Ecology and Environment ›› 2024, Vol. 33 ›› Issue (7): 1079-1088.DOI: 10.16258/j.cnki.1674-5906.2024.07.009
• Research Article [Environmental Science] • Previous Articles Next Articles
LU Ruilin1,2(), CAO Fang1,2,*, LIN Yuqi1,2, WU Changliu1,2, ZHANG Yanlin1,2
Received:
2024-04-22
Online:
2024-07-18
Published:
2024-09-04
Contact:
CAO Fang
卢睿霖1,2(), 曹芳1,2,*, 林煜棋1,2, 吴长流1,2, 章炎麟1,2
通讯作者:
曹芳
作者简介:
卢睿霖(1999年生),男,硕士研究生,研究方向为大气化学。E-mail: relynlu@163.com
基金资助:
CLC Number:
LU Ruilin, CAO Fang, LIN Yuqi, WU Changliu, ZHANG Yanlin. Size Distribution and Source Apportionment of Chemical Compositions in Nanjing Atmospheric Particulate Matter[J]. Ecology and Environment, 2024, 33(7): 1079-1088.
卢睿霖, 曹芳, 林煜棋, 吴长流, 章炎麟. 南京大气颗粒物化学组分的粒径分布和来源解析[J]. 生态环境学报, 2024, 33(7): 1079-1088.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.07.009
采样时间 | 气温/℃ | 相对湿度/% | 气压/hPa | 风向 | 风速/(m∙s−1) | ρ(PM2.5)/(μg∙m−3) | ρ(O2)/(μg∙m−3) | 能见度/km |
---|---|---|---|---|---|---|---|---|
8.3‒8.5 | 31 | 69 | 1000 | 东北风 | 5.1 | 12.46 | 60.26 | 21.6 |
8.7‒8.9 | 29 | 85 | 997 | 西北风 | 4.6 | 14.46 | 79.98 | 9.0 |
8.9‒8.11 | 29 | 66 | 1000 | 北风 | 4.3 | 20.85 | 114.88 | 13.8 |
8.24‒8.25 | 30 | 53 | 1004 | 微风 | 3.2 | 22.69 | 120.60 | 15.9 |
8.30‒9.1 | 23 | 88 | 1007 | 微风 | 1.4 | 13.80 | 77.81 | 17.6 |
12.17‒12.19 | 0 | 54 | 1033 | 西南风 | 5.2 | 18.46 | 47.29 | 10.4 |
12.19‒12.21 | 5 | 41 | 1022 | 南风 | 4.8 | 38.08 | 33.06 | 12.5 |
12.21‒12.23 | 7 | 36 | 1015 | 西风 | 9.5 | 29.63 | 64.91 | 8.0 |
12.23‒12.25 | 3 | 15 | 1022 | 南风 | 5.1 | 25.46 | 56.57 | 22.8 |
Table 1 Meteorological conditions and air quality during the sampling period
采样时间 | 气温/℃ | 相对湿度/% | 气压/hPa | 风向 | 风速/(m∙s−1) | ρ(PM2.5)/(μg∙m−3) | ρ(O2)/(μg∙m−3) | 能见度/km |
---|---|---|---|---|---|---|---|---|
8.3‒8.5 | 31 | 69 | 1000 | 东北风 | 5.1 | 12.46 | 60.26 | 21.6 |
8.7‒8.9 | 29 | 85 | 997 | 西北风 | 4.6 | 14.46 | 79.98 | 9.0 |
8.9‒8.11 | 29 | 66 | 1000 | 北风 | 4.3 | 20.85 | 114.88 | 13.8 |
8.24‒8.25 | 30 | 53 | 1004 | 微风 | 3.2 | 22.69 | 120.60 | 15.9 |
8.30‒9.1 | 23 | 88 | 1007 | 微风 | 1.4 | 13.80 | 77.81 | 17.6 |
12.17‒12.19 | 0 | 54 | 1033 | 西南风 | 5.2 | 18.46 | 47.29 | 10.4 |
12.19‒12.21 | 5 | 41 | 1022 | 南风 | 4.8 | 38.08 | 33.06 | 12.5 |
12.21‒12.23 | 7 | 36 | 1015 | 西风 | 9.5 | 29.63 | 64.91 | 8.0 |
12.23‒12.25 | 3 | 15 | 1022 | 南风 | 5.1 | 25.46 | 56.57 | 22.8 |
组分种类 | 冬季 | 夏季 | |||||
---|---|---|---|---|---|---|---|
PM2.1 | PM2.1-10 | PMtotal | PM2.1 | PM2.1-10 | PMtotal | ||
OC | 7.82±2.64 | 6.73±1.94 | 14.55±3.46 | 7.29±0.92 | 4.93±0.69 | 12.22±1.22 | |
EC | 3.22±1.07 | 2.80±0.63 | 6.02±0.63 | 1.68±0.36 | 1.78±0.69 | 3.47±0.97 | |
WSOC | 7.19±1.98 | 5.54±0.74 | 12.72±2.04 | 3.03±0.94 | 2.44±0.89 | 5.47±1.74 | |
OC/EC | 2.54±0.74 | 2.56±0.96 | 2.45±0.64 | 4.42±0.55 | 3.16±1.10 | 3.72±0.77 | |
Na+ | 0.99±0.50 | 1.71±0.30 | 2.70±0.56 | 1.98±0.57 | 2.68±1.41 | 4.66±1.80 | |
NH4+ | 2.69±0.97 | 0.11±0.05 | 2.80±0.94 | 1.57±0.52 | 0.11±0.07 | 1.68±0.57 | |
K+ | 0.96±0.66 | 0.25±0.14 | 1.95±1.89 | 0.26±0.15 | 0.37±0.24 | 0.63±0.32 | |
Mg2+ | 0.02±0.00 | 0.14±0.08 | 0.15±0.08 | 0.05±0.02 | 0.07±0.04 | 0.12±0.06 | |
Ca2+ | 0.27±0.03 | 1.64±0.80 | 1.91±0.82 | 0.47±0.22 | 0.86±0.80 | 1.33±1.01 | |
F− | 0.09±0.02 | 0.19±0.10 | 0.28±0.09 | 0.05±0.01 | 0.10±0.06 | 0.15±0.06 | |
Cl− | 1.12±0.27 | 1.00±0.71 | 2.12±0.50 | 0.39±0.12 | 0.83±0.46 | 1.22±0.57 | |
NO3− | 4.69±2.18 | 1.01±0.29 | 5.70±2.12 | 0.88±0.59 | 1.98±0.79 | 2.86±1.11 | |
SO42− | 1.78±0.31 | 1.24±0.31 | 3.02±0.40 | 3.84±0.90 | 0.99±0.22 | 4.82±0.78 |
Table 2 Concentrations of major chemical compositions in each size- segregated PM fraction μg?m?3
组分种类 | 冬季 | 夏季 | |||||
---|---|---|---|---|---|---|---|
PM2.1 | PM2.1-10 | PMtotal | PM2.1 | PM2.1-10 | PMtotal | ||
OC | 7.82±2.64 | 6.73±1.94 | 14.55±3.46 | 7.29±0.92 | 4.93±0.69 | 12.22±1.22 | |
EC | 3.22±1.07 | 2.80±0.63 | 6.02±0.63 | 1.68±0.36 | 1.78±0.69 | 3.47±0.97 | |
WSOC | 7.19±1.98 | 5.54±0.74 | 12.72±2.04 | 3.03±0.94 | 2.44±0.89 | 5.47±1.74 | |
OC/EC | 2.54±0.74 | 2.56±0.96 | 2.45±0.64 | 4.42±0.55 | 3.16±1.10 | 3.72±0.77 | |
Na+ | 0.99±0.50 | 1.71±0.30 | 2.70±0.56 | 1.98±0.57 | 2.68±1.41 | 4.66±1.80 | |
NH4+ | 2.69±0.97 | 0.11±0.05 | 2.80±0.94 | 1.57±0.52 | 0.11±0.07 | 1.68±0.57 | |
K+ | 0.96±0.66 | 0.25±0.14 | 1.95±1.89 | 0.26±0.15 | 0.37±0.24 | 0.63±0.32 | |
Mg2+ | 0.02±0.00 | 0.14±0.08 | 0.15±0.08 | 0.05±0.02 | 0.07±0.04 | 0.12±0.06 | |
Ca2+ | 0.27±0.03 | 1.64±0.80 | 1.91±0.82 | 0.47±0.22 | 0.86±0.80 | 1.33±1.01 | |
F− | 0.09±0.02 | 0.19±0.10 | 0.28±0.09 | 0.05±0.01 | 0.10±0.06 | 0.15±0.06 | |
Cl− | 1.12±0.27 | 1.00±0.71 | 2.12±0.50 | 0.39±0.12 | 0.83±0.46 | 1.22±0.57 | |
NO3− | 4.69±2.18 | 1.01±0.29 | 5.70±2.12 | 0.88±0.59 | 1.98±0.79 | 2.86±1.11 | |
SO42− | 1.78±0.31 | 1.24±0.31 | 3.02±0.40 | 3.84±0.90 | 0.99±0.22 | 4.82±0.78 |
离子种类 | 夏季 | 冬季 | |||
---|---|---|---|---|---|
PM2.1 | PM2.1-10 | PM2.1 | PM2.1-10 | ||
NH4+-NO3− | 0.098 | 0.166 | 0.984** | 0.111 | |
NH4+-SO42− | 0.986** 2) | −0.475* 1) | 0.801** | 0.050 | |
Na+-NO3− | 0.743** | 0.049 | 0.018 | 0.218 | |
K+-NO3− | 0.667** | 0.535** | −0.017 | −0.136 | |
NH4+-(NO3−+SO42−) | 0.956** | 0.015 | 0.979** | 0.111 | |
(NH4++Ca2+)-(NO3−+SO42−) | 0.933** | 0.377 | 0.986** | 0.827** | |
Na+-Cl− | 0.054 | 0.313 | 0.155 | 0.634* | |
K+-Cl− | −0.243 | −0.174 | 0.241 | 0.036 | |
Ca2+-NO3− | −0.363 | 0.429* | −0.183 | 0.718** |
Table 3 The correlation coefficients between specific cations and anions during different seasons
离子种类 | 夏季 | 冬季 | |||
---|---|---|---|---|---|
PM2.1 | PM2.1-10 | PM2.1 | PM2.1-10 | ||
NH4+-NO3− | 0.098 | 0.166 | 0.984** | 0.111 | |
NH4+-SO42− | 0.986** 2) | −0.475* 1) | 0.801** | 0.050 | |
Na+-NO3− | 0.743** | 0.049 | 0.018 | 0.218 | |
K+-NO3− | 0.667** | 0.535** | −0.017 | −0.136 | |
NH4+-(NO3−+SO42−) | 0.956** | 0.015 | 0.979** | 0.111 | |
(NH4++Ca2+)-(NO3−+SO42−) | 0.933** | 0.377 | 0.986** | 0.827** | |
Na+-Cl− | 0.054 | 0.313 | 0.155 | 0.634* | |
K+-Cl− | −0.243 | −0.174 | 0.241 | 0.036 | |
Ca2+-NO3− | −0.363 | 0.429* | −0.183 | 0.718** |
[1] | AGGARWAL S G, KAWAMURA K, 2009. Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction[J]. Atmospheric Environment, 43(16): 2532-2540. |
[2] | BOND T C, BERGSTROM R W, 2006. Light absorption by carbonaceous particles: An investigative review[J]. Aerosol science and technology, 40(1): 27-67. |
[3] | CAO J J, WU F, CHOW J C, et al., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China[J]. Atmospheric Chemistry and Physics, 5(11): 3127-3137. |
[4] |
CHENG Y, ENGLING G, HE K B, et al., 2014. The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks[J]. Environmental Pollution, 185: 149-157.
DOI PMID |
[5] | CHOW J C, WATSON J G, CHEN L W A, et al., 2004. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols[J]. Environmental Science & Technology, 38(16): 4414-4422. |
[6] | CHOW J C, WATSON J G, LU Z, et al., 1996. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/ AUSPEX[J]. Atmospheric Environment, 30(12): 2079-2112. |
[7] | DING X X, KONG L D, DU C T, et al., 2017. Long-range and regional transported size-resolved atmospheric aerosols during summertime in urban Shanghai[J]. Science of the total environment, 583: 334-343. |
[8] | GAO Y, LEE S C, HUANG Y, et al., 2016. Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area[J]. Atmospheric Research, 170: 112-122. |
[9] | GENG G N, ZHANG Q, TONG D, et al., 2017. Chemical composition of ambient PM2.5 over China and relationship to precursor emissions during 2005-2012[J]. Atmospheric Chemistry and Physics, 17(14): 9187-9203. |
[10] | HAN Y M, CAO J J, CHOW J C, et al., 2009. Elemental carbon in urban soils and road dusts in Xi'an, China and its implication for air pollution[J]. Atmospheric Environment, 43(15): 2464-2470. |
[11] | HUA Y, CHENG Z, WANG S X, et al., 2015. Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China[J]. Atmospheric Environment, 123(Part B): 380-391. |
[12] | HUANG X F, YU J Z, HE L Y, et al., 2006. Water‐soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms[J]. Journal of Geophysical Research: Atmospheres, 111(D22): D22212-1-D22212-11-0. |
[13] | HUANG X F, YU J Z, 2008. Size distributions of elemental carbon in the atmosphere of a coastal urban area in South China: characteristics, evolution processes, and implications for the mixing state[J]. Atmospheric Chemistry and Physics, 8(19): 5843-5853. |
[14] | HUANG X F, DAI J, ZHU Q, et al., 2019. Abundant biogenic oxygenated organic aerosol in atmospheric coarse particles: plausible sources and atmospheric implications[J]. Environmental Science & Technology, 54(3): 1425-1430. |
[15] | JÖLLER M, BRUNNER T, OBERNBERGER I, 2007. Modeling of aerosol formation during biomass combustion for various furnace and boiler types[J]. Fuel Processing Technology, 88(11-12): 1136-1147. |
[16] | KARANASIOU A A, SISKOS P A, ELEFTHERIADIS K, 2009. Assessment of source apportionment by Positive Matrix Factorization analysis on fine and coarse urban aerosol size fractions[J]. Atmospheric Environment, 43(21): 3385-3395. |
[17] | LAN Z J, CHEN D L, LI X, et al., 2011. Modal characteristics of carbonaceous aerosol size distribution in an urban atmosphere of South China[J]. Atmospheric Research, 100(1): 51-60. |
[18] | LIU Y, WU L, HUANG S, et al., 2023. Sources, size-resolved deposition in the human respiratory tract and health risks of submicron black carbon in urban atmosphere in Pearl River Delta, China[J]. Science of the total environment, 891: 164391. |
[19] | MASRI S, KANG C M, KOUTRAKIS P, 2015. Composition and sources of fine and coarse particles collected during 2002-2010 in Boston, MA[J]. Journal of the Air & Waste Management Association, 65(3): 287-297. |
[20] | MILFORD J B, DAVIDSON C I, 1987. The sizes of particulate sulfate and nitrate 1B the atmopshere: A review[J]. Journal of the Air & Waste Management Association, 37(2): 125-134. |
[21] | PAN Y P, WANG Y S, 2014. Atmospheric wet and dry deposition of trace elements at ten sites in Northern China[J]. Atmospheric Chemistry and Physics, 14(14): 20647-20676. |
[22] | PANT P, HARRISON R M, 2012. Critical review of receptor modelling for particulate matter: A case study of India[J]. Atmospheric Environment. 49: 1-12. |
[23] | PARK J, JANG M, YU Z, 2017. Heterogeneous photo-oxidation of SO2 in the presence of two different mineral dust particles: Gobi and Arizona dust[J]. Environmental Science & Technology, 51(17): 9605-9613. |
[24] | PAULOT F, PAYNTER D, GINOUX P, et al., 2017. Gas-aerosol partitioning of ammonia in biomass burning plumes: Implications for the interpretation of spaceborne observations of ammonia and the radiative forcing of ammonium nitrate[J]. Geophysical Research Letters, 44(15): 8084-8093. |
[25] | QIAO B Q, CHEN Y, TIAN M, et al., 2019. Characterization of water soluble inorganic ions and their evolution processes during PM2.5 pollution episodes in a small city in southwest China[J]. Science of the Total Environment, 650(Part 2): 2605-2613. |
[26] | REN Y Q, WANG G H, WU C, et al., 2017. Changes in concentration, composition and source contribution of atmospheric organic aerosols by shifting coal to natural gas in Urumqi[J]. Atmospheric Environment, 148: 306-315. |
[27] | SCHAUER J J, KLEEMAN M J, CASS G R, et al., 2001. Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood[J]. Environmental Science & Technology, 35(9): 1716-1728. |
[28] | SEINFELD J H, CARMICHAEL G R, ARIMOTO R, et al., 2004. ACE-ASIA: Regional climatic and atmospheric chemical effects of Asian dust and pollution[J]. Bulletin of the American Meteorological Society, 85(3): 367-380. |
[29] | SHAO P Y, TIAN H Z, SUN Y J, et al., 2018. Characterizing remarkable changes of severe haze events and chemical compositions in multi-size airborne particles (PM1, PM2.5 and PM10) from January 2013 to 2016-2017 winter in Beijing, China[J]. Atmospheric Environment, 189: 133-144. |
[30] | SULLIVAN R C, GUAZZOTTI S A, SODEMAN D A, PRATHER K, 2007. Direct observations of the atmospheric processing of Asian mineral dust[J]. Atmospheric Chemistry and Physics, 7(5): 1213-1236. |
[31] | TANG X, ZHANG X S, WANG Z W, et al., 2016. Water-soluble organic carbon (WSOC) and its temperature-resolved carbon fractions in atmospheric aerosols in Beijing[J]. Atmospheric Research, 181: 200-210. |
[32] | TAO Y, YIN Z, YE X N, et al., 2014. Size distribution of water-soluble inorganic ions in urban aerosols in Shanghai[J]. Atmospheric Pollution Research, 5(4): 639-647. |
[33] |
TIAN S L, PAN Y P, LIU Z R, et al., 2014. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China[J]. Journal of Hazardous Materials, 279: 452-460.
DOI PMID |
[34] | TIAN S L, PAN Y P, WANG Y S, 2016. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes[J]. Atmospheric Chemistry and Physics, 16(1): 1-19. |
[35] | TIAN Y Z, HARRISON R M, FENG Y C, et al., 2021. Size-resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components[J]. Environmental Pollution, 289: 117932. |
[36] | TIAN Y Z, SHI G L, HAN S Q, et al., 2013. Vertical characteristics of levels and potential sources of water-soluble ions in PM10 in a Chinese megacity[J]. Science of the total environment, 447: 1-9. |
[37] | TREBS I, METZGER S, MEIXNER F X, et al., 2005. The NH4+‐NO3-‐Cl-‐SO42-‐H2O aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant are mineral cations and soluble organic acids?[J]. Journal of Geophysical Research: Atmospheres, 110(D7): JD005478. |
[38] | WANG G H, ZHOU B H, CHENG C L, et al., 2013. Impact of Gobi desert dust on aerosol chemistry of Xi’an, inland China during spring 2009: differences in composition and size distribution between the urban ground surface and the mountain atmosphere[J]. Atmospheric Chemistry and Physics, 13(2): 819-835. |
[39] | WATSON J G, CHOW J C, LOWENTHAL D H, et al., 1994. Differences in the carbon composition of source profiles for diesel-and gasoline-powered vehicles[J]. Atmospheric Environment, 28(15): 2493-2505. |
[40] | WU H, CHEN P L, WANG T J, et al., 2022. Characteristics and Source Apportionment of Size-Fractionated Particulate Matter at Ground and above the Urban Canopy (380 m) in Nanjing, China[J]. Atmosphere, 13(6): 883. |
[41] |
XIE M J, FENG W, HE S Y, et al., 2022. Seasonal variations, temperature dependence, and sources of size-resolved PM components in Nanjing, east China[J]. Journal of Environmental Sciences, 121: 175-186.
DOI PMID |
[42] | XIU G L, ZHANG D N, CHEN J Z, et al., 2004. Characterization of major water-soluble inorganic ions in size-fractionated particulate matters in Shanghai campus ambient air[J]. Atmospheric Environment, 38(2): 227-236. |
[43] | YAN C Q, ZHENG M, SULLIVAN A P, et al., 2015. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions[J]. Atmospheric Environment, 121: 4-12. |
[44] | YANG L, SHANG Y, HANNIGAN M P, et al., 2021. Collocated speciation of PM2.5 using tandem quartz filters in northern Nanjing, China: Sampling artifacts and measurement uncertainty[J]. Atmospheric Environment, 246: 118066. |
[45] | YU Y Y, DING F, MU Y F, et al., 2020. High time-resolved PM2.5 composition and sources at an urban site in Yangtze River Delta, China after the implementation of the APPCAP[J]. Chemosphere, 261: 127746. |
[46] | ZHANG X Y, ZHAO X, JI G X, et al., 2019. Seasonal variations and source apportionment of water-soluble inorganic ions in PM2.5 in Nanjing, a megacity in southeastern China[J]. Journal of Atmospheric Chemistry, 76(1): 73-88. |
[47] | ZHAO P S, DONG F, HE D, et al., 2013. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, China[J]. Atmospheric Chemistry and Physics, 13(9): 4631-4644. |
[48] | ZHAO Z Y, CAO F, FAN M Y, et al., 2020. Coal and biomass burning as major emissions of NOx in Northeast China: Implication from dual isotopes analysis of fine nitrate aerosols[J]. Atmospheric Environment, 242: 117762. |
[49] | ZHENG B, TONG D, LI M, et al., 2018. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions[J]. Atmospheric Chemistry and Physics, 18(19): 14095-14111. |
[50] | 曹芳, 张艺璇, 章炎麟, 等, 2019. TD-GCMS测定分粒径气溶胶样品上非极性有机物的进样方法[P]. CN201910680947.4, 2019-10-18. |
CAO F, ZHANG Y X, ZHANG Y L, et al., 2019. TD-GCMS injection method for the determination of nonpolar organic matter on fractionated aerosol samples [P]. CN201910680947.4, 2019-10-18. | |
[51] | 高丽波, 王体健, 崔金梦, 等, 2019. 2016年夏季南京大气污染特征观测分析[J]. 中国环境科学, 39(1): 1-12. |
GAO L B, WANG T J, CUI J M, et al., 2019. Observation and analysis of the characteristics of air pollution in Nanjing in summer 2016[J]. China Environmental Science, 39(1): 1-12. | |
[52] | 耿冠楠, 肖清扬, 郑逸璇, 等, 2020. 实施《大气污染防治行动计划》对中国东部地区PM2.5化学成分的影响[J]. 中国科学: 地球科学, 50(4): 469-482. |
GENG G N, XIAO Q Y, ZHENG Y X, et al., 2020. Impact of China’s Air Pollution Prevention and Control Action Plan on PM2.5 chemical composition over eastern China[J]. Science China Earth Sciences, 50(4): 469-482. | |
[53] | 郭子雍, 阳宇翔, 彭龙, 等, 2021. 广州地区不同粒径段大气颗粒物中水溶性有机碳的吸光贡献[J]. 中国环境科学, 41(2): 497-504. |
GUO Z Y, YANG Y X, PENG L, et al., 2021. The size-resolved light absorption contribution of water soluble organic carbon in the atmosphere of Guangzhou[J]. China Environmental Science, 41(2): 497-504. | |
[54] | 韩力慧, 王红梅, 向欣, 等, 2019. 北京市典型区域降水特性及其对细颗粒物影响[J]. 中国环境科学, 39(9): 3635-3646. |
HAN L H, WANG H M, XIANG X, et al., 2019. The characteristics of precipitation and its impact on fine particles at a representative region in Beijing[J]. China Environmental Science, 39(9): 3635-3646. | |
[55] | 郝娇, 葛颖, 何书言, 等, 2018. 南京市秋季大气颗粒物中金属元素的粒径分布[J]. 中国环境科学, 38(12): 4409-4414. |
HAO J, GE Y, HE S Y, et al., 2018. Size distribution characteristics of metal elements in air particulate matter during autumn in Nanjing[J]. China Environmental Science, 38(12): 4409-4414. | |
[56] | 黄欢, 毕新慧, 彭龙, 等, 2016. 广州城区秋冬季大气颗粒物中WSOC吸光性研究[J]. 环境科学, 37(1): 16-21. |
HUANG H, BI X H, PENG L, et al., 2016. Light absorption properties of water-soluble organic carbon (WSOC) associated with particles in autumn and winter in the urban area of Guangzhou[J]. Environmental Science, 37(1): 16-21. | |
[57] | 黄柯, 刘刚, 周丽敏, 等, 2015. 森林生物质燃烧烟尘中的有机碳和元素碳[J]. 环境科学, 36(6): 1998-2004. |
HUANG K, LIU G, ZHOU L M, et al., 2015. Organic carbon and elemental carbon in forest biomass burning smoke[J]. Environmental Science, 36(6): 1998-2004. | |
[58] | 李昌龙, 王静怡, 苗新慧, 等, 2018. 徐州市冬季PM2.5中碳质组分和水溶性离子特征分析[J]. 环境科技, 31(2): 23-28. |
LI C L, WANG J Y, MIAO X H, et al., 2018. Characteristics of carbon and water-soluble ions of PM2.5 in winter of Xuzhou City[J]. Environmental Science and Technology, 31(2): 23-28. | |
[59] | 鲁慧莹, 彭龙, 张国华, 等, 2019. 广州大气颗粒物水溶性有机氮的粒径分布特征和来源分析[J]. 地球化学, 48(1): 57-66. |
LU H Y, PENG L, ZHANG G H, et al., 2019. Size distribution and sources of water-soluble organic nitrogen associated with atmospheric particles in Guangzhou[J]. Geochimica, 48(1): 57-66. | |
[60] | 施双双, 王红磊, 朱彬, 等, 2017. 冬季临安大气本底站气溶胶来源解析及其粒径分布特征[J]. 环境科学, 38(10): 4024-4033. |
SHI S S, WANG H L, ZHU B, et al., 2017. Source apportionment and size distribution of aerosols at Lin’an atmosphere regional background station during winter[J]. Environmental Science, 38(10): 4024-4033. | |
[61] | 孙有昌, 姜楠, 王申博, 等, 2020. 安阳市大气PM2.5中水溶性离子季节特征及来源解析[J]. 环境科学, 41(1): 75-81. |
SUN Y C, JIANG N, WANG S B, et al., 2020. Seasonal characteristics and source analysis of water-soluble ions in PM2.5 of Anyang City[J]. Environmental Science, 41(1): 75-81. | |
[62] | 王牧青, 2022. 新冠疫情对浙江省用电的影响——基于区县数据的视角[D]. 成都: 西南财经大学. |
WANG M Q, 2022. Impact of the COVID-19 on electricity consumption in Zhejiang Province: A perspective based on district and county data[D]. Chengdu: Southwestern University of Finance and Economics. | |
[63] | 王伟, 2017. 南京市大气PM2.5中重金属元素时空分布、来源及健康风险评价[D]. 南京: 南京信息工程大学. |
WANG W, 2017. Spatial-temporal variation, sources and risk assessment of heavy metals in ambient PM2.5 of Nanjing[D]. Nanjing: Nanjing University of Information Science and Technology. | |
[64] | 吴丹, 沈开源, 盖鑫磊, 等, 2017. 南京北郊大气气溶胶中水溶性有机碳 (WSOC) 的污染特征[J]. 中国环境科学, 37(9): 3237-3246. |
WU D, SHEN K Y, GAI X L, et al., 2017. Characteristics of water- soluble organic carbon (WSOC) in atmospheric particulate matter at northern suburb of Nanjing[J]. China Environmental Science, 37(9): 3237-3246. | |
[65] | 薛国强, 朱彬, 王红磊, 2014. 南京市大气颗粒物中水溶性离子的粒径分布和来源解析[J]. 环境科学, 35(5): 1633-1643. |
XUE G Q, ZHU B, WANG H L, 2014. Size distributions and source apportionment of soluble ions in aerosol in Nanjing[J]. Environmental Science, 35(5): 1633-1643. | |
[66] | 张毓秀, 于兴娜, 刘偲嘉, 等, 2020. 南京江北新区大气颗粒物化学组分的粒径分布特征[J]. 环境科学, 41(11): 4803-4812. |
ZHANG Y X, YU X N, LIU S J, et al., 2020. Size distribution of particulate chemical components in Nanjing Jiangbei new area[J]. Environmental Science, 41(11): 4803-4812. | |
[67] | 张园园, 2017. 南京北郊PM2.5中水溶性离子特征在线监测研究[D]. 南京: 南京信息工程大学. |
ZHANG Y Y, 2017. Charadteristic of water-soluble ions in PM2.5 in the northern suburb of Nanjing based on on-line monitoring[D]. Nanjing: Nanjing University of Information Science and Technology. | |
[68] | 郑龙飞, 2016. 南京地区细颗粒物污染特征及灰霾事件成因研究[D]. 济南: 山东大学. |
ZHENG L F, 2016. Atmospheric fine particles and haze pollutions in Nanjing[D]. Ji’nan: Shandong University. |
[1] | ZHANG Junmei, WANG Zhiyu, YANG Benyong, YANG Shushen, YANG Lingxiao. Pollution Characteristics, Light Absorption and Sources of Water-soluble Organic Carbon in PM2.5 [J]. Ecology and Environment, 2024, 33(7): 1072-1078. |
[2] | YAN Juping, WANG Xiaoping, GONG Ping, GAO Shaopeng. The Emission Characteristic of Carbonaceous Aerosols from Primary Sources in Nepal [J]. Ecology and Environment, 2023, 32(8): 1449-1456. |
[3] | ZHANG Huaicheng, HAN Hong, WANG Zaifeng, HAN Lizhao, LIU Ke, ZHANG Guiqin, FAN Jing, WEI Xiaofeng. Micromorphology Characteristics and Chemical Composition of Urban Dust in Ji'nan [J]. Ecology and Environment, 2023, 32(3): 545-555. |
[4] | ZHANG Li, LI Cheng, TAN Haoze, WEI Jiayi, CHENG Jiong, PENG Guixiang. Reduction Effect and Influencing Factors of Typical Urban Woodlands on Atmospheric Particulate Matter in Guangzhou [J]. Ecology and Environment, 2023, 32(2): 341-350. |
[5] | WANG Zhanyong, CHEN Xin, HU Xisheng, HE Hongdi, CAI Ming, PENG Zhongren. Mechanism and Research Methods of Roadside Green Barriers Affecting the Distribution of Atmospheric Particulate Matter: A Review [J]. Ecology and Environment, 2022, 31(5): 1047-1058. |
[6] | JIANG Peng, QIN Mei’ou, LI Rongping, MENG Ying, YANG Feiyun, WEN Rihong, SUN Pei, FANG Yuan. Seasonal Variability of GPP and Its Influencing Factors in the Typical Ecosystems in China [J]. Ecology and Environment, 2022, 31(4): 643-651. |
[7] | ZHU Xu, LI Haimei, LI Yanhua, SUN Yingkun, TIAN Yuan. Physiological Responses of Eight Shrubs to Atmospheric Particulate Matter Pollution [J]. Ecology and Environment, 2022, 31(3): 535-545. |
[8] | ZHAO Xiaoliang, GUO Meng, LV Meiting, ZHAO Xueying, JIANG Guiguo, HUANG Yuanyuan, WANG Fan, JI Yaqin. Study on Retention Capacity of Green Tree Species to Atmospheric Particulate Matter and Heavy Metals in Fuxin [J]. Ecology and Environment, 2021, 30(8): 1662-1671. |
[9] | DONG Xin, LANG Jiayu, CHUYUAN Mengran, ZHAO Shanshan, ZHANG Jindong, BAI Wenke. The Seasonal Characteristics of Home Range and Habitat Utilization of Sichuan Golden Monkeys (Rhinopithecus roxellana) [J]. Ecology and Environment, 2021, 30(7): 1342-1352. |
[10] | HUANG Cheng, WU Yueying, JI Hengkuan, CHEN Liming, LI Beiying, FU Chuanliang, LI Jianhong, WU Weidong, WU Zhipeng. Response of Iron Reduction Characteristics to DOM Molecular Properties under Anaerobic Conditions in Typical Paddy Soils of Hainan Island [J]. Ecology and Environment, 2021, 30(5): 957-967. |
[11] | SUI Yanghui, GAO Jiping, WANG Yanbo, XIAO Wanxin, LIU Jing, SHI Lei, ZHAO Haiyan, ZHANG Yang. Biochar and Nitrogen Fertilizer Effects on Soil Nutrient and Root Distribution in Dryland Maize [J]. Ecology and Environment, 2021, 30(10): 2026-2032. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn