Ecology and Environment ›› 2024, Vol. 33 ›› Issue (6): 888-899.DOI: 10.16258/j.cnki.1674-5906.2024.06.006
• Research Article [Ecology] • Previous Articles Next Articles
Received:
2024-03-01
Online:
2024-06-18
Published:
2024-07-30
Contact:
YANG Le
通讯作者:
杨乐
作者简介:
杨乐(1987年生),男,讲师,硕士研究生,主要研究方向为城市生态系统、生态城市规划、生态安全与保护方面的研究。E-mail: yangl@lzufe.edu.cn
基金资助:
CLC Number:
YANG Le. Prediction of Invasive Trend of Alien Plant Amaranthus retroflexus Based on Ensemble Model[J]. Ecology and Environment, 2024, 33(6): 888-899.
杨乐. 基于集合模型预测外来植物反枝苋的入侵趋势[J]. 生态环境学报, 2024, 33(6): 888-899.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.06.006
数据名称 | 具体变量 (32个) | 数据来源 | 数据分辨率 |
---|---|---|---|
气候变量 (19个) | 气温 (11个)、降水 (8个) | ( | 2.5 arc-minutes |
土壤属性变量 (9) | 土壤有效含水量、含沙量、淤泥含量; 碎石体积百分比、粘土含量、有机碳含量; 土壤阳离子交换能力、土壤容重和酸碱度 | https://www.fao.org/soils-porta | |
土地利用覆盖 | 土地利用覆盖类型 | ( | |
地形变量 (3个) | 海拔、坡向和坡度 | ( | |
中国行政区划图 | GS (2020) 4619号 | ( | 矢量边界 |
Table 1 Environment variable data sources and their resolutions
数据名称 | 具体变量 (32个) | 数据来源 | 数据分辨率 |
---|---|---|---|
气候变量 (19个) | 气温 (11个)、降水 (8个) | ( | 2.5 arc-minutes |
土壤属性变量 (9) | 土壤有效含水量、含沙量、淤泥含量; 碎石体积百分比、粘土含量、有机碳含量; 土壤阳离子交换能力、土壤容重和酸碱度 | https://www.fao.org/soils-porta | |
土地利用覆盖 | 土地利用覆盖类型 | ( | |
地形变量 (3个) | 海拔、坡向和坡度 | ( | |
中国行政区划图 | GS (2020) 4619号 | ( | 矢量边界 |
代码 | 描述 |
---|---|
Bio1 | 年均温/℃ |
Bio2 | 平均气温日较差/℃ |
Bio3 | 等温性 (BIO2/BIO7) (×100) |
Bio12 | 年降水量/mm |
Bio15 | 降水量变异系数 |
Altitude | 海拔/m |
Aspect | 坡向 |
LUCC | 土地利用覆盖类型 |
T_SILT | 淤泥含量 |
T_PH_H2O | 酸碱度 |
Table 2 10 environmental variables selected for the study
代码 | 描述 |
---|---|
Bio1 | 年均温/℃ |
Bio2 | 平均气温日较差/℃ |
Bio3 | 等温性 (BIO2/BIO7) (×100) |
Bio12 | 年降水量/mm |
Bio15 | 降水量变异系数 |
Altitude | 海拔/m |
Aspect | 坡向 |
LUCC | 土地利用覆盖类型 |
T_SILT | 淤泥含量 |
T_PH_H2O | 酸碱度 |
模型 | AUC | KAPPA | TSS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准偏差 | 变异系数% | 平均值 | 标准偏差 | 变异系数% | 平均值 | 标准偏差 | 变异系数% | |||
ANN | 0.770 | 0.053 | 6.84 | 0.444 | 0.083 | 18.7 | 0.444 | 0.082 | 18.5 | ||
CTA | 0.809 | 0.041 | 5.09 | 0.533 | 0.066 | 12.4 | 0.533 | 0.065 | 12.3 | ||
FDA | 0.853 | 0.028 | 3.30 | 0.573 | 0.055 | 9.51 | 0.573 | 0.054 | 9.49 | ||
GAM | 0.861 | 0.028 | 3.31 | 0.581 | 0.057 | 9.80 | 0.584 | 0.051 | 8.81 | ||
GBM | 0.874 | 0.023 | 2.49 | 0.602 | 0.054 | 9.12 | 0.605 | 0.051 | 8.44 | ||
GLM | 0.820 | 0.027 | 3.24 | 0.510 | 0.053 | 10.5 | 0.510 | 0.053 | 10.5 | ||
MARS | 0.865 | 0.025 | 2.92 | 0.602 | 0.051 | 8.58 | 0.603 | 0.050 | 8.31 | ||
MaxEnt | 0.834 | 0.052 | 6.36 | 0.580 | 0.086 | 14.9 | 0.579 | 0.086 | 14.9 | ||
RF | 0.871 | 0.021 | 2.50 | 0.611 | 0.055 | 8.93 | 0.612 | 0.054 | 8.95 | ||
SRE | 0.674 | 0.035 | 5.25 | 0.347 | 0.071 | 20.3 | 0.347 | 0.071 | 20.4 | ||
EM | 0.887 | 0.010 | 1.14 | 0.645 | 0.006 | 1.05 | 0.645 | 0.007 | 1.13 |
Table 3 Descriptive statistics of the KAPPA, TSS and AUC for 11 models
模型 | AUC | KAPPA | TSS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
平均值 | 标准偏差 | 变异系数% | 平均值 | 标准偏差 | 变异系数% | 平均值 | 标准偏差 | 变异系数% | |||
ANN | 0.770 | 0.053 | 6.84 | 0.444 | 0.083 | 18.7 | 0.444 | 0.082 | 18.5 | ||
CTA | 0.809 | 0.041 | 5.09 | 0.533 | 0.066 | 12.4 | 0.533 | 0.065 | 12.3 | ||
FDA | 0.853 | 0.028 | 3.30 | 0.573 | 0.055 | 9.51 | 0.573 | 0.054 | 9.49 | ||
GAM | 0.861 | 0.028 | 3.31 | 0.581 | 0.057 | 9.80 | 0.584 | 0.051 | 8.81 | ||
GBM | 0.874 | 0.023 | 2.49 | 0.602 | 0.054 | 9.12 | 0.605 | 0.051 | 8.44 | ||
GLM | 0.820 | 0.027 | 3.24 | 0.510 | 0.053 | 10.5 | 0.510 | 0.053 | 10.5 | ||
MARS | 0.865 | 0.025 | 2.92 | 0.602 | 0.051 | 8.58 | 0.603 | 0.050 | 8.31 | ||
MaxEnt | 0.834 | 0.052 | 6.36 | 0.580 | 0.086 | 14.9 | 0.579 | 0.086 | 14.9 | ||
RF | 0.871 | 0.021 | 2.50 | 0.611 | 0.055 | 8.93 | 0.612 | 0.054 | 8.95 | ||
SRE | 0.674 | 0.035 | 5.25 | 0.347 | 0.071 | 20.3 | 0.347 | 0.071 | 20.4 | ||
EM | 0.887 | 0.010 | 1.14 | 0.645 | 0.006 | 1.05 | 0.645 | 0.007 | 1.13 |
时期 | 高适生区 | 中适生区 | 低适生区 | 总适生区 |
---|---|---|---|---|
当前 | 0.884 | 1.30 | 2.21 | 4.39 |
2030s, SSPs1-2.6 | 0.962 | 1.41 | 2.32 | 4.69 |
2030s, SSPs2-4.5 | 0.920 | 1.44 | 2.39 | 4.75 |
2030s, SSPs5-8.5 | 0.975 | 1.55 | 2.42 | 4.94 |
2050s, SSPs1-2.6 | 0.930 | 1.43 | 2.35 | 4.70 |
2050s, SSPs2-4.5 | 0.925 | 1.54 | 2.43. | 4.89 |
2050s, SSPs5-8.5 | 0.935 | 1.67 | 2.46 | 5.07 |
Table 4 The suitable habitat area of A. retroflexus in different periods 106 km2
时期 | 高适生区 | 中适生区 | 低适生区 | 总适生区 |
---|---|---|---|---|
当前 | 0.884 | 1.30 | 2.21 | 4.39 |
2030s, SSPs1-2.6 | 0.962 | 1.41 | 2.32 | 4.69 |
2030s, SSPs2-4.5 | 0.920 | 1.44 | 2.39 | 4.75 |
2030s, SSPs5-8.5 | 0.975 | 1.55 | 2.42 | 4.94 |
2050s, SSPs1-2.6 | 0.930 | 1.43 | 2.35 | 4.70 |
2050s, SSPs2-4.5 | 0.925 | 1.54 | 2.43. | 4.89 |
2050s, SSPs5-8.5 | 0.935 | 1.67 | 2.46 | 5.07 |
气候变化情景 | 收缩区 | 扩张区 | 稳定区 |
---|---|---|---|
2030s, SSPs1-2.6 | 0.192 | 0.490 | 4.20 |
2030s, SSPs2-4.5 | 0.185 | 0.539 | 4.21 |
2030s, SSPs5-8.5 | 0.091 | 0.634 | 4.30 |
2050s, SSPs1-2.6 | 0.270 | 0.579 | 4.12 |
2050s, SSPs2-4.5 | 0.245 | 0.745 | 4.15 |
2050s, SSPs5-8.5 | 0.259 | 0.938 | 4.14 |
Table 5 The scope change of A. retroflexus suitable area under future climate change scenarios 106 km2
气候变化情景 | 收缩区 | 扩张区 | 稳定区 |
---|---|---|---|
2030s, SSPs1-2.6 | 0.192 | 0.490 | 4.20 |
2030s, SSPs2-4.5 | 0.185 | 0.539 | 4.21 |
2030s, SSPs5-8.5 | 0.091 | 0.634 | 4.30 |
2050s, SSPs1-2.6 | 0.270 | 0.579 | 4.12 |
2050s, SSPs2-4.5 | 0.245 | 0.745 | 4.15 |
2050s, SSPs5-8.5 | 0.259 | 0.938 | 4.14 |
[1] | AHMED S E, MCINERNY G, O'HARA K, et al., 2015. Scientists and software-surveying the species distribution modelling community[J]. Diversity Distributions, 21(3): 258-267. |
[2] | ALLOUCHE O, TSOAR A, KADMON R, 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS)[J]. Journal of Applied Ecology, 43(6): 1223-1232. |
[3] |
BELLARD C, THUILLER W, LEROY B, et al., 2013. Will climate change promote future invasions?[J]. Global Change Biology, 19(12): 3740-3748.
DOI PMID |
[4] |
BOULANGEAT I, GRAVEL D, THUILLER W, 2012. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances[J]. Ecology Letters, 15(6): 584-593.
DOI PMID |
[5] | BREIMAN L, 2001. Random forests[J]. Machine Learning, 45: 5-32. |
[6] | BROGNIEZ D, BALLABIO C, STEVENS A, et al., 2015. A map of the topsoil organic carbon content of Europe generated by a generalized additive model[J]. European Journal of Soil Science, 66(1): 121-134. |
[7] | BROWN J L, 2014. SDM toolbox: A python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses[J]. Methods in Ecology Evolution, 5(7): 694-700. |
[8] |
CHEN I C, HILL J K, OHLEMÜLLER R, et al., 2011. Rapid range shifts of species associated with high levels of climate warming[J]. Science, 333(6045): 1024-1026.
DOI PMID |
[9] | DICOLA V, BROENNIMANN O, PETITPIERRE B, et al., 2017. ecospat: An R package to support spatial analyses and modeling of species niches and distributions[J]. Ecography, 40(6): 774-787. |
[10] | DINU M, ANGHEL A I, OLARU O T, et al., 2017. Toxicity investigation of an extract of Amaranthus retroflexus L. (Amaranthaceae) leaves[J]. Farmacia, 65(2): 289-294. |
[11] | ELITH J, LEATHWICK J R, 2009. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 40: 677-697. |
[12] |
ELITH J, LEATHWICK J R, HASTIE T, 2008. A working guide to boosted regression trees[J]. Journal of Animal Ecology, 77(4): 802-813.
DOI PMID |
[13] | FANG Y Q, ZHANG X H, WEI H Y, et al., 2021. Predicting the invasive trend of exotic plants in China based on the ensemble model under climate change: A case for three invasive plants of Asteraceae[J]. Science of the Total Environment, 756: 143841. |
[14] | FRIEDMAN J H, 1991. Multivariate adaptive regression splines[J]. The Annals of Statistics, 19(1): 1-67. |
[15] | GASSÓ N, THUILLER W, PINO J, et al., 2012. Potential distribution range of invasive plant species in Spain[J]. NeoBiota, 12: 25-40. |
[16] | GUO K Q, JIANG X L, XU G B, 2021. Potential suitable distribution area of Quercus lamellosa and the influence of climate change[J]. Chinese Journal of Ecology, 40(8): 2563-2574. |
[17] | HAMAD A M, NELDER J A, 1997. Generalized linear models for quality-improvement experiments[J]. Journal of Quality Technology, 29(3): 292-304. |
[18] |
HANLEY J A, MCNEIL B J, 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve[J]. Radiology, 143(1): 29-36.
DOI PMID |
[19] | HAO Q, MA J S, 2023. Invasive alien plants in China: An update[J]. Plant Diversity, 45(1): 117-121. |
[20] | HAO T, ELITH J, LAHOZMONFORT J J, et al., 2020. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models[J]. Ecography, 43(4): 549-558. |
[21] | HASTIE T, TIBSHIRANI R, BUJA A, 1994. Flexible discriminant analysis by optimal scoring[J]. Journal of the American Statistical Association, 89(428): 1255-1270. |
[22] | HULME P E, 2017. Climate change and biological invasions: evidence, expectations, and response options[J]. Biological Reviews, 92(3): 1297-1313. |
[23] | LEK S, GUÉGAN J F, 1999. Artificial neural networks as a tool in ecological modelling, an introduction[J]. Ecological Modelling, 120(2-3): 65-73. |
[24] | LI J Y, CHANG H, LIU T, et al., 2019. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century[J]. Agricultural Forest Meteorology, 275: 243-254. |
[25] | LOPES A, DEMARCHI L O, PIEDADEM T F, et al., 2023. Predicting the range expansion of invasive alien grasses under climate change in the Neotropics[J]. Perspectives in Ecology Conservation, 21(2): 128-135. |
[26] | NIX H, BUSBY J, 1986. BIOCLIM, a bioclimatic analysis and prediction system[M]. Division of Water Land Resources: Canberra. |
[27] | PEARSON R G, DAWSON T P, 2003. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?[J]. Global Ecology Biogeography, 12(5): 361-371. |
[28] | PETER A, ŽLABUR J Š, ŠURIĆ J, et al., 2021. Invasive plant species biomass-Evaluation of functional value[J]. Molecules, 26(13): 3814. |
[29] | PHILLIPS S J, ANDERSON R P, DUDíK M, et al., 2017. Opening the black box: An open-source release of Maxent[J]. Ecography, 40(7): 887-893. |
[30] | PHILLIPS S J, ANDERSON R P, SCHAPIRE R E, 2006. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 190(3-4): 231-259. |
[31] | QIAO H J, LIN C T, JI L Q, et al., 2012. mMWeb-an online platform for employing multiple ecological niche modeling algorithms[J]. PLOS ONE, 7(8): e43327. |
[32] | QIN Z, ZHANG J E, JIANG Y P, et al., 2018. Invasion process and potential spread of Amaranthus retroflexus in China[J]. Weed Research, 58(1): 57-67. |
[33] |
ROGER E, DUURSMA D E, DOWNEY P O, et al., 2015. A tool to assess potential for alien plant establishment and expansion under climate change[J]. Journal of Environmental Management, 159: 121-127.
DOI PMID |
[34] | SONG J Y, ZHANG H, LI M, et al., 2021. Prediction of spatiotemporal invasive risk of the red import fire ant, Solenopsis invicta (Hymenoptera: Formicidae), in China[J]. Insects, 12(10): 874. |
[35] | TELEWSKIF W, ZEEVAARTJAJAJO B, 2002. The 120-yr period for Dr. Beal’s seed viability experiment[J]. American Journal of Botany, 89(8): 1285-1288. |
[36] | THUILLER W, RICHARDSON D M, PYŠEK P, et al., 2005. Niche based modelling as a tool for predicting the risk of alien plant invasions at a global scale[J]. Global Change Biology, 11(12): 2234-2250. |
[37] | VAYSSIÈRES M P, PLANT R E, ALLENDIAZ B H, 2000. Classification trees: An alternative non-parametric approach for predicting species distributions[J]. Journal of Vegetation Science, 11(5): 679-694. |
[38] | WALTHER B A, PIRSIG L H, 2017. Determining conservation priority areas for Palearctic passerine migrant birds in sub-Saharan Africa[J]. Avian Conservation and Ecology, 12(1): 2. |
[39] | WANG R, WANG Y Z, 2006. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China[J]. Diversity Distributions, 12(4): 397-408. |
[40] | WENG Y W, CAI W J, WANG C, 2020. The application and future directions of the shared socioeconomic pathways (SSPs)[J]. Advances in Climate Change Research, 16(2): 215-222. |
[41] | YE X Z, ZHAO G H, ZHANG M Z, et al., 2020. Distribution pattern of endangered plant Semiliquidambar cathayensis (Hamamelidaceae) in response to climate change after the last interglacial period[J]. Forests, 11(4): 434. |
[42] | ZHU L W, CAO D D, HU Q J, et al., 2016. Physiological changes and sHSPs genes relative transcription in relation to the acquisition of seed germination during maturation of hybrid rice seed[J]. Journal of the Science of Food Agriculture, 96(5): 1764-1771. |
[43] | 李晓晶, 张宏军, 倪汉文, 2004. 反枝苋的生物学特性及防治[J]. 农药科学与管理, 25(3): 13-16. |
LI X J, ZHANG H J, NI H W, 2004. Review on the biological characters and control of redroot pigweed (Amaranthus retroflexus)[J]. Pesticide Science and Administration, 25(3): 13-16. | |
[44] |
刘伟, 朱丽, 桑卫国, 2007. 影响入侵种反枝苋分布的环境因子分析及可能分布区预测[J]. 植物生态学报, 31(5): 834-841.
DOI |
LIU W, ZHU L, SANG W G, 2007. Potential global geographical distribution of Amaranthus retroflexus[J]. Chinese Journal of Plant Ecology, 31(5): 834-841. | |
[45] | 塞依丁·海米提, 2020. 气候变化情景下入侵种反枝苋在新疆的潜在分布格局研究[D]. 乌鲁木齐: 新疆大学. |
SEIDIN HAMID, 2020. Potential distribution pattern of invasive species Amaranthus retroflexus L. in Xinjiang under climate change[D]. Urumqi: Xinjiang University. | |
[46] | 魏莹, 李倩, 李阳, 等, 2020. 外来入侵植物反枝苋的研究进展[J]. 生态学杂志, 39(1): 282-291. |
WEI Y, LI Q, LI Y, et al., 2020. Research advances of invasive alien plant Amaranthus retroflexus L.[J]. Chinese Journal of Ecology, 39(1): 282-291. | |
[47] | 辛晓歌, 吴统文, 张洁, 等, 2019. BCC模式及其开展的CMIP6试验介绍[J]. 气候变化研究进展, 15(5): 533-539. |
XIN X G, WU T W, ZHANG J, et al., 2019. Introduction of BCC models and its participation in CMIP6[J]. Advances in Climate Change Research, 15(5): 533-539. |
[1] | WANG Zihan, LÜ Shijie, WANG Zhongwu, LIU Hongmei. Effects of Grazing Intensity on Dominant Population and Species Diversity and Their Typical Relationships [J]. Ecology and Environment, 2024, 33(6): 869-876. |
[2] | LI Xinmei, WU Zuohang, WANG Zhenshan, WENG Shengheng, SUN Chaofeng, GUAN Hui, WANG Hong. Spatio-temporal Dynamics of Vegetation Productivity and Drought Impacts in Fujian Province Using MODIS Data [J]. Ecology and Environment, 2024, 33(6): 841-852. |
[3] | SONG Xiaolong, MA Mingde, WANG Peng, LI Longtang, MI Wenbao, SONG Yongyong. The Spatiotemporal Non-stationary Characteristics of Fractional Vegetation Coverage During the Growing Season of Different Geographical Regions in Ningxia [J]. Ecology and Environment, 2024, 33(6): 853-868. |
[4] | GUAN Yuliang, GAN Xianhua, YIN Zuoyun, HUANG Yuhui, TAO Yuzhu, LI Kuan, ZHANG Weiqiang, DENG Caiqiong, ZENG Xiangyao, HUANG Fangfang. Distribution Pattern of Plant Diversity at Different Elevations in Nanling Nature Reserve [J]. Ecology and Environment, 2024, 33(6): 877-887. |
[5] | WANG Junwei, CHEN Yonghao, ZENG Zhefei, CHEN Mengyan, LA Qiong. Study on Species Diversity of Invasive Plant Datura stramonium Community in Lhasa, Tibet [J]. Ecology and Environment, 2024, 33(6): 900-907. |
[6] | WANG Jiechun, DENG Yujiao, ZHU Huaiwei, KONG Yunqi. Spatiotemporal Variations of Vegetation NPP of Different Ecosystems in Guangdong Province and Its Response to Climate Factors [J]. Ecology and Environment, 2024, 33(6): 831-840. |
[7] | SUN Ming, CHEN Yanli, XIE Min, MO Weihua, PAN Lianghao. Changing Characteristics of Gross Primary Production for Typical Sandy Mangrove in Guangxi and Its Response to Meteorological Factors [J]. Ecology and Environment, 2024, 33(5): 665-678. |
[8] | HE Muquan, SHI Yanjun, WANG Chenxi, LUO Zuhong, ZHANG Shaotong. Spatiotemporal Distribution Characteristics of Vegetation Ecology and Its Meteorological Contribution in Guangdong Province [J]. Ecology and Environment, 2024, 33(5): 679-688. |
[9] | XIA Fan, HAN Yimeng, ZHOU Jianxing, XIE Danni. The Distribution Characteristics of Nitrogen and Sulfur in the Artificially Disturbed Tibetan Plateau Alpine Forests [J]. Ecology and Environment, 2024, 33(5): 689-698. |
[10] | WEI Xixi, CHAO Xinyan, ZHENG Jingming, TANG Kexin, WAN Long, ZHOU Jinxing. Study on Species Diversity of Typical Plant Communities and Their Influencing Factors in the Eastern and Western Helan Mountains [J]. Ecology and Environment, 2024, 33(4): 520-530. |
[11] | TIAN Xuchen, WEI Hongling, XIE Shengnan, CHU Qiming, YANG Jing, ZHANG Ying, XIAO Siqiu, TANG Zonghua, LIU Ying, LI Dewen. Potential Geographical Distribution of Acer in Northeast China Based on the MaxEnt Model [J]. Ecology and Environment, 2024, 33(4): 509-519. |
[12] | LIU Yajing, LIU Mingyue, LI Jing, ZHOU Shuai. Prediction of Diffusion Trend of Invasive Plant Spartina Alterniflora Based on ANN-CA [J]. Ecology and Environment, 2024, 33(3): 341-350. |
[13] | ZHANG Ruidong, Wu Fuqin, LI Kunji, JIN Yanshan, LIU Chengxia, SHEN Shikang. Species Compositions and Distribution Characteristics Analyses of Invasive Alien Plants in the Lakeside of Nine Plateau Lakes in Yunnan Province [J]. Ecology and Environment, 2024, 33(3): 351-361. |
[14] | LI Xia, CHEN Yonghao, CHEN Zhe, ZHANG Guozhuang, TANG Mengya. Analysis of Spatio-temporal Changes and Driving Vegetation NDVI in Coastal Areas of China [J]. Ecology and Environment, 2024, 33(2): 180-191. |
[15] | LI Jiajing, LIANG Yongliang, LI Jingyao, LI Xiaowei, YANG Junlong. Analysis of Plant Ecological Strategies Based on Leaf Functional Traits on the Western Slope of Helan Mountain [J]. Ecology and Environment, 2024, 33(1): 45-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn