生态环境学报 ›› 2025, Vol. 34 ›› Issue (10): 1547-1557.DOI: 10.16258/j.cnki.1674-5906.2025.10.005
杨佳伟1,2(), 辜忠春1, 胡琦1, 戴薛1, 王晓荣1,2,*(
), 兰竹1, 何玲1,3, 刘学全1,2
收稿日期:
2025-03-21
出版日期:
2025-10-18
发布日期:
2025-09-26
通讯作者:
E-mail: 作者简介:
杨佳伟(1990年生),男,助理研究员,硕士,主要从事森林生态学研究。E-mail: Jiawei_yang19@126.com
基金资助:
YANG Jiawei1,2(), GU Zhongchun1, HU Qi1, DAI Xue1, WANG Xiaorong1,2,*(
), LAN Zhu1, HE Ling1,3, LIU Xuequan1,2
Received:
2025-03-21
Online:
2025-10-18
Published:
2025-09-26
摘要:
近年来亚热带地区季节性干旱频发,根系形态特征可能主导树木抗旱策略形成。为揭示不同根型树种对干旱胁迫的适应性机制,以亚热带典型的深根型树种樟(Camphora officinarum)、栓皮栎(Quercus variabilis)、青冈(Quercus glauca)和浅根型树种杉木(Cunninghamia lanceolata)、毛竹(Phyllostachys edulis)5个树种幼苗为对象,采用持续45 d的自然失水法模拟干旱胁迫过程,研究不同根型树种幼苗时期生物量分配、器官水分动态及根系形态可塑性的响应规律。结果表明,1)深根型树种幼苗通过根系形态优化与干物质再分配显著提升抗旱性。樟在短期胁迫下根生物量和细根比例较试验开始时分别增加28.7%和44.3%(p<0.05),根长与根尖数量随胁迫时间持续增长,以维持茎叶水分稳态;栓皮栎经历长期干旱胁迫后根冠比和细根比例分别升高20.4%和13.3%(p<0.05),其根系直径明显增大;青冈干旱胁迫后期叶生物量比升高44.4%(p<0.05),但根系可塑性不足导致其仅能适应中期干旱。2)浅根型树种幼苗更多依赖地上稳态策略,干旱胁迫导致根系衰退,进而削弱其抗旱能力。杉木根生物量、根冠比、全株含水率分别降低22.0%、29.0%、62.9%(p<0.05);毛竹通过茎部短期储水可短暂延缓干旱胁迫的影响,但随胁迫时间延长,根系性状持续退化,根生物量比降低36.4%,难以在长期干旱条件下存活。3)深根型树种通过根系形态优化与生物量分配的协同变化实现资源高效获取,而浅根型树种因根系收缩导致吸收能力下降。总体而言,深根型树种幼苗时期通过根系主动形态可塑性和干物质分配适应持续干旱,而浅根型树种依赖地上稳态的保守策略难以平衡短期生存与长期抗旱需求。同时根系抗旱优势不仅取决于构型深度,更依赖于生物量分配策略与器官功能可塑性的协同优化。
中图分类号:
杨佳伟, 辜忠春, 胡琦, 戴薛, 王晓荣, 兰竹, 何玲, 刘学全. 干旱胁迫对5种不同根型树种幼苗干物质分配和根系形态的影响[J]. 生态环境学报, 2025, 34(10): 1547-1557.
YANG Jiawei, GU Zhongchun, HU Qi, DAI Xue, WANG Xiaorong, LAN Zhu, HE Ling, LIU Xuequan. Effects of Drought Stress on Dry Matter Distribution and Root Morphology in Seedlings of Five Tree Species with Varying Root Types[J]. Ecology and Environmental Sciences, 2025, 34(10): 1547-1557.
有机质质量分数/ (g·kg−1) | 全氮质量分数/ (g·kg−1) | 全磷质量分数/ (g·kg−1) | 全钾质量分数/ (g·kg−1) | 水解性氮质量分数/ (mg·kg−1) | 有效磷质量分数/ (mg·kg−1) | 速效钾质量分数/ (mg·kg−1) | pH |
---|---|---|---|---|---|---|---|
19.4±2.31 | 1.10±0.150 | 0.220±0.0200 | 9.59±1.16 | 76.5±8.22 | 1.31±0.140 | 48.3±5.13 | 5.01±0.480 |
表1 土壤理化性质
Table 1 Table of physical and chemical properties of soil
有机质质量分数/ (g·kg−1) | 全氮质量分数/ (g·kg−1) | 全磷质量分数/ (g·kg−1) | 全钾质量分数/ (g·kg−1) | 水解性氮质量分数/ (mg·kg−1) | 有效磷质量分数/ (mg·kg−1) | 速效钾质量分数/ (mg·kg−1) | pH |
---|---|---|---|---|---|---|---|
19.4±2.31 | 1.10±0.150 | 0.220±0.0200 | 9.59±1.16 | 76.5±8.22 | 1.31±0.140 | 48.3±5.13 | 5.01±0.480 |
图2 干旱胁迫对5种树种幼苗生物量的影响 樟(Camphora officinarum)、栓皮栎(Quercus variabilis)、青冈(Quercus glauca)、杉木(Cunninghamia lanceolata)、毛竹(Phyllostachys edulis);图中不同字母表示某一树种在不同时期的差异显著(p<0.05),样本重复数n=3。下同
Figure 2 Effect of drought stress on the biomass of seedlings of five tree species
树种 | 参数 | t/d | F | p | |||
---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | ||||
樟 Camphora officinarum | 根长/cm | 2120±78.5b | 2750±96.9a | 2720±95.8a | 2870±134a | 31.863 | <0.001 |
根表面积/cm2 | 498±18.4b | 664±24.2a | 734±28.1a | 748±84.7a | 17.666 | <0.001 | |
根平均直径/mm | 0.510±0.0200a | 0.520±0.0200a | 0.510±0.0200a | 0.500±0.0100a | 0.278 | 0.840 | |
根体积/cm3 | 30.5±1.22b | 39.7±1.45a | 39.6±1.58a | 40.6±2.72a | 20.322 | <0.001 | |
根尖个数 | 830±30.0c | 977±34.0b | 1030±39.0a | 1070±40.0a | 24.764 | <0.001 | |
栓皮栎 Quercus variabilis | 根长/cm | 2170±83.1c | 2240±84.5c | 2440±84.0b | 2790±105a | 28.301 | <0.001 |
根表面积/cm2 | 587±21.4b | 616±21.7b | 842±33.8a | 885±33.0a | 88.602 | <0.001 | |
根平均直径/mm | 0.290±0.0100b | 0.290±0.0100b | 0.310±0.0100a | 0.320±0.0200a | 5.405 | 0.025 | |
根体积/cm3 | 72.3±2.69b | 76.4±2.84b | 104±3.75a | 110±3.86a | 97.833 | <0.001 | |
根尖个数 | 947±38.0c | 981±67.0bc | 1060±41.0b | 1220±41.0a | 18.789 | 0.001 | |
青冈 Quercus glauca | 根长/cm | 1250±45.2b | 1370±53.8a | 1090±39.0c | 1280±43.7b | 20.284 | <0.001 |
根表面积/cm2 | 275±10.4b | 359±13.3a | 266±10.9b | 277±10.7b | 44.212 | <0.001 | |
根平均直径/mm | 0.320±0.0200a | 0.330±0.0200a | 0.330±0.0200a | 0.320±0.0200a | 0.333 | 0.802 | |
根体积/cm3 | 13.3±0.530b | 17.4±0.550a | 12.8±0.400b | 13.4±0.490b | 55.109 | <0.001 | |
根尖个数 | 328±13.0b | 357±12.0a | 365±14.0a | 373±14.0a | 6.552 | 0.015 | |
杉木 Cunninghamia lanceolata | 根长/cm | 1180±46.7a | 965±38.0c | 1 060±39.3b | 930±37.8c | 22.376 | <0.001 |
根表面积/cm2 | 334±13.2a | 258±9.34b | 244±9.16b | 182±6.72c | 119.934 | <0.001 | |
根平均直径/mm | 0.710±0.0300a | 0.670±0.0300a | 0.610±0.0200b | 0.550±0.0200c | 24.118 | <0.001 | |
根体积/cm3 | 11.9±0.470a | 9.14±0.310b | 8.66±0.310b | 6.50±0.260c | 125.036 | <0.001 | |
根尖个数 | 174±7.00b | 189±7.00a | 194±7.00a | 198±8.00a | 6.270 | 0.017 | |
毛竹 Phyllostachys edulis | 根长/cm | 1280±48.8a | 1290±48.9a | 964±36.9b | 854±94.7b | 38.994 | <0.001 |
根表面积/cm2 | 351±13.7a | 328±12.7a | 205±8.17b | 170±13.4c | 160.818 | <0.001 | |
根平均直径/mm | 0.690±0.0300a | 0.640±0.0300b | 0.560±0.0200c | 0.510±0.0300d | 29.633 | <0.001 | |
根体积/cm3 | 15.1±0.580a | 14.1±0.670b | 10.9±0.390c | 8.81±0.330d | 97.899 | <0.001 | |
根尖个数 | 477±19.0b | 498±20.0ab | 517±19.0a | 525±19.0a | 3.769 | 0.059 |
表2 干旱胁迫对5种树种幼苗根系生长的影响
Table 2 Effect of drought stress on root growth of five tree species
树种 | 参数 | t/d | F | p | |||
---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | ||||
樟 Camphora officinarum | 根长/cm | 2120±78.5b | 2750±96.9a | 2720±95.8a | 2870±134a | 31.863 | <0.001 |
根表面积/cm2 | 498±18.4b | 664±24.2a | 734±28.1a | 748±84.7a | 17.666 | <0.001 | |
根平均直径/mm | 0.510±0.0200a | 0.520±0.0200a | 0.510±0.0200a | 0.500±0.0100a | 0.278 | 0.840 | |
根体积/cm3 | 30.5±1.22b | 39.7±1.45a | 39.6±1.58a | 40.6±2.72a | 20.322 | <0.001 | |
根尖个数 | 830±30.0c | 977±34.0b | 1030±39.0a | 1070±40.0a | 24.764 | <0.001 | |
栓皮栎 Quercus variabilis | 根长/cm | 2170±83.1c | 2240±84.5c | 2440±84.0b | 2790±105a | 28.301 | <0.001 |
根表面积/cm2 | 587±21.4b | 616±21.7b | 842±33.8a | 885±33.0a | 88.602 | <0.001 | |
根平均直径/mm | 0.290±0.0100b | 0.290±0.0100b | 0.310±0.0100a | 0.320±0.0200a | 5.405 | 0.025 | |
根体积/cm3 | 72.3±2.69b | 76.4±2.84b | 104±3.75a | 110±3.86a | 97.833 | <0.001 | |
根尖个数 | 947±38.0c | 981±67.0bc | 1060±41.0b | 1220±41.0a | 18.789 | 0.001 | |
青冈 Quercus glauca | 根长/cm | 1250±45.2b | 1370±53.8a | 1090±39.0c | 1280±43.7b | 20.284 | <0.001 |
根表面积/cm2 | 275±10.4b | 359±13.3a | 266±10.9b | 277±10.7b | 44.212 | <0.001 | |
根平均直径/mm | 0.320±0.0200a | 0.330±0.0200a | 0.330±0.0200a | 0.320±0.0200a | 0.333 | 0.802 | |
根体积/cm3 | 13.3±0.530b | 17.4±0.550a | 12.8±0.400b | 13.4±0.490b | 55.109 | <0.001 | |
根尖个数 | 328±13.0b | 357±12.0a | 365±14.0a | 373±14.0a | 6.552 | 0.015 | |
杉木 Cunninghamia lanceolata | 根长/cm | 1180±46.7a | 965±38.0c | 1 060±39.3b | 930±37.8c | 22.376 | <0.001 |
根表面积/cm2 | 334±13.2a | 258±9.34b | 244±9.16b | 182±6.72c | 119.934 | <0.001 | |
根平均直径/mm | 0.710±0.0300a | 0.670±0.0300a | 0.610±0.0200b | 0.550±0.0200c | 24.118 | <0.001 | |
根体积/cm3 | 11.9±0.470a | 9.14±0.310b | 8.66±0.310b | 6.50±0.260c | 125.036 | <0.001 | |
根尖个数 | 174±7.00b | 189±7.00a | 194±7.00a | 198±8.00a | 6.270 | 0.017 | |
毛竹 Phyllostachys edulis | 根长/cm | 1280±48.8a | 1290±48.9a | 964±36.9b | 854±94.7b | 38.994 | <0.001 |
根表面积/cm2 | 351±13.7a | 328±12.7a | 205±8.17b | 170±13.4c | 160.818 | <0.001 | |
根平均直径/mm | 0.690±0.0300a | 0.640±0.0300b | 0.560±0.0200c | 0.510±0.0300d | 29.633 | <0.001 | |
根体积/cm3 | 15.1±0.580a | 14.1±0.670b | 10.9±0.390c | 8.81±0.330d | 97.899 | <0.001 | |
根尖个数 | 477±19.0b | 498±20.0ab | 517±19.0a | 525±19.0a | 3.769 | 0.059 |
图6 干旱胁迫下5种树种根系不同径级根长分布 图中不同字母表示此径级根长在不同时期的差异显著(p<0.05)
Figure 6 Distribution of root lengths of different diameter classes in the root systems of five tree species under drought stress
图7 干旱胁迫下深根型和浅根型树种幼苗状态和根系生长相关性分析 图中SMC为土壤含水率,RB为根生物量,PB为全株生物量,R/PB为根生物量比,R/CB为根冠比,RM为根含水率,SM为茎含水率,LM为叶含水率,PM为全株含水率,RL为根长,RA为根表面积,RD为根平均直径,RV为根体积,RN为根尖数,SRL为比根长,SRSA为比表面积。上半图中*表示相关性在p<0.05水平上显著,**表示相关性在p<0.01水平上显著,***表示相关性在p<0.001水平上显著;蓝色系为正相关,红色系为负相关;下半图数据为变量因子两两之间的相关系数r
Figure 7 The correlation between the status of seedlings and the root growth of deep-rooted and shallow-rooted tree species under drought stress conditions
[1] | ANDEREGG W R L, SCHWALM C, BIONDI F, et al., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models[J]. Science, 349(6247): 528-532. |
[2] |
ANDREA C, JOHN P B, MOHSEN Z, et al, 2017. Root hairs enable high transpiration rates in drying soils[J]. New Phytologist, 216(3): 771-781.
DOI PMID |
[3] | ANGELA H, 2004. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 162(1): 9-24. |
[4] | BAI Y S, ZHOU Y F, YUE T, et al., 2023. Plant growth-promoting rhizobacteria Bacillus velezensis JB0319 promotes lettuce growth under salt stress by modulating plant physiology and changing the rhizosphere bacterial community[J]. Environmental and Experimental Botany, 32(2): 223-245. |
[5] | BEATRIZ O, NICOLA L, DANIEL V W, et al., 2018. Root branching toward water involves posttranslational modification of transcription factor ARF7[J]. Science, 362(6421): 1407-1410. |
[6] | BRENDAN C, TIMOTHY J B, CRAIG R B, et al., 2018. Triggers of tree mortality under drought[J]. Nature, 558: 531-539. |
[7] | GABRIEL M M, CAMARERO J J, PALACIO S, et al., 2009. Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction[J]. Trees, 23(4):787-799. |
[8] | IVANO B, CLAUDE H, MELISSA A, et al., 2015. How tree roots respond to drought[J]. Frontiers in Plant Science, 6(547): 1-16. |
[9] | JIAN S Q, ZHAO C Y, FANG S M, et al., 2015. The distribution of fine root length density for six artificial afforestation tree species in Loess Plateau of northwest China[J]. Forest Systems, 24(1): e003. |
[10] |
JONATHAN P L, TOBIAS W, 2015. Opportunities and challenges in the subsoil: pathways to deeper rooted crops[J]. Journal of Experimental Botany, 66(8): 2199-2210.
DOI PMID |
[11] | LI S B, HUANG X Y, ZHENG R P, et al., 2024. Xylem plasticity of root, stem, and branch in Cunninghamia lanceolata under drought stress: Implications for whole-plant hydraulic integrity[J]. Frontiers in Plant Science, 15: 1308360. |
[12] |
LIU Y, NADEZHDA N, HU W, et al., 2023. Evaporation-driven internal hydraulic redistribution alleviates root drought stress: mechanisms and modeling[J]. Plant Physiology, 193(2): 1058-1072.
DOI PMID |
[13] | MAX B, CHRISTOPHER J S, FRANCOIS R, et al., 2020. Persistence and plasticity in conifer water-use strategies[J]. Journal of Geophysical Research Biogeosciences, 125(2): 1-20. |
[14] |
POORTER H, JAGODZINSKI A M, RUIZ-PEINADO R, et al., 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents[J]. New Phytologist, 208(3): 736-749.
DOI PMID |
[15] | REICH P B, HOBBIE S E, LEE T D, 2014. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation[J]. Nature Geoscience, 7(12): 920-924. |
[16] | RICHARD D B, WIM H P, 2014. Belowground biodiversity and ecosystem functioning[J]. Nature, 515: 505-511. |
[17] | STEFANO M, GIULIA V, GABRIEL G K, et al., 2013. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade‐off[J]. New Phytologist, 198(1): 169-178. |
[18] |
THOMAS R, 1999. Source-sink regulation by sugar and stress[J]. Current Opinion in Plant Biology, 2(3): 198-206.
DOI PMID |
[19] | WANG X P, LIU H L, YU F L, et al., 2019. Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering[J]. Scientific Reports, 9(1): 8543. |
[20] | WU X P, LIU S R, LUAN J W, et al., 2023. Responses of water use in Moso bamboo (Phyllostachys heterocycla) culms of different developmental stages to manipulative drought[J]. Forest Ecosystems, 6(31): 1-14. |
[21] |
陈思佚, 唐燕, 何腾, 等, 2024. 秦岭9个树种的木质部栓塞特性与水力安全风险[J]. 植物生态学报, 48(9): 1213-1222.
DOI |
CHEN S Y, TANG Y, HE T, et al., 2024. Xylem embolism characteristics and hydraulic safety risks of nine tree species in Qinling Mountains[J]. Chinese Journal of Plant Ecology, 48(9): 1213-1222. | |
[22] | 曹志华, 吴中能, 刘俊龙, 等, 2022. 不同竹种对淹水胁迫的生理响应[J]. 中南林业科技大学学报, 42(8): 1-14. |
CAO Z H, WU Z N, LIU J L, et al., 2022. Physiological responses and comprehensive evaluation of different bamboo species under waterlogging stress[J]. Journal of Central South University of Forestry & Technology, 42(8): 1-14. | |
[23] | 冯潇, 田玲, 尹群, 等, 2024. 3种玉兰幼苗生长和生理特性对干旱胁迫的响应[J]. 北京林业大学学报, 46(9): 57-67. |
FENG X, TIAN L, YIN Q, et al., 2024. Response of growth and physiological characteristics of three Magnolia spp. seedlings to drought stress[J]. Journal of Beijing Forestry University, 46(9): 57-67. | |
[24] | 高歌, 李正才, 葛晓改, 等, 2022. 施氮对干旱胁迫下毛竹幼苗生物量和根系形态的影响[J]. 生态学杂志, 41(5): 858-864. |
GAO G, LI Z C, GE X G, et al., 2022. Effects of nitrogen addition on biomass and root morphology of Phyllostachys edulis seedlings under drought stress[J]. Chinese Journal of Ecology, 41(5): 858-864. | |
[25] | 金思雨, 彭祚登, 2022. 刺槐和油松干旱胁迫响应研究进展[J]. 西北林学院学报, 37(4): 79-91. |
JIN S Y, PENG Z D, 2022. Research progress on drought stress on Robinia pseudoacacia and Pinus tabuliformis[J]. Journal of Northwest Forestry University, 37(4): 79-91. | |
[26] |
李天良, 霍光伟, 乌云娜, 2022. 放牧影响下典型草原克氏针茅和多根葱根系属性比较[J]. 应用生态学报, 33(2): 360-368.
DOI |
LI T L, HUO G W, WU Y N, 2022. Comparison of root traits of Stipa krylovii and Allium polyrhizum under grazing in typical steppe[J]. Chinese Journal of Applied Ecology, 33(2): 360-368. | |
[27] | 李涛涛, 刘溢健, 叶佳丽, 等, 2024. 作物旱后复水补偿效应产生的源-库-流的响应及机制[J]. 水土保持学报, 38(2): 1-12, 338. |
LI T T, LIU Y J, YE J L, et al., 2024. Response and mechanism of source sink-flow caused by the compensation elfect of crop rehydration after drought[J]. Journal of Soil and Water Conservation, 38(2):1-12, 338. | |
[28] | 刘元玺, 王丽娜, 吴俊文, 等, 2024. 云南松幼苗生物量和非结构性碳水化合物特征的干旱响应[J]. 林业科学, 60(6): 71-85. |
LIU Y X, WANG L N, WU J W, et al., 2024. Non-Structural carbohydrate and biomass characteristics of Pinus yunnanensis seedlings under continuous drought Stress[J]. Scientia Silvae Sinicae, 60(6): 71-85. | |
[29] | 吴敏, 张文辉, 周建云, 等, 2014. 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响[J]. 生态学报, 34(15): 4223-4233. |
WU M, ZHANG W H, ZHOU J Y, et al., 2014. Effects of drought stress on growth, physiological and biochemical parameters in fine roots of Quercus variabilis Bl. Seedlings[J]. Acta Ecologica Sinica, 34(15): 4223-4233. | |
[30] | 吴小健, 李秉钧, 颜耀, 等, 2023. 不同种源杉木细根解剖性状的差异分析[J]. 森林与环境学报, 43(3): 232-239. |
WU X J, LI B J, YAN Y, et al., 2023. Analysis of differences in fine root anatomical traits of Chinese fir from different provenances[J]. Journal of Forest and Environment, 43(3): 232-239. | |
[31] | 万春燕, 余俊瑞, 朱师丹, 2024. 40种常见药用草本植物根系解剖特征研究[J]. 热带亚热带植物学报, 32(3): 409-416. |
WAN C Y, YU J R, ZHU S D, 2024. Root anatomical traits of 40 medicinal herbs[J]. Journal of Tropical and Subtropical Botany, 32(3): 409-416. | |
[32] | 万胜, 张虎国, 易杭, 等, 2024. 不同龄级及林分密度天山云杉的碳储量及其分配特征[J]. 森林与环境学报, 44(5): 521-529. |
WAN S, ZHANG H G, YI H, et al., 2024. Carbon storage and distribution characteristics of Picea schrenkiana var. tianschanica natural forest at different age classes and stand densities[J]. Journal of Forest and Environment, 44(5): 521-529. | |
[33] | 王凯, 郭晶晶, 王冬琦, 等, 2015. 樟子松和油松根叶对春季干旱胁迫的响应[J]. 生态学杂志, 34(11): 3132-3138. |
WANG K, GUO J J, WANG D Q, et al., 2015. Responses of roots and needles of Pinus sylvestris var. mongolica and Pinus tabuliformis to spring drought stress[J]. Chinese Journal of Ecology, 34(11): 3132-3138. | |
[34] | 汪堃, 南丽丽, 郭全恩, 等, 2022. 干旱胁迫对不同根型苜蓿根系构型的影响[J]. 生态学报, 42(20): 8365-8373. |
WANG K, NAN L L, GUO Q E, et al., 2022. Effects of drought stress on root architecture of different roo-type alfalfa[J]. Acta Ecologica Sinica, 42(20): 8365-8373. | |
[35] |
王小菁, 萧浪涛, 董爱武, 等, 2017. 2016年中国植物科学若干领域重要研究进展[J]. 植物学报, 52(4): 394-452.
DOI |
WANG X J, XIAO L T, DONG A W, et al., 2017. Research Advances in Plant Science in China in 2016[J]. Chinese Bulletin of Botany, 52(4): 394-452. | |
[36] |
王梓翔, 任悦, 鲁莹, 等, 2024. 干旱-复水对樟子松幼苗生理特征的影响[J]. 干旱区研究, 41(12): 2120-2131.
DOI |
WANG Z X, REN Y, LU Y, et al., 2024. Effects of drought stress and rehydration on the physiological characteristics of Pinus sylvestris var. mongolica seedlings[J]. Arid Zone Research, 41(12): 2120-2131. | |
[37] |
席本野, 邸楠, 曹治国, 等, 2018. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 42(9): 885-905.
DOI |
XI B Y, DI N, CAO Z G, et al., 2018. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees[J]. Chinese Journal of Plant Ecology, 42(9): 885-905. | |
[38] | 杨振亚, 周本智, 陈庆标, 等, 2018. 干旱对杉木幼苗根系构型及非结构性碳水化合物的影响[J]. 生态学报, 38(18): 6729-6740. |
YANG Z Y, ZHOU B Z, CHEN Q B, et al., 2018. Effects of drought on root architecture and non-structural carbohydrate of Cunninghamia lanceolata[J]. Acta Ecologica Sinica, 38(18): 6729-6740. | |
[39] | 张妍, 葛颜锐, 赵冉, 等, 2022. 木栓质的结构组分、生物合成及其功能的研究进展[J]. 科学通报, 67(9): 822-833. |
ZHANG Y, GE Y R, ZHAO R, et al., 2022. Progress on the structural components, biosynthesis and functions of suberin[J]. Chinese Science Bulletin, 67(9): 822-833. | |
[40] |
张玉翠, 谭江红, 闫彩霞, 2024. 湖北省区域性高温、干旱及其复合事件变化特征及危险性评估[J]. 干旱气象, 42(6): 825-835.
DOI |
ZHANG Y C, TAN J H, YAN C X, 2024. Variability characteristics and risk assessment of regional high temperature, drought and their compound events in Hubei Province[J]. Journal of Arid Meteorology, 42(6): 825-835. |
[1] | 郭家文, 刘凯, 刘高源, 高欣欣, 杨昆, 潘波. 外源不同形式蔗叶添加物对云南红壤及甘蔗生长的影响[J]. 生态环境学报, 2025, 34(7): 1100-1110. |
[2] | 杨可明, 彭里顺, 张燕海, 谷新茹, 陈新阳, 江克贵. 淮北矿区多种类型植被地上生物量反演研究[J]. 生态环境学报, 2024, 33(7): 1027-1035. |
[3] | 卫玺玺, 晁鑫艳, 郑景明, 唐可欣, 万龙, 周金星. 贺兰山东、西侧典型植物群落物种多样性差异及其影响因子[J]. 生态环境学报, 2024, 33(4): 520-530. |
[4] | 高星星, 包海, 丁艳旭. 夏季呼和浩特市生物源挥发性有机物排放速率空间分布[J]. 生态环境学报, 2024, 33(12): 1902-1913. |
[5] | 李瑞, 王邵军, 兰梦杰, 罗双, 夏佳慧, 杨胜秋, 解玲玲, 肖博, 郭晓飞, 王郑钧, 郭志鹏. 石漠化土壤碳矿速率对丛枝菌根真菌接种的响应[J]. 生态环境学报, 2024, 33(10): 1506-1515. |
[6] | 陈燕, 杨慧, 宁静, 朱德根, 吴夏, 黄芬, 马洋, 陈伟, Mitja Prelovšek, Nataša Ravbar. 重度干旱条件下典型岩溶区植被恢复过程中植物水分利用来源和效率研究[J]. 生态环境学报, 2024, 33(10): 1534-1543. |
[7] | 王传扬, 张小玲, 兰琳惠, 潘婕. 2022年夏季高温干旱对四川盆地污染物浓度变化的影响分析[J]. 生态环境学报, 2024, 33(1): 80-91. |
[8] | 刘晗, 王萍, 孙鲁沅, 秦文婧, 陈晓芬, 陈金, 周国朋, 梁婷, 刘佳, 李燕丽. 种植冬绿肥对红壤幼龄橘园土壤微生物量碳、氮和酶活的影响[J]. 生态环境学报, 2023, 32(9): 1623-1631. |
[9] | 唐志伟, 翁颖, 朱夏童, 蔡洪梅, 代雯慈, 王捧娜, 郑宝强, 李金才, 陈翔. 秸秆还田下中国农田土壤微生物生物量碳变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(9): 1552-1562. |
[10] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[11] | 姜懿珊, 孙迎韬, 张干, 罗春玲. 中国不同气候类型森林土壤微生物群落结构及其影响因素[J]. 生态环境学报, 2023, 32(8): 1355-1364. |
[12] | 赵海英, 刘致远, 袁梦仙, 张卿雯, 张琼, 曹际玲. 纳米银对玉米幼苗傅里叶红外光谱特性的影响[J]. 生态环境学报, 2023, 32(7): 1285-1292. |
[13] | 陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217. |
[14] | 胡启瑞, 吉春容, 李迎春, 王雪姣, 杨明凤, 郭燕云. 膜下滴灌棉花蕾期干旱胁迫对光合特性及产量的影响[J]. 生态环境学报, 2023, 32(6): 1045-1052. |
[15] | 陈科屹, 林田苗, 王建军, 何友均, 张立文. 天保工程20年对黑龙江大兴安岭国有林区森林碳库的影响[J]. 生态环境学报, 2023, 32(6): 1016-1025. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||