Ecology and Environment ›› 2022, Vol. 31 ›› Issue (12): 2441-2448.DOI: 10.16258/j.cnki.1674-5906.2022.12.019
ZHANG Yi1,2,*(), ZHU Jiying1,2(
), ZHANG Cong3, WANG Rou1,2, ZOU Yilingyun1,2, WU Zhenbin1
Received:
2022-03-31
Online:
2022-12-18
Published:
2023-02-15
Contact:
ZHANG Yi
张义1,2,*(), 朱吉颖1,2(
), 张聪3, 王柔1,2, 邹羿菱云1,2, 吴振斌1
通讯作者:
张义
作者简介:
张义(1985年生),男(土家族),研究员,博士后,研究方向为内源污染控制和水体生态修复等。E-mail: zhangyi@ihb.ac.cn第一联系人:#共同第一作者:朱吉颖(1999年生),女,硕士研究生,研究方向为内源污染控制与修复、新型环保复合材料研制及应用等。E-mail: zhujiying21@mails.ucas.ac.cn
基金资助:
CLC Number:
ZHANG Yi, ZHU Jiying, ZHANG Cong, WANG Rou, ZOU Yilingyun, WU Zhenbin. Research and Application of Diatomite in the Field of Eco-environment[J]. Ecology and Environment, 2022, 31(12): 2441-2448.
张义, 朱吉颖, 张聪, 王柔, 邹羿菱云, 吴振斌. 硅藻土在环境领域的研究和应用[J]. 生态环境学报, 2022, 31(12): 2441-2448.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.12.019
形态 Speciation | 改性方法 Modification method | 吸附条件 Adsorption conditions | 吸附容量 Adsorption capacity/(mg∙g−1) | Reference | ||
---|---|---|---|---|---|---|
温度Temperature/℃ | pH | 投加量 Dosage/(g∙L−1) | ||||
镉(Ⅱ) Cd(Ⅱ) | — | 23 | 4 | 1 | 0.14 | Al-Degs et al., |
MnCl2 | 25 | 4 | 5 | 0.66 | Ma et al., | |
铅(Ⅱ) Pb(Ⅱ) | — | 25 | 4.5 | 4 | 0.09 | Abu-Zurayk et al., |
微波+超声+酸化 | 25 | 6.5 | 0.5 | 76.30 | 张馨予等, | |
汞(Ⅱ) Hg(Ⅱ) | — | 20 | 5 | 20 | 0.34 | Caner et al., |
壳聚糖 | 116.20 | |||||
砷(Ⅴ) As(Ⅴ) | — | 25 | 7 | 0.4 | 0.24 | Du et al., |
α-Fe2O3 | 1.44 | |||||
砷(Ⅲ) As(Ⅲ) | FeSO4∙7H2O | 25 | 7.5 | 10 | 16.48 | Knoerr et al., |
铜(Ⅱ) Cu(Ⅱ) | — | 23 | 4 | 1 | 0.33 | Al-Degs et al., |
MnO2 | 0.80 | |||||
铬(Ⅲ) Cr(Ⅲ) | — | 25 | 4.5 | 4 | 0.27 | Abu-Zurayk et al., |
铬(Ⅵ) Cr(Ⅵ) | — | 25 | 4.5 | 4 | 0.17 | Abu-Zurayk et al., |
MnO2 | 25 | 2 | 0.4 | 0.93 | Du et al., | |
锌(Ⅱ) Zn(Ⅱ) | — | 25 | 7 | 10 | 0.25 | Caliskan et al., |
MnO2 | 0.42 |
Table 1 Removal of metal ions from aqueous solution by diatomite and modified diatomite
形态 Speciation | 改性方法 Modification method | 吸附条件 Adsorption conditions | 吸附容量 Adsorption capacity/(mg∙g−1) | Reference | ||
---|---|---|---|---|---|---|
温度Temperature/℃ | pH | 投加量 Dosage/(g∙L−1) | ||||
镉(Ⅱ) Cd(Ⅱ) | — | 23 | 4 | 1 | 0.14 | Al-Degs et al., |
MnCl2 | 25 | 4 | 5 | 0.66 | Ma et al., | |
铅(Ⅱ) Pb(Ⅱ) | — | 25 | 4.5 | 4 | 0.09 | Abu-Zurayk et al., |
微波+超声+酸化 | 25 | 6.5 | 0.5 | 76.30 | 张馨予等, | |
汞(Ⅱ) Hg(Ⅱ) | — | 20 | 5 | 20 | 0.34 | Caner et al., |
壳聚糖 | 116.20 | |||||
砷(Ⅴ) As(Ⅴ) | — | 25 | 7 | 0.4 | 0.24 | Du et al., |
α-Fe2O3 | 1.44 | |||||
砷(Ⅲ) As(Ⅲ) | FeSO4∙7H2O | 25 | 7.5 | 10 | 16.48 | Knoerr et al., |
铜(Ⅱ) Cu(Ⅱ) | — | 23 | 4 | 1 | 0.33 | Al-Degs et al., |
MnO2 | 0.80 | |||||
铬(Ⅲ) Cr(Ⅲ) | — | 25 | 4.5 | 4 | 0.27 | Abu-Zurayk et al., |
铬(Ⅵ) Cr(Ⅵ) | — | 25 | 4.5 | 4 | 0.17 | Abu-Zurayk et al., |
MnO2 | 25 | 2 | 0.4 | 0.93 | Du et al., | |
锌(Ⅱ) Zn(Ⅱ) | — | 25 | 7 | 10 | 0.25 | Caliskan et al., |
MnO2 | 0.42 |
[1] |
ABU-ZURAYK R A, AL BAKAIN R Z, HAMADNEH I, et al., 2015. Adsorption of Pb(II), Cr(III) and Cr(VI) from aqueous solution by surfactant-modified diatomaceous earth: Equilibrium, kinetic and thermodynamic modeling studies[J]. International Journal of Mineral Processing, 140: 79-87.
DOI URL |
[2] |
AL-DEGS Y S, TUTUNJU M F, SHAWABKEH R A, 2000. The feasibility of using diatomite and Mn-diatomite for remediation of Pb2+, Cu2+, and Cd2+ from water[J]. Separation Science and Technology, 35(14): 2299-2310.
DOI URL |
[3] | ANDERSON D M, 1997. Turning back the harmful red tide[J]. Nature: International weekly journal of science, 388(6642): 513-514. |
[4] |
BOURG I C, SPOSITO G, BOURG A C M, 2007. Modeling the acid-base surface chemistry of montmorillonite[J]. Journal of Colloid and Interface Science, 312(2): 297-310.
PMID |
[5] |
CALISKAN N, KUL A R, ALKAN S, et al., 2011. Adsorption of Zinc(II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study[J]. Journal of Hazardous Materials, 193: 27-36.
DOI PMID |
[6] |
CANER N, SARI A, TUZEN M, 2015. Adsorption characteristics of Mercury(II) ions from aqueous solution onto chitosan-coated diatomite[J]. Industrial & Engineering Chemistry Research, 54(30): 7524-7533.
DOI URL |
[7] |
CHEN Z F, PEI J C, WEI Z D, et al., 2021. A novel maize biochar-based compound fertilizer for immobilizing cadmium and improving soil quality and maize growth[J]. Environmental Pollution, 277: 116455.
DOI URL |
[8] | DANIL DE NAMOR A F, EL GAMOUZ A, FRANGIE S, et al., 2012. Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water[J]. Journal of Hazardous Materials, 241(242): 14-31. |
[9] |
DU Y C, WANG L P, WANG J S, et al., 2015. Flower-, wire-, and sheet-like MnO2-deposited diatomites: Highly efficient absorbents for the removal of Cr(VI)[J]. Journal of Environmental Sciences, 29(3): 71-81.
DOI URL |
[10] |
DU Y C, WANG X K, WU J S, et al., 2018. Mg3Si4O10(OH)2 and MgFe2O4 in situ grown on diatomite: Highly efficient adsorbents for the removal of Cr(VI)[J]. Microporous and Mesoporous Materials, 271: 83-91.
DOI URL |
[11] |
DU Y C, ZHENG G W, WANG J S, et al., 2014. MnO2 nanowires in situ grown on diatomite: Highly efficient absorbents for the removal of Cr(VI) and As(V)[J]. Microporous and Mesoporous Materials, 200: 27-34.
DOI URL |
[12] | EL OUARDI Y, BRANGER C, TOUFIK H, et al., 2020. An insight of enhanced natural material (calcined diatomite) efficiency in nickel and silver retention: Application to natural effluents[J]. Environmental Technology & Innovation, 18: 100768. |
[13] |
GALZERANO B, CABELLO C I, MUNOZ M, et al., 2020. Fabrication of green diatomite/chitosan-based hybrid foams with dye sorption capacity[J]. Materials, 13(17): 3760.
DOI URL |
[14] |
HAO L P, GAO W Y, YAN S, et al., 2020. Functionalized diatomite/oyster shell powder doped electrospun polyacrylonitrile submicron fiber as a high-efficiency adsorbent for removing methylene blue from aqueous solution: Thermodynamics, kinetics and isotherms[J]. Journal of Molecular Liquids, 298: 112022.
DOI URL |
[15] |
HE H B, LUO Z Z, YU C L, 2020. Diatomite-anchored g-C3N4 nanosheets for selective removal of organic dyes[J]. Journal of Alloys and Compounds, 816: 152652.
DOI URL |
[16] |
IVANOV S E, BELYAKOV A V, 2008. Diatomite and its applications[J]. Glass and Ceramics, 65(1-2): 48-51.
DOI URL |
[17] |
JANG M, MIN S H, KIM T H, et al., 2006. Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite[J]. Environmental Science & Technology, 40(5): 1636-1643.
DOI URL |
[18] | JIANG Y, LIU Y, GU J F, et al., 2021. Regulation control of a tribasic amendment on the chemical fractions of Cd and As in paddy soil and their accumulation in rice[J]. Environmental Science, 42(1): 378-385. |
[19] | JIAO N, WANG D S, DUAN J M, et al., 2012. Adsorption of three organic dyes on modified diatomite[J]. Acta Scientiae Circumstantiae, 32(6): 1364-1369. |
[20] |
JIN Y Q, MA X J, JIANG X G, et al., 2013. Effects of hydrothermal treatment on the major heavy metals in fly ash from municipal solid waste incineration[J]. Energy & Fuels, 27(1): 394-400.
DOI URL |
[21] |
KNOERR R, BRENDLE J, LEBEAU B, et al., 2013. Preparation of ferric oxide modified diatomite and its application in the remediation of As(III) species from solution[J]. Microporous and Mesoporous Materials, 169: 185-191.
DOI URL |
[22] |
LEE S H D, JOHNSON I, 1980. Removal of gaseous alkali metal compounds from hot flue gas by particulate sorbents[J]. Journal of Engineering for Power, 102(2): 397-402.
DOI URL |
[23] |
LI C C, WANG M F, XIE B S, et al., 2020. Enhanced properties of diatomite-based composite phase change materials for thermal energy storage[J]. Renewable Energy, 147(Part 1): 265-274.
DOI URL |
[24] | LIU J C, WU J S, WANG J S, et al., 2021. Surface engineering of diatomite using nanostructured Zn compounds for adsorption and sunlight photocatalysis[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 612: 125977. |
[25] |
LIU J Y, CHEN F J, LI C Z, et al., 2019. Characterization and utilization of industrial microbial waste as novel adsorbent to remove single and mixed dyes from water[J]. Journal of Cleaner Production, 208: 552-562.
DOI URL |
[26] | MA L L, XIE Q L, CHEN N C, et al., 2017. Adsorption of Cd(Ⅱ) from aqueous solutions on Mn-OXIDE modified diatomite[J]. Environment Engineering, 35(6): 59-64. |
[27] |
MA S C, ZHANG J L, SUN D H, et al., 2015. Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite[J]. Applied Surface Science, 359: 48-54.
DOI URL |
[28] |
MARIN-ALZATE N, TOBON J I, BERTOLOTTI B, et al., 2021. Evaluation of the properties of diatomaceous earth in relation to their performance in the removal of heavy metals from contaminated effluents[J]. Water Air and Soil Pollution, 232(3): 122-135.
DOI URL |
[29] | NGUYEN M B, NGUYEN T V, LE G H, et al., 2021. High CO adsorption performance of CuCl-modified diatomites by using the novel method “Atomic implantation”[J]. Journal of Chemistry, 2021: 9762578. |
[30] | NIKJOO D, PERROT V, AKHTAR F, 2019. Laminated porous diatomite monoliths for adsorption of dyes from water[J]. Environmental Progress & Sustainable Energy, 38(S1): S377-S385. |
[31] |
NIU L J, XIAN G, LONG Z Q, et al., 2020. MnCeOx/diatomite catalyst for persulfate activation to degrade organic pollutants[J]. Journal of Environmental Sciences, 89(3): 206-217.
DOI URL |
[32] |
PARASANA N, SHAH M N, UNNARKAT A, 2022. Recent advances in developing innovative sorbents for phosphorus removal-perspective and opportunities[J]. Environmental Science and Pollution Research, 29(26): 38985-39016.
DOI URL |
[33] |
PIRI M, SEPEHR E, SAMADI A, et al., 2021. Contaminated soil amendment by diatomite: chemical fractions of zinc, lead, copper and cadmium[J]. International Journal of Environmental Science and Technology, 18(5): 1191-1200.
DOI URL |
[34] | SHI M M, LIU M Y, ZENG Y L, et al., 2012. Study on adsorption of Zn2+, Pb2+ and Cd2+ on diatomite and bentonite[J]. Environmental Chemistry, 31(2): 162-167. |
[35] |
SOFRONOV D, RUCKI M, VARCHENKO V, et al., 2022. Removal of europium, cobalt and strontium from water solutions using MnO(OH)-modified diatomite[J]. Journal of Environmental Chemical Engineering, 10(1): 106944.
DOI URL |
[36] | SU Y Y, YU Y Q, Y P S, et al., 2009. Photocatalytic degradation of anthraquinone dye wastewater with nano-TiO2/diatomite[J]. China Environmental Science, 29(11): 1171-1176. |
[37] |
SUN Q, HU X L, ZHENG S L, et al., 2019. Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4@diatomite hybrid photocatalyst for improving reduction of Cr(VI)[J]. Environmental Pollution, 245: 53-62.
DOI URL |
[38] | WANG F L, ZHANG D R, ZHONG C H, et al., 2017. Processing effect “compound A/O diatomite” technology of small urban sewage DESAR treatment system[J]. Applied Chemical Industry, 46(1): 70-73. |
[39] | WANG S, NAM H, NAM H, et al., 2022. Hierarchically porous diatomite-activated carbon composite for TMA and NH3 removal in confined spaces[J]. International Journal of Environmental Science and Technology,. 19(3): 03922-03925. |
[40] |
WU Y, LI X M, YANG Q, et al., 2019. Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents[J]. Journal of Environmental Management, 231: 370-379.
DOI PMID |
[41] |
XIE F Z, WU F C, LIU G J, et al., 2014. Removal of phosphate from eutrophic lakes through adsorption by in situ formation of magnesium hydroxide from diatomite[J]. Environmental Science & Technology, 48(1): 582-590.
DOI URL |
[42] | YANG Y Z, ZHU J, XIAO Y Y, et al., 2018. Preparation of Iron-Aluminum Modified Diatomite and It is Immobilization in Cadmium-Polluted Soil[J]. Environmental Science, 39(8): 3854-3866. |
[43] |
ZHANG G X, SUN Z M, DUAN Y W, et al., 2017. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde[J]. Applied Surface Science, 412: 105-112.
DOI URL |
[44] | ZHENG X Q, LIU Q, KUANG W, 2019. Adsorption performance of diotomite to MC-LR in water[J]. Water & Wastewater Engineering, 45(3): 20-25. |
[45] | ZHENG Y Y, 2011. Experimental research on advanced treatment of outlet water from municipal wastewater treatment plant by modified diatomite[J]. Chinese Journal of Environmental Engineering, 5(7): 1527-1531. |
[46] | 把玉鸿, 2021. 改性硅藻土负载纳米铁镍双金属的制备及对典型抗生素的去除研究[D]. 兰州:兰州理工大学: 1-75. |
BA Y H, 2021. Study on preparation of modified diatomite loaded nanometer Fe-Ni bimetal and removal of typical antibiotics[D]. Lanzhou:Lanzhou University of Technology: 1-75. | |
[47] | 常仕博, 徐星星, 苏振国, 等, 2019. 基于硅藻土多孔微珠的多孔陶瓷制备及过滤性能研究[J]. 功能材料, 50(10): 10195-10201. |
CHANG S B, XU X X, SU Z G, et al., 2019. Preparation and filtration performance of porous ceramic with diatomite porous microspheres as the raw materials[J]. Journal of Functional Materials, 50(10): 10195-10201. | |
[48] | 陈进斌, 曹军瑞, 苗英霞, 等, 2020. 改性硅藻土耦合CAST工艺处理城市生活污水的研究[J]. 盐科学与化工, 49(4): 37-39, 42. |
CHEN J B, CAO J R, MIAO Y X, et al., 2020. Research on the treatment of municipal sewage by modified diatomite and CAST reactor[J]. Journal of Salt Science and Chemical Industry, 49(4): 37-39, 42. | |
[49] | 范艺, 王哲, 赵连勤, 等, 2017. 锆改性硅藻土吸附水中磷的研究[J]. 环境科学, 38(4): 1490-1496. |
FAN Y, WANG Z, ZHAO L Q, et al., 2017. Modification of diatomite by zirconium and its performance in phosphate removal from water[J]. Environmental Science, 38(4): 1490-1496. | |
[50] | 国家环境保护总局, 国家质量监督检验检疫总局, 2002. 地表水环境质量标准: GB 3838—2002[S]. 北京: 国家环境保护总局. |
State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2002. Environmental Quality Standards for Surface Water: GB3838—2002[S]. Beijing: State Environmental Protection Administration. | |
[51] | 国家环境保护总局, 国家质量监督检验检疫总局, 2002. 城镇污水处理厂污染物排放标准: GB 18918—2002[S]. 北京: 国家环境保护总局. |
State Environmental Protection Administration, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2002. Discharge Standards of Pollutants for Municipal Wastewater Treatment Plant: GB18918—2002[S]. Beijing: State Environmental Protection Administration. | |
[52] | 胡志斐, 王振峰, 汪思瀛, 等, 2021. 矿物材料在催化脱硝方面的应用进展[J]. 矿产保护与利用, 41(1): 161-165. |
HU Z F, WANG Z F, WANG S Y, et al., 2021. Application progress of mineral materials in catalytic denitrification[J]. Conservation and Utilization of Mineral Resources, 41(1): 161-165. | |
[53] | 姜德彬, 2019. 硅藻土基复合材料的可控制备与有机废水处理研究[D]. 重庆: 重庆大学: 1-150. |
JIANG D B, 2019. Controlled preparation of diatomite-based composite materials for treatment of organic wastewater[D]. Chongqing: Chongqing University: 1-150. | |
[54] | 李鑫, 张乃明, 包立, 等, 2014. 富营养化湖泊水体藻水分离絮凝剂的筛选研究[J]. 环境工程, 32(s1): 305-309, 318. |
LI X, ZHANG N M, BAO L, et al., 2014. Screening of focculant for water-alage separation in eutrophic lake[J]. Environmental Engineering, 32(s1): 305-309, 318. | |
[55] | 李雪婷, 黄显怀, 周超, 等, 2015. 改性黏土矿物修复重金属污染底泥的稳定化试验研究[J]. 环境工程, 33(9): 158-163. |
LI X T, HUANG X H, ZHOU C, et al., 2015. Study on the stabilization of heavy metals from contaminated river sediment by modified clay minerals[J]. Environmental Engineering, 33(9): 158-163. | |
[56] | 刘振敏, 2018. 中国硅藻土矿资源特征及找矿方向[J]. 化工矿产地质, 40(4): 235-240. |
LIU Z M, 2018. Characteristics and prospecting direction of diatomite resources in China[J]. Geology of Chemical Minerals, 40(4): 235-240. | |
[57] | 马腾坤, 孔晓华, 房晶瑞, 等, 2019. Mn-Ce/TiO2催化剂载体掺杂非矿材料改性对其脱硝活性的影响[J]. 环境工程, 37(6): 1-4. |
MA T K, KONG X H, FANG J R, et al., 2019. Effect of modification doped with nonmetallic mineral materials on denitration activity of Mn-Ce/TiO2 catalysts[J]. Environmental Engineering, 37(6): 1-4. | |
[58] | 彭进平, 赖焕然, 程高, 等, 2010. 改性硅藻土的制备、表征及其在富营养化水体除磷中的应用[J]. 生态环境学报, 19(8): 1936-1940. |
PENG J P, LAI H R, CHENG G, et al., 2010. The preparation, characterization and application of the modified diatomite[J]. Ecology and Environmental Sciences, 19(8): 1936-1940. | |
[59] | 乔淑芳, 刘辉, 陈娅娜, 2021. 重金属废水处理技术研究进展[J]. 当代化工研究 (9): 122-124. |
QIAO S F, LIU H, CHEN Y N, 2021. The research progress of heavy metal wastewater treatment technology[J]. Modern Chemical Research (9): 122-124. | |
[60] | 沈岩柏, 朱一民, 魏德洲, 等, 2005. 硅藻土对诺卡氏菌的吸附作用[J]. 东北大学学报, 26(2): 183-185. |
SHEN Y B, ZHU Y M, WEI D Z, et al., 2005. Adsorption process of diatomite for nocardia[J]. Journal of Northeastern University (Natural Science), 26(2): 183-185. | |
[61] | 石德智, 王攀, 胡春艳, 等, 2018. 硅铝调控与晶种诱导对水热稳定飞灰中重金属的协同影响[J]. 化工学报, 69(8): 3651-3661. |
SHI D Z, WANG P, HU C Y, et al., 2018. Synergistic effect of silicon-aluminum addition and seed-induced on stabilization of heavy metals in MSW incineration fly ash during hydrothermal process[J]. CIESC Journal, 69(8): 3651-3661. | |
[62] | 王宇霞, 郝秀珍, 苏玉红, 等, 2016. 不同钝化剂对Cu、Cr和Ni复合污染土壤的修复研究[J]. 土壤, 48(1): 123-130. |
WANG Y X, HAO X Z, SU Y H, et al., 2016. Remediation of heavy metal contaminated soil with different amendments[J]. Soils, 48(1): 123-130. | |
[63] | 吴蕾, 陈云峰, 2011. 改性硅藻土用于巢湖水脱磷研究[J]. 环境工程学报, 5(4): 777-782. |
WU L, CHEN Y F, 2011. Research on phosphorus removal from Chao Lake water with modified diatomite[J]. Chinese Journal of Environmental Engineering, 5(4): 777-782. | |
[64] | 伍敏瞻, 张政科, 陈思莉, 等, 2021. 水体突发铍污染应急吸附材料筛选实验研究[J]. 水处理技术, 47(5): 78-82. |
WU M Z, ZHANG Z K, CHEN S L, et al., 2021. Experimental study on screening of emergency adsorption materials for sudden water polluted by beryllium[J]. Technology of Water Treatment, 47(5): 78-82. | |
[65] | 谢辉, 包樱钰, 李菲菲, 等, 2019. A2/O生活污水处理系统中抗生素抗性基因的分布及去除[J]. 环境工程, 37(12): 80-89. |
XIE H, BAO Y Y, LI F F, et al., 2019. Distribution and removal of antibiotic resistance genes in an A2/O domestic wastewater treatment plant[J]. Environmental Engineering, 37(12): 80-89. | |
[66] | 易炜林, 王欣, 马炯, 2015. 7种改性硅藻土对Cd2+、Pb2+、Cu2+的吸附性能对比[J]. 环境工程学报, 9(6): 2857-2863. |
YI W L, WANG X, MA J, 2015. Adsorption characteristics of 7 modified diatomite materials for Cd2+, Pb2+, Cu2+[J]. Chinese Journal of Environmental Engineering, 9(6): 2857-2863. | |
[67] | 于颖浩, 张婷, 王泽康, 等, 2022. 硅藻土及其复合物处理有机污染物的研究进展[J]. 化工新型材料, 50(1): 308-312. |
YU Y H, ZHANG T, WANG Z K, et al., 2022. Research progress on treatment of organic pollutants by diatomite and its complexes[J]. New Chemical Materials, 50(1): 308-312. | |
[68] | 詹树林, 林俊雄, 方明晖, 等, 2006. 硅藻土在工业污水处理中的应用研究进展[J]. 工业水处理, 26(9): 10-13. |
ZHAN S L, LIN J X, FANG M H, et al., 2006. Research progress of the application of diatomite to industrial wastewater treatment[J]. Industrial Water Treatment, 26(9): 10-13. | |
[69] | 张五一, 杨清, 陈赓, 等, 2019. 硅藻土改性及其在环境领域的应用[J]. 广东化工, 46(23): 49. |
ZHANG W Y, YANG Q, CHEN G, et al., 2019. Modification of diatomite and its application in the field of environment[J]. Guangdong Chemical Industry, 46(23): 49. | |
[70] | 张馨予, 彭敬东, 2018. “微超酸”改性硅藻土对Pb2+、Cu2+、Cd2+的吸附性能研究[J]. 西南师范大学学报 (自然科学版), 43(9): 90-94. |
ZHANG X Y, PENG J D, 2018. On absorption of Pb2+, Cu2+, Cd2+ ions by modified diatomite[J]. Journal of Southwest China Normal University (Natural Science Edition), 43(9): 90-94. | |
[71] | 张秀兰, 贾鑫, 鲁建江, 2015. 高分子材料在重金属吸附中的研究进展[J]. 工业水处理, 35(6): 19-22. |
ZHANG X L, JIA X, LU J J, 2015. Research progress in polymer materials in heavy metals adsorption[J]. Industrial Water Treatment, 35(6): 19-22. | |
[72] | 张宇, 2017. 硅藻土和蒙脱石定向改性抑制燃煤超细颗粒物的生成[D]. 武汉: 华中科技大学: 1-59. |
ZHANG Y, 2017. Investigation of reducing ultrafine particulate matter formation by adding modified diatomite and montmorillonite during coal combustion[D]. Wuhan: Huazhong University of Science & Technology: 1-59. | |
[73] | 赵益华, 贾凯悦, 季民, 等, 2020. 壳聚糖改性硅藻土除藻性能及生态安全性评价[J]. 生态环境学报, 29(12): 2441-2448. |
ZHAO Y H, JIA K Y, JI M, et al., 2020. Algae removal performance and ecological safety evaluation of diatomite modified by chitosan[J]. Ecology and Environmental Sciences, 29(12): 2441-2448. | |
[74] |
郑水林, 孙志明, 胡志波, 等, 2014. 中国硅藻土资源及加工利用现状与发展趋势[J]. 地学前缘, 21(5): 274-280.
DOI |
ZHENG S L, SUN Z M, HU Z B, et al., 2014. The processing and utilization of China diatomite resource and its development trend[J]. Earth Science Frontiers, 21(5): 274-280. | |
[75] | 朱健, 王平, 雷明婧, 等, 2017. 液/固体系Cu2+、Zn2+、Mn2+在硅藻土表面的吸附行为与特性[J]. 环境科学学报, 37(9): 3370-3380. |
ZHU J, WANG P, LEI M J, et al., 2017. Adsorption behavior and characteristics of Cu2+, Zn2+, Mn2+ onto diatomite in liquid/solid system[J]. Acta Scientiae Circumstantiae, 37(9): 3370-3380. | |
[76] | 朱健, 王平, 林艳, 等, 2016. 不同产地硅藻土原位控制土壤镉污染差异效应与机制[J]. 环境科学, 37(2): 717-725. |
ZHU J, WANG P, LIN Y, et al., 2016. Differential effect and mechanism of in situ immobilization of cadmium contamination in soil using diatomite produced from different areas[J]. Environmental Science, 37(2): 717-725. |
[1] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[2] | WANG Qian, WANG Jinlong, TANG Xiaobin, LIANG Heng, LI Guibai. Concentration, Distribution and Fate of Pharmaceuticals and Personal Care Products (PPCPs) for Drinking Water Systems in A City [J]. Ecology and Environment, 2022, 31(6): 1193-1199. |
[3] | TANG Jiaxi, XIANG Biao, LI Yu, TAN Ting, ZHU Yongle, GAN Jianping. Study on Adsorption Characteristics of Fluoride in Water by Diatomite [J]. Ecology and Environment, 2022, 31(2): 335-343. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn