生态环境学报 ›› 2023, Vol. 32 ›› Issue (9): 1563-1573.DOI: 10.16258/j.cnki.1674-5906.2023.09.003
李航1,2(), 陈金平5, 丁兆华5, 舒洋3,4, 魏江生1,2,3,*(
), 赵鹏武3,4, 周梅3,4, 王宇轩1,2, 梁驰昊1,2, 张轶超4
收稿日期:
2023-07-07
出版日期:
2023-09-18
发布日期:
2023-12-11
通讯作者:
*魏江生。E-mail: weijiangsheng1969@163.com作者简介:
李航(1997年生),男,硕士研究生,主要从事森林生态研究。E-mail: 2020202040011@imau.edu.cn
基金资助:
LI Hang1,2(), CHEN Jinping5, DING Zhaohua5, SHU Yang3,4, WEI Jiangsheng1,2,3,*(
), ZHAO Pengwu3,4, ZHOU Mei3,4, WANG Yuxuan1,2, LIANG Chihao1,2, ZHANG Yichao4
Received:
2023-07-07
Online:
2023-09-18
Published:
2023-12-11
摘要:
森林火灾通过影响土壤生物和非生物部分对土壤氮循环产生长期影响。在全球林火频发背景下,为探讨火灾与土壤氮循环之间的长期响应关系,选择火后1、6、11年兴安落叶松林(Larix gmelinii)重度火烧迹地为研究对象,通过测定土壤氮组分、氮循环功能基因和土壤基本理化性质,分析火后土壤氮组分和氮循环功能基因丰度随恢复年限的变化趋势,以及主要影响因子。结果表明,1)土壤全氮、铵态氮和微生物量氮(MBN)含量随恢复年限呈现先降低后增加的趋势,其中MBN恢复较慢。火干扰导致土壤硝态氮含量在火后1年显著增加(P<0.05),火后6、11年均低于对照样地。2)固氮nifH功能基因在火后11年恢复到火烧前的水平,而反硝化nirS、nirK和nosZ功能基因在火后6年显著高于对照样地,火干扰显著提高了硝化amoA-AOA和amoA-AOB功能基因丰度。3)相关性分析表明固氮nifH功能基因与土壤全氮、铵态氮和MBN呈显著的正相关关系(P<0.05);硝化amoA-AOA功能基因与硝态氮呈极显著的正相关关系(P<0.01);反硝化nirS、nirK功能基因与硝态氮呈显著负相关关系(P<0.05)。4)冗余分析结果表明土壤有机质、含水率、速效钾是影响火后土壤氮循环功能基因的主要因子,解释度分别为63.8%、18.4%、85.8%。可见,森林火灾对兴安落叶松土壤氮组分和土壤中的氮循环功能基因有着长期的影响,并且火后土壤理化环境的改变也会间接对土壤氮循环的恢复产生影响,研究结果可为北方地区森林火灾对土壤氮循环影响机制提供数据支撑。
中图分类号:
李航, 陈金平, 丁兆华, 舒洋, 魏江生, 赵鹏武, 周梅, 王宇轩, 梁驰昊, 张轶超. 火干扰对兴安落叶松林土壤氮组分及土壤中氮循环功能基因的影响[J]. 生态环境学报, 2023, 32(9): 1563-1573.
LI Hang, CHEN Jinping, DING Zhaohua, SHU Yang, WEI Jiangsheng, ZHAO Pengwu, ZHOU Mei, WANG Yuxuan, LIANG Chihao, ZHANG Yichao. Effects of Fire Disturbance on Soil Nitrogen Fractions and Functional Genes of Nitrogen Cycling in Soil of Larix gmelinii Forests[J]. Ecology and Environment, 2023, 32(9): 1563-1573.
恢复年限 | 经纬度 | 海拔/m | 坡向 | 坡度/(°) | 植被类型 | 植被盖度/% | 土壤类型 | 平均胸径/cm | 平均树高/m |
---|---|---|---|---|---|---|---|---|---|
1 | 121°41'19"E−50°52'49"N | 1146.4 | 西南 | 4 | 兴安落叶松 | 0 | 棕色针叶林土 | 22.76 | 16.88 |
6 | 121°32'46"E−50°47'18"N | 909.1 | 西南 | 4 | 白桦-兴安落叶松 | 21 | 棕色针叶林土 | 7.43 | 11.57 |
11 | 121°58'26"E−50°61'25"N | 1008.5 | 西北 | 5 | 白桦 | 44 | 棕色针叶林土 | 5.35 | 5.10 |
对照 | 121°41'19"E−50°52'49"N | 1144.9 | 西南 | 4 | 兴安落叶松 | 75 | 棕色针叶林土 | 23.18 | 16.59 |
表1 火烧迹地详细信息概况
Table 1 Summary of detailed information of the fire site
恢复年限 | 经纬度 | 海拔/m | 坡向 | 坡度/(°) | 植被类型 | 植被盖度/% | 土壤类型 | 平均胸径/cm | 平均树高/m |
---|---|---|---|---|---|---|---|---|---|
1 | 121°41'19"E−50°52'49"N | 1146.4 | 西南 | 4 | 兴安落叶松 | 0 | 棕色针叶林土 | 22.76 | 16.88 |
6 | 121°32'46"E−50°47'18"N | 909.1 | 西南 | 4 | 白桦-兴安落叶松 | 21 | 棕色针叶林土 | 7.43 | 11.57 |
11 | 121°58'26"E−50°61'25"N | 1008.5 | 西北 | 5 | 白桦 | 44 | 棕色针叶林土 | 5.35 | 5.10 |
对照 | 121°41'19"E−50°52'49"N | 1144.9 | 西南 | 4 | 兴安落叶松 | 75 | 棕色针叶林土 | 23.18 | 16.59 |
靶基因 | 引物 | 扩增程序 | 参考文献 |
---|---|---|---|
nirS | Cd3aF: GTSAACGTSAAGGARACSGG | 95 ℃, 30 s; 95 ℃, 5 s, 60 ℃, 30 s (35×); 50 ℃, 30 s | Throbäck et al., |
R3cdR: GASTTCGGRTGSGTCTTGA | |||
nirK | F1aCu: ATCATGGTSCTGCCGCG | 95 ℃, 30 s; 95 ℃, 5 s, 60 ℃, 30 s (35×); 50 ℃, 30 s | Palmer et al., |
R3Cu: GCCTCGATCAGRTTGTGGTT | |||
nosZ | nosZF: CGCTGTTCITCGACAGYCAG | 95 ℃, 30 s; 95 ℃, 5 s, 60 ℃, 30 s (35×); 50 ℃, 30 s | Rich et al., |
nosZR: ATGTGCAKIGCRTGGCAGAA | |||
nifH | nifH-F: AAAGGYGGWATCGGYAARTCCACCAC | 95 ℃, 30 s; 95 ℃, 5 s, 60 ℃, 30 s (35×); 50 ℃, 30 s | Rösch et al., |
nifH-R: TTGTTSGCSGCRTACATSGCCATCAT | |||
amoA-AOB | AmoA-1F: GGGGTTTCTACTGGTGGT | 95 ℃, 1 min; 95 ℃, 10 s, 55 ℃, 30 s (30×); 72 ℃, 1 min | Rotthauwe et al., |
AmoA-2R: CCCCTCKGSAAAGCCTTCTTC | |||
amoA-AOA | Arch-AmoAF: STAATGGTCTGGCTTAGACG | 95 ℃, 1 min; 95 ℃, 10 s, 53 ℃, 30 s (30×); 72 ℃, 1 min | Francis et al., |
Arch-AmoAR: GCGGCCATCCATCTGTATGT |
表2 氮循环基因引物信息
Table 2 Nitrogen cycle gene primer information
靶基因 | 引物 | 扩增程序 | 参考文献 |
---|---|---|---|
nirS | Cd3aF: GTSAACGTSAAGGARACSGG | 95 ℃, 30 s; 95 ℃, 5 s, 60 ℃, 30 s (35×); 50 ℃, 30 s | Throbäck et al., |
R3cdR: GASTTCGGRTGSGTCTTGA | |||
nirK | F1aCu: ATCATGGTSCTGCCGCG | 95 ℃, 30 s; 95 ℃, 5 s, 60 ℃, 30 s (35×); 50 ℃, 30 s | Palmer et al., |
R3Cu: GCCTCGATCAGRTTGTGGTT | |||
nosZ | nosZF: CGCTGTTCITCGACAGYCAG | 95 ℃, 30 s; 95 ℃, 5 s, 60 ℃, 30 s (35×); 50 ℃, 30 s | Rich et al., |
nosZR: ATGTGCAKIGCRTGGCAGAA | |||
nifH | nifH-F: AAAGGYGGWATCGGYAARTCCACCAC | 95 ℃, 30 s; 95 ℃, 5 s, 60 ℃, 30 s (35×); 50 ℃, 30 s | Rösch et al., |
nifH-R: TTGTTSGCSGCRTACATSGCCATCAT | |||
amoA-AOB | AmoA-1F: GGGGTTTCTACTGGTGGT | 95 ℃, 1 min; 95 ℃, 10 s, 55 ℃, 30 s (30×); 72 ℃, 1 min | Rotthauwe et al., |
AmoA-2R: CCCCTCKGSAAAGCCTTCTTC | |||
amoA-AOA | Arch-AmoAF: STAATGGTCTGGCTTAGACG | 95 ℃, 1 min; 95 ℃, 10 s, 53 ℃, 30 s (30×); 72 ℃, 1 min | Francis et al., |
Arch-AmoAR: GCGGCCATCCATCTGTATGT |
恢复 年限/a | 土层/ cm | w(全氮)/ (gkg−1) | w(硝态氮)/ (mgkg−1) | w(铵态氮)/ (mgkg−1) | w(MBN)/ (mgkg−1) |
---|---|---|---|---|---|
1 | 0−10 | 1.17±0.39Ca | 2.9±0.71Aa | 0.96±0.10Ca | 77.41±0.97Ca |
10−20 | 0.86±0.17Cb | 0.22±0.12Bb | 0.74±0.19Ba | 64.36±1.82Db | |
6 | 0−10 | 1.54±0.28BCa | 0.16±0.04Ba | 1.35±0.18BCa | 81.89±0.27Ba |
10−20 | 1.36±0.35Ba | 0.21±0.07Ba | 0.60±0.15Bb | 76.02±0.11Bb | |
11 | 0−10 | 3.04±0.57Aa | 0.27±0.12Ba | 4.08±1.10Aa | 83.62±0.79Ba |
10−20 | 1.59±0.23Bb | 0.2±0.08Ba | 1.34±0.15Bb | 81.75±0.63Aa | |
对照 | 0−10 | 2.16±0.33Ba | 0.42±0.11Ba | 2.51±0.57Ba | 92.51±1.14Aa |
10−20 | 2.2±0.15Aa | 0.31±0.07Aa | 2.24±0.66Aa | 69.49±1.53Cb |
表3 不同恢复时间对土壤氮组分的影响
Table 3 Effect of different restoration times on soil N fraction
恢复 年限/a | 土层/ cm | w(全氮)/ (gkg−1) | w(硝态氮)/ (mgkg−1) | w(铵态氮)/ (mgkg−1) | w(MBN)/ (mgkg−1) |
---|---|---|---|---|---|
1 | 0−10 | 1.17±0.39Ca | 2.9±0.71Aa | 0.96±0.10Ca | 77.41±0.97Ca |
10−20 | 0.86±0.17Cb | 0.22±0.12Bb | 0.74±0.19Ba | 64.36±1.82Db | |
6 | 0−10 | 1.54±0.28BCa | 0.16±0.04Ba | 1.35±0.18BCa | 81.89±0.27Ba |
10−20 | 1.36±0.35Ba | 0.21±0.07Ba | 0.60±0.15Bb | 76.02±0.11Bb | |
11 | 0−10 | 3.04±0.57Aa | 0.27±0.12Ba | 4.08±1.10Aa | 83.62±0.79Ba |
10−20 | 1.59±0.23Bb | 0.2±0.08Ba | 1.34±0.15Bb | 81.75±0.63Aa | |
对照 | 0−10 | 2.16±0.33Ba | 0.42±0.11Ba | 2.51±0.57Ba | 92.51±1.14Aa |
10−20 | 2.2±0.15Aa | 0.31±0.07Aa | 2.24±0.66Aa | 69.49±1.53Cb |
基因 | 恢复时间 | 深度 | 恢复时间×深度 | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
nifH | 129.96 | <0.05 | 0.37 | 0.56 | 2.94 | 0.09 | ||
amoA-AOA | 57.05 | <0.05 | 64.44 | <0.05 | 60.12 | <0.05 | ||
amoA-AOB | 53.93 | <0.05 | 6.01 | 0.31 | 5.97 | <0.05 | ||
nirS | 54.91 | <0.05 | 54.15 | <0.05 | 15.17 | <0.05 | ||
nirK | 16.36 | <0.05 | 22.56 | <0.05 | 13.58 | <0.05 | ||
nosZ | 19.89 | <0.05 | 14.57 | <0.05 | 12.16 | <0.05 |
表4 火后恢复时间、土层深度及其交互作用对氮循环功能基因的影响
Table 4 Effects of post-fire recovery time, soil depth and their interactions on functional genes of nitrogen cycle
基因 | 恢复时间 | 深度 | 恢复时间×深度 | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
nifH | 129.96 | <0.05 | 0.37 | 0.56 | 2.94 | 0.09 | ||
amoA-AOA | 57.05 | <0.05 | 64.44 | <0.05 | 60.12 | <0.05 | ||
amoA-AOB | 53.93 | <0.05 | 6.01 | 0.31 | 5.97 | <0.05 | ||
nirS | 54.91 | <0.05 | 54.15 | <0.05 | 15.17 | <0.05 | ||
nirK | 16.36 | <0.05 | 22.56 | <0.05 | 13.58 | <0.05 | ||
nosZ | 19.89 | <0.05 | 14.57 | <0.05 | 12.16 | <0.05 |
轴序 | 特征值 | 基因-环境因子相关系数 | 基因数据变化累积百分比/% | 基因-环境因子关系变化累积百分比/% |
---|---|---|---|---|
1 | 0.9112 | 0.956 | 91.12 | 99.80 |
2 | 0.0015 | 0.815 | 91.27 | 99.96 |
3 | 0.0003 | 0.913 | 91.30 | 99.99 |
表5 0-10 cm土层氮循环功能基因与土壤理化因子的RDA结果
Table 5 RDA results of nitrogen cycle functional genes and soil physicochemical factors in 0−10 cm soil layer
轴序 | 特征值 | 基因-环境因子相关系数 | 基因数据变化累积百分比/% | 基因-环境因子关系变化累积百分比/% |
---|---|---|---|---|
1 | 0.9112 | 0.956 | 91.12 | 99.80 |
2 | 0.0015 | 0.815 | 91.27 | 99.96 |
3 | 0.0003 | 0.913 | 91.30 | 99.99 |
轴序 | 特征值 | 基因-环境因子相关系数 | 基因数据变化累积百分比/% | 基因-环境因子关系变化累积百分比/% |
---|---|---|---|---|
1 | 0.9499 | 0.978 | 94.99 | 99.34 |
2 | 0.0062 | 0.992 | 95.16 | 99.99 |
3 | 0.0001 | 0.753 | 95.62 | 100 |
表6 10-20 cm土层氮循环功能基因与土壤理化因子的RDA结果
Table 6 RDA results of nitrogen cycle functional genes and soil physicochemical factors in 10−20 cm soil layer
轴序 | 特征值 | 基因-环境因子相关系数 | 基因数据变化累积百分比/% | 基因-环境因子关系变化累积百分比/% |
---|---|---|---|---|
1 | 0.9499 | 0.978 | 94.99 | 99.34 |
2 | 0.0062 | 0.992 | 95.16 | 99.99 |
3 | 0.0001 | 0.753 | 95.62 | 100 |
[1] |
ALBERT-BELDA E, HINOJOSA M B, LAUDICINA V A, et al., 2022. Previous fire occurrence, but not fire recurrence, modulates the effect of charcoal and ash on soil C and N dynamics in Pinus pinaster Aiton forests[J]. Science of the Total Environment, 802: 149924.
DOI URL |
[2] |
BROOKES P C, POWLSON D S, JENKINSON D S, 1982. Measurement of microbial biomass phosphorus in soil[J]. Soil Biology and Biochemistry, 14(4): 319-329.
DOI URL |
[3] |
DELUCA T H, MACKENZIE M D, GUNDALE M J, et al., 2006. Wildfire produced charcoal directly influences nitrogen cycling in ponderosa pine forests[J]. Soil Science Society of America Journal, 70(2): 448-453.
DOI URL |
[4] |
FRANCIS C A, ROBERTS K J, BEMAN J M, et al., 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean[J]. Proceedings of the National Academy of Sciences, 102(41): 14683-14688.
DOI URL |
[5] |
GUSTINE R N, HANAN E J, ROBICHAUD P R, et al., 2022. From burned slopes to streams: how wildfire affects nitrogen cycling and retention in forests and fire-prone watersheds[J]. Biogeochemistry, 157(1): 51-68.
DOI |
[6] |
HART S C, DELUCA T H, NEWMAN G S, et al., 2005. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils[J]. Forest Ecology and Management, 220(1-3): 166-184.
DOI URL |
[7] |
KELLY C N, SCHWANER G W, CUMMING J R, et al., 2021. Metagenomic reconstruction of nitrogen and carbon cycling pathways in forest soil: influence of different hardwood tree species[J]. Soil Biology and Biochemistry, 156(5): 108226.
DOI URL |
[8] | KÖSTER K, AALTONEN H, BERNINGER F, et al., 2021. Impacts of wildfire on soil microbiome in boreal environments[J]. Current Opinion in Environmental Science & Health, 22: 100258. |
[9] |
LIU X, CHEN C R, HUGHES J M, et al., 2017. Temporal changes rather than long-term repeated burning predominately control the shift in the abundance of soil denitrifying community in an Australian sclerophyll forest[J]. Microbial Ecology, 73(1): 177-187.
DOI PMID |
[10] |
LIU X, CHEN C R, WANG W J, et al., 2015. Vertical distribution of soil denitrifying communities in a wet sclerophyll forest under long-term repeated burning[J]. Microbial Ecology, 70(4): 993-1003.
DOI PMID |
[11] |
LUDWIG S M, ALEXANDER H D, KIELLAND K, et al., 2018. Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest[J]. Global Change Biology, 24(12): 5841-5852.
DOI PMID |
[12] |
MEENA M, YADAV G, SONIGRA P, et al., 2023. Multifarious responses of forest soil microbial community toward climate change[J]. Microbial Ecology, 86(1): 49-74.
DOI |
[13] |
MIKITA-BARBATO R A, KELLY J J, TATE III R L, 2015. Wildfire effects on the properties and microbial community structure of organic horizon soils in the New Jersey Pinelands[J]. Soil Biology and Biochemistry, 86: 67-76.
DOI URL |
[14] |
NAVE L E, VANCE E D, SWANSTON C W, et al., 2011. Fire effects on temperate forest soil C and N storage[J]. Ecological Applications, 21(4): 1189-1201.
PMID |
[15] |
PALMER K, BIASI C, HORN M A, 2012. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra[J]. The ISME Journal, 6(5): 1058-1077.
DOI |
[16] | PEREG L, MATAIX-SOLERA J, MCMILLAN M, et al., 2018. The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil[J]. Science of the Total Environment, 619: 1079-1087. |
[17] |
RASTETTER E B, KLING G W, SHAVER G R, et al., 2021. Ecosystem recovery from disturbance is constrained by N cycle openness, vegetation-soil N distribution, form of N losses, and the balance between vegetation and soil-microbial processes[J]. Ecosystems, 24(3): 667-685.
DOI |
[18] |
RICH J J, HEICHEN R S, BOTTOMLEY P J, et al., 2003. Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils[J]. Applied and Environmental Microbiology, 69(10): 5974-5982.
DOI PMID |
[19] |
RÖSCH C, MERGEL A, BOTHE H, 2002. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil[J]. Applied and Environmental Microbiology, 68(8): 3818-3829.
DOI PMID |
[20] |
ROTTHAUWE J H, WITZEL K P, LIESACK W, 1997. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied and Environmental Microbiology, 63(12): 4704-4712.
DOI URL |
[21] |
SADEGHIFAR M, AGHA B A, POURREZA M, 2020. Comparing soil microbial eco-physiological and enzymatic response to fire in the semi-arid Zagros woodlands[J]. Applied Soil Ecology, 147: 103366.
DOI URL |
[22] |
THROBÄCK I N, ENWALL K, JARVIS Å, et al., 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE[J]. FEMS Microbiology Ecology, 49(3): 401-417.
DOI URL |
[23] |
YEAGER C M, NORTHUP D E, GROW C C, et al., 2005. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire[J]. Applied and Environmental Microbiology, 71(5): 2713-2722.
PMID |
[24] |
YERMAKOV Z, ROTHSTEIN D E, 2006. Changes in soil carbon and nitrogen cycling along a 72-year wildfire chronosequence in Michigan jack pine forests[J]. Oecologia, 149(4): 690-700.
PMID |
[25] |
ZHANG J, DUAN Q, MA J, et al., 2023. Nitrogen mineralization in grazed BSC subsoil is mediated by itself and vegetation in the Loess Plateau, China[J]. Journal of Environmental Management, 336: 117647.
DOI URL |
[26] |
ZHANG M Y, WANG W J, WANG D J, et al., 2018. Short-term responses of soil nitrogen mineralization, nitrification and denitrification to prescribed burning in a suburban forest ecosystem of subtropical Australia[J]. Science of the Total Environment, 642: 879-886.
DOI URL |
[27] | 鲍士旦, 1999. 土壤农化分析[M]. 北京: 中国农业出版社. |
BAO S D, 1999. Soil analysis in agricultural chemistry[M]. Beijing: China Agriculture Press. | |
[28] | 陈小伟, 刘发林, 韩育明, 2020. 火干扰后枫香次生林不同土层土壤理化性质研究[J]. 自然灾害学报, 29(3): 45-53. |
CHEN X W, LIU F L, HAN Y M, 2020. Soil physical and chemical properties of different soil layers in Liquidambar formosana secondary forest after fire disturbance[J]. Journal of Natural Disasters, 29(3): 45-53. | |
[29] | 丁凯, 张毓婷, 张俊红, 等, 2021. 不同密度杉木林对林下植被和土壤微生物群落结构的影响[J]. 植物生态学报, 45(1): 62-73. |
DING K, ZHANG Y T, ZAHNG J H, et al., 2021. Effects of Chinese fir plantations with different densities on understory vegetation and soil microbial community structure[J]. Chinese Journal of Plant Ecology, 45(1): 62-73.
DOI URL |
|
[30] |
高昌宇, 齐志远, 郑慧, 等, 2022. 土壤有效养分和微生物特征对短期不同放牧强度的响应[J]. 草地学报, 30(7): 1641-1650.
DOI |
GAO C Y, QI Z Y, ZHENG H, et al., 2022. Response of soil available nutrients and microbial characteristics to short-term grazing intensities[J]. Acta Agrestia Sinica, 30(7): 1641-1650. | |
[31] | 郝帅, 王星, 张秋良, 等, 2022. 大兴安岭火烧迹地遥感提取研究[J]. 林业资源管理 (2):75-81. |
HAO S, WANG X, ZHANG, Q L, et al., 2022. Study on remote sensing extractions of burned areas in Greater Khingan Mountains[J]. Forest Resources Management (2): 75-81. | |
[32] | 胡贝贝, 张玉聪, 万俊锋, 2021. 硝态氮浓度对短程反硝化的反硝化速率影响研究[J]. 应用化工, 50(6): 1468-1471, 1477. |
HU B B, ZAHNG Y C, WAN J F, 2021. Effect of nitrate nitrogen concentration on denitrification efficiency of short cut denitrification[J]. Applied Chemical Industry, 50(6): 1468-1471, 1477. | |
[33] | 惠昊, 关庆伟, 王亚茹, 等, 2021. 不同森林经营模式对土壤氮含量及酶活性的影响[J]. 南京林业大学学报 (自然科学版), 45(4): 151-158. |
HUI H, GUAN Q W, WANG Y R, et al., 2021. Effects of different forest management modes on soil nitrogen content and enzyme activity[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 45(4): 151-158. | |
[34] |
刘瑞斌, 李莉, 陈鹏东, 等, 2016. 森林火灾对烟台蓁山次生林土壤性质的影响[J]. 生态环境学报, 25(8): 1300-1305.
DOI |
LIU R B, LI L, CHEN P D, et al., 2016. Effects of forest fire on soil properties of secondary forests on Zhenshan Mountain in Yantai, Shandong Province[J]. Ecology and Environmental Sciences, 25(8): 1300-1305. | |
[35] | 刘威, 赵园园, 陈小龙, 等, 2023. 土壤含水率对豫中植烟土壤微生物群落多样性及氮循环功能基因丰度的影响[J/OL]. 中国农业科技导报, 1-12 [2023-10-30]. https://doi.org/10.13304/j.nykjdb.2022.0810:1-12. |
LIU W, ZHAO Y Y, CHEN X L, et al., 2023. Effects of soil moisture content on microbial community diversity and abundance of nitrogen cycling genes in central Henan tobacco-growing soil[J/OL]. Journal of Agricultural Science and Technology, 1-12 [2023-10-30]. https://doi.org/10.13304/j.nykjdb.2022.0810:1-12. | |
[36] |
罗斯生, 罗碧珍, 魏书精, 等, 2020. 森林火灾对马尾松次生林土壤理化性质的影响[J]. 生态环境学报, 29(11): 2141-2152.
DOI |
LUO S S, LUO B Z, WEI S J, et al., 2020. Effects of forest fires on soil physical and chemical properties in secondary forest of Pinus massoniana[J]. Ecology and Environmental Sciences, 29(11): 2141-2152. | |
[37] | 裴广廷, 孙建飞, 贺同鑫, 等, 2021. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 45(1): 74-84. |
PEI G T, SUN J F, HE T X, et al., 2021. Effects of long-term human disturbances on soil microbial diversity and community structure in a karst grassland ecosystem of northwestern Guangxi, China[J]. Chinese Journal of Plant Ecology, 45(1): 74-84.
DOI URL |
|
[38] | 佘容, 杨晓燕, 肖文, 2021. 火干扰下的森林土壤微生物研究现状分析[J]. 四川林业科技, 42(3): 94-101. |
SHE R, YANG X Y, XIAO W, 2021. Research status on forest soil microbes under fire disturbance[J]. Journal of Sichuan Forestry Science and Technology, 42(3): 94-101. | |
[39] |
舒洋, 周梅, 赵鹏武, 等, 2021. 大兴安岭根河雷击火干扰后地表死可燃物负荷及影响因子[J]. 生态环境学报, 30(12): 2317-2323.
DOI |
SHU Y, ZHOU M, ZHAO P, et al., 2021. Surface dead fuel load and influencing factors after lighting fire disturbance in Genhe of Daxinganling[J]. Ecology and Environmental Sciences, 30(12): 2317-2323. | |
[40] |
宋佳珅, 张晓丽, 孔凡磊, 等, 2021. 生物质调理剂对川西北高寒草地沙化土壤养分和微生物群落特征的影响[J]. 应用生态学报, 32(6): 2217-2226.
DOI |
SONG J K, ZHANG X L, KONG F L, et al., 2021. Effects of biomass conditioner on soil nutrient and microbial community characteristics of alpine desertified grassland in northwest Sichuan, China[J]. Chinese Journal of Applied Ecology, 32(6): 2217-2226. | |
[41] | 孙龙, 李光新, 胡同欣, 等, 2021. 野外火灾所致的泥炭地碳损失研究进展[J]. 湿地科学, 19(5): 615-622. |
SUN L, LI G X, HU T X, et al., 2021. Advance in carbon loss of peatlands caused by wildfire[J]. Wetland Science, 19(5): 615-622. | |
[42] | 陶玉柱, 邸雪颖, 2013. 火对森林土壤微生物群落的干扰作用及其机制研究进展[J]. 林业科学, 49(11): 146-157. |
TAO Y Z, DI X Y, 2013. Fire interference on forest soil microbial communities and the mechanism: A review[J]. Scientia Silvae Sinicae, 49(11): 146-157. | |
[43] | 王博, 2021. 根河不同恢复时期火烧迹地土壤性状及其群落物种组成的变化特征[D]. 北京: 北京林业大学:10. |
WANG B, 2021. Variations of soil characteristics and community structure of the burn area in different restoration periods of Gen He[D]. Beijing: Beijing Forestry University:10. | |
[44] | 徐欢, 王芳芳, 李婷, 等, 2020. 冻融交替对土壤氮素循环关键过程的影响与机制研究进展[J]. 生态学报, 40(10): 3168-3182. |
XU H, WANG F F, LI T, et al., 2020. A review of freezing-thawing cycle effects on key processes of soil nitrogen cycling and the underlying mechanisms[J]. Acta Ecologica Sinica, 40(10): 3168- 3182. | |
[45] | 张亨宇, 沈建辛, 张洪波, 等, 2019. 林火对大兴安岭森林土壤微生物的影响[J]. 东北林业大学学报, 47(7): 99-102. |
ZHANG H Y, SHEN J X, ZHANG H B, et al., 2019. Effects of forest fire on soil microbial properties in the Daxing’an Mountains[J]. Journal of Northeast Forestry University, 47(7): 99-102. | |
[46] | 张琳, 王益, 舒梦, 等, 2017. 火烧对黄土高原草地土壤氮素净矿化速率和净硝化速率的影响[J]. 南京农业大学学报, 40(6): 1051-1057. |
ZHANG L, WANG Y, SHU M, et al., 2017. Effects of burning on soil net nitrogen mineralization rate and net nitrification rate in a semi-arid grassland on the Loess Plateau[J]. Journal of Nanjing Agricultural University, 40(6): 1051-1057. | |
[47] | 张兆鹏, 周晓敏, 闫敏, 等, 2022. 多源遥感影像林火信息检测和植被恢复动态监测[J]. 西南林业大学学报: 自然科学, 42(5): 145-157. |
ZHANG Z P, ZHOU X M, YAN M, et al., 2022. Forest fire information detection and vegetation restoration dynamic monitoring based on multi-source remote sensing images[J]. Journal of Southwest Forestry University (Natural Sciences), 42(5): 145-157. | |
[48] | 朱光艳, 胡同欣, 李飞, 等, 2018. 火后不同年限兴安落叶松林土壤氮的矿化速率及其影响因素[J]. 中南林业科技大学学报, 38(3): 88-96. |
ZHU G Y, HU T X, LI F, et al., 2018. Soil nitrogen mineralization rate and its impact factors in Larix gmelinii forest after different years fire disturbance[J]. Journal of Central South University of Forestry & Technology, 38(3): 88-96. | |
[49] |
朱义族, 李雅颖, 韩继刚, 等, 2019. 水分条件变化对土壤微生物的影响及其响应机制研究进展[J]. 应用生态学报, 30(12): 4323-4332.
DOI |
ZHU Y Z, LI Y Y, HAN J G, et al., 2019. Effects of changes in water status on soil microbes and their response mechanism: A review[J]. Chinese Journal of Applied Ecology, 30(12): 4323-4332. |
[1] | 唐志伟, 翁颖, 朱夏童, 蔡洪梅, 代雯慈, 王捧娜, 郑宝强, 李金才, 陈翔. 秸秆还田下中国农田土壤微生物生物量碳变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(9): 1552-1562. |
[2] | 刘晗, 王萍, 孙鲁沅, 秦文婧, 陈晓芬, 陈金, 周国朋, 梁婷, 刘佳, 李燕丽. 种植冬绿肥对红壤幼龄橘园土壤微生物量碳、氮和酶活的影响[J]. 生态环境学报, 2023, 32(9): 1623-1631. |
[3] | 陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217. |
[4] | 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. |
[5] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[6] | 喻阳华, 吴银菇, 宋燕平, 李一彤. 不同林龄顶坛花椒林地土壤微生物浓度与生物量化学计量特征[J]. 生态环境学报, 2022, 31(6): 1160-1168. |
[7] | 孙建波, 畅文军, 李文彬, 张世清, 李春强, 彭明. 香蕉不同生育期根际微生物生物量及土壤酶活的变化研究[J]. 生态环境学报, 2022, 31(6): 1169-1174. |
[8] | 舒洋, 陈魁, 李航, 魏江生, 赵鹏武, 周梅. 高纬度冻土区林火干扰对土壤碳释放影响研究进展[J]. 生态环境学报, 2022, 31(6): 1278-1284. |
[9] | 朱梦圆, 宋艳宇, 高思齐, 宫超, 刘桢迪, 马秀艳, 袁佳宝, 杨旭. 三江平原不同植被类型湿地土壤微生物碳源代谢多样性特征[J]. 生态环境学报, 2022, 31(12): 2310-2319. |
[10] | 刘秉儒. 土壤微生物呼吸热适应性与微生物群落及多样性对全球气候变化响应研究[J]. 生态环境学报, 2022, 31(1): 181-186. |
[11] | 刘小菊, 褚江涛, 张越, 单奇. 环境因子和火干扰因子对喀纳斯泰加林柳兰分布的影响[J]. 生态环境学报, 2022, 31(1): 37-43. |
[12] | 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征[J]. 生态环境学报, 2020, 29(1): 141-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||