balance in terrestrial detritus[J]. Annual Review of Ecology and Systematics, 8(1): 51-81. |
[15] | SIX J, FREY S D, THIET R K, et al., 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems[J]. Soil Science Society of America Journal, 70(2): 555-569. |
[16] | SOONG J L, MARANON-JIMENEZ S, COTRUFO M F, et al., 2018. Soil microbial CNP and respiration responses to organic matter and nutrient additions: Evidence from a tropical soil incubation[J]. Soil Biology and Biochemistry, 122: 141-149. |
[17] | TORRES I F, BASTIDA F, HERNANDEZ T, et al., 2014. The role of lignin and cellulose in the carbon-cycling of degraded soils under semiarid climate and their relation to microbial biomass[J]. Soil Biology and Biochemistry, 75: 152-160. |
[18] | WANG Q K, HE T X, LIU J, 2016. Litter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils[J]. Scientific Reports, 6(1): 33814. |
[19] | XU X, ZHOU Y, RUAN H H, et al., 2010. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China[J]. Soil Biology and Biochemistry, 42(10): 1811-1815. |
[20] |
陈甜, 元方慧, 张琳梅, 等, 2022. 不同化学性质叶凋落物添加对土壤有机碳矿化及激发效应的影响[J]. 应用生态学报, 33(10): 2602-2610.
DOI |
CHEN T, YUAN F H, ZHANG L M, et al., 2022. Effects of addition of leaf litter with different chemical properties on soil organic carbon mineralization and priming effect[J]. Chinese Journal of Applied Ecology, 33(10): 2602-2610.
DOI |
|
[21] | 黄锦学, 熊德成, 刘小飞, 等, 2017. 增温对土壤有机碳矿化的影响研究综述[J]. 生态学报, 37(1): 12-24. |
HUANG J X, XIONG D C, LIU X F, et al., 2017. Effects of warming on soil organic carbon mineralization: A review[J]. Acta Ecologica Sinica, 37(1): 12-24. | |
[22] | 李梦娇, 陈甜, 洪小敏, 等, 2021. 不同化学结构外源碳添加对红壤和沙土有机碳矿化动态的影响[J]. 生态学杂志, 40(6): 1609-1617. |
LI M J, CHEN T, HONG X M, et al., 2021. Effects of adding exogenous carbon with different chemical structure on the dynamics of organic carbon mineralization in red and sandy soils[J]. Chinese Journal of Ecology, 40(6): 1609-1617.
DOI |
|
[23] |
梁鑫, 韩亚峰, 郑柯, 等, 2023. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 32(9): 1615-1622.
DOI |
LIANG X, HAN Y F, ZHENG K, et al., 2023. Effects of Fe3O4 on soil carbon mineralization in paddy field[J]. Ecology and Environmental Sciences, 32(9): 1615-1622. | |
[24] | 刘金炜, 张文菊, 邬磊, 等, 2020. 长期施肥条件下红壤有机碳矿化对温度变化模式的响应[J]. 中国土壤与肥料 (2): 10-16. |
LIU J W, ZHANG W J, WU L, et al., 2020. Response of organic carbon mineralization to temperature changing pattern under long-term fertilization in red Soil[J]. Soil and Fertilizer Sciences in China (2): 10-16. | |
[25] | 刘四义, 梁爱珍, 杨学明, 等, 2015. 不同部位玉米秸秆对两种质地黑土CO2排放和微生物量的影响[J]. 环境科学, 36(7): 2686-2694. |
LIU S Y, LIANG A Z, YANG X M, et al., 2015. Effects of different residue part inputs of corn straws on CO2 efflux and microbial biomass in clay loam and sandy loam black soils[J]. Environmental Science, 36(7): 2686-2694. | |
[26] |
裴蓓, 高国荣, 2018. 凋落物分解对森林土壤碳库影响的研究进展[J]. 中国农学通报, 34(26): 58-64.
DOI |
PEI B, GAO G R, 2018. Impact of forest litter decomposition on soil carbon pool: A review[J]. Chinese Agricultural Science Bulletin, 34(26): 58-64.
DOI |
|
[27] | 彭少麟, 刘强, 2002. 森林凋落物动态及其对全球变暖的响应[J]. 生态学报, 22(9): 1534-1544. |
PENG S L, LIU Q, 2002. The dynamics of forest litter and Its responses to global warming[J]. Acta Ecologica Sinica, 22(9): 1534-1544. | |
[28] |
秦文宽, 张秋芳, 敖古凯麟, 等, 2024. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 48(4): 403-415.
DOI |
QIN W K, ZHANG Q F, AO G K L, et al., 2024. Responses and mechanisms of soil organic carbon dynamics to warming: A review[J]. Chinese Journal of Plant Ecology, 48(4): 403-415. | |
[29] | 史方颖, 张风宝, 杨明义, 2022. 基于文献计量分析的土壤有机碳矿化研究进展与热点[J]. 土壤学报, 59(2): 381-392. |
SHI F Y, ZHANG F B, YANG M Y, 2022. Research hotspots and progress of soil organic carbon mineralization based on bibliometrics method[J]. Acta Pedologica Sinica, 59(2): 381-392. | |
[30] | 史学军, 潘剑君, 陈锦盈, 等, 2009. 不同类型凋落物对土壤有机碳矿化的影响[J]. 环境科学, 30(6): 1832-1837. |
SHI X J, PAN J J, CHEN J Y, et al., 2009. Effects of different types of litters on soil organic carbon mineralization[J]. Environmental Science, 30(6): 1832-1837. | |
[31] |
宋珂辰, 王国会, 许冬梅, 等, 2021. 不同封育年限荒漠草原土壤有机碳矿化及温度敏感性[J]. 生态环境学报, 30(3): 453-459.
DOI |
SONG K C, WANG G H, XU D M, et al., 2021. Soil organic carbon mineralization and its temperature sensitivity in desert steppe with different enclosure ages[J]. Ecology and Environmental Sciences, 30(3): 453-459. | |
[32] |
田玉强, 陈颖, 欧阳胜男, 等, 2020. 外源性碳氮添加对北方半干旱草原土壤有机质矿化的影响[J]. 生态环境学报, 29(6): 1101-1108.
DOI |
TIAN Y Q, CHEN Y, OUYANG S N, et al., 2020. The Effect of carbon and nitrogen addition on soil organic matter mineralization in the semi-arid grassland of north China[J]. Ecology and Environmental Sciences, 29(6): 1101-1108. | |
[33] | 王丹, 吕瑜良, 徐丽, 等, 2013. 水分和温度对若尔盖湿地和草甸土壤碳矿化的影响[J]. 生态学报, 33(20): 6436-6443. |
WANG D, LÜ Y L, XU L, et al., 2013. The effect of moisture and temperature on soil C mineralization in wetland and steppe of the Zoige region, China[J]. Acta Ecologica Sinica, 33(20): 6436-6443. | |
[34] | 王永慧, 杨殿林, 红雨, 等, 2019. 不同地力玉米田土壤有机碳矿化特征[J]. 农业环境科学学报, 38(3): 590-599. |
WANG Y H, YANG D L, HONG Y, et al., 2019. Characteristics of soil organic carbon mineralization in the soil of maize fields with different soil fertility[J]. Journal of Agro-Environment Science, 38(3): 590-599. | |
[35] | 吴庆标, 王效科, 欧阳志云, 2006. 活性有机碳含量在凋落物分解过程中的作用[J]. 生态环境, 15(6): 1295-1299. |
WU Q B, WANG X K, OUYANG Z Y, 2006. Effects of labile organic carbon on the litters decomposition process[J]. Ecology and Environment, 15(6): 1295-1299. | |
[36] | 元方慧, 应宇馨, 陈子亮, 等, 2024. 不同培养温度下杉木叶凋落物添加对土壤CO2释放及激发效应的影响[J]. 生态学杂志, 43(4): 993-999. |
YUAN F H, YING Y X, CHEN Z L, et al., 2024. Effects of Chinese fir leaf litter addition on soil CO2 release and priming effect under different incubation temperatures[J]. Chinese Journal of Ecology, 43(4): 993-999. | |
[37] | 张薇, 王子芳, 王辉, 等, 2007. 土壤水分和植物残体对紫色水稻土有机碳矿化的影响[J]. 植物营养与肥料学报, 13(6): 1013-1019. |
ZHANG W, WANG Z F, WANG H, et al., 2007. Organic carbon mineralization affected by water content and plant residues in purple paddy soil[J]. Plant Nutrition and Fertilizer Science, 13(6): 1013-1019. | |
[38] | 张迎春, 王萍, 刘亚龙, 等, 2024. 长期种植作物对中国农田土壤有机碳影响的Meta分析[J]. 土壤学报, 61(6): 1628-1638. |
ZHANG Y C, WANG P, LIU Y L, et al., 2024. Effects of long-term crop cultivation on soil organic carbon in China’s farmland: A meta-analysis[J]. Acta Pedologica Sinica, 61(6): 1628-1638. | |
[39] | 朱灵, 张梦瑶, 高永恒, 2020. 高寒草原土壤有机碳矿化对水氮添加的响应[J]. 水土保持通报, 40(1): 30-37. |
ZHU L, ZHANG M Y, GAO Y H, 2020. Response of soil organic carbon mineralization to water and nitrogen addition in alpine steppe[J]. Bulletin of Soil and Water Conservation, 40(1): 30-37. |
[1] | LI Yanlin, CHEN Yangyang, YANG Shuangrong, LIU Jumei. Study on the Effects of Organic Acids in Plant Root Exudates on Soil Organic Carbon and Nitrogen Mineralization [J]. Ecology and Environment, 2024, 33(9): 1362-1371. |
[2] | GONG Lingxuan, WANG Lili, ZHAO Jianning, LIU Hongmei, YANG Dianlin, ZHANG Guilong. Effects of Different Cover Crop Patterns on Soil Physicochemical Properties and Organic Carbon Mineralization in Tea Gardens [J]. Ecology and Environment, 2022, 31(6): 1141-1150. |
[3] | CHEN Lijuan, ZHOU Wenjun, YI Yanyun, SONG Qinghai, ZHANG Yiping, LIANG Naishen, LU Zhiyun, WEN Handong, MOHD Zeeshan, SHA Liqing. Characteristics of Soil CH4 Flux in the Subtropical Evergreen Broad-leaved Forest in Ailao Mountain, Yunnan, Southwest China [J]. Ecology and Environment, 2022, 31(5): 949-960. |
[4] | LI Mengli, XU Moxin, CHEN Yongshan, YE Lili, JIANG Jinping. Effects of Different Amounts of Calcium Carbonate on the Mineralization of Straw Organic Carbon in Calcareous Soil [J]. Ecology and Environment, 2022, 31(10): 2002-2009. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn