生态环境学报 ›› 2023, Vol. 32 ›› Issue (3): 545-555.DOI: 10.16258/j.cnki.1674-5906.2023.03.012
张怀成1(), 韩红2, 王在峰1, 韩立钊3, 刘克4, 张桂芹2, 范晶2, 魏小锋2,*(
)
收稿日期:
2022-09-21
出版日期:
2023-03-18
发布日期:
2023-06-02
通讯作者:
*魏小锋,女,讲师,博士,主要研究方向为大气环境化学。E-mail:weixf@sdjzu.edu.cn作者简介:
张怀成(1963年生),男,研究员,主要研究方向为环境监测。E-mail: qzhang1993@163.com
基金资助:
ZHANG Huaicheng1(), HAN Hong2, WANG Zaifeng1, HAN Lizhao3, LIU Ke4, ZHANG Guiqin2, FAN Jing2, WEI Xiaofeng2,*(
)
Received:
2022-09-21
Online:
2023-03-18
Published:
2023-06-02
摘要:
城市扬尘作为大气颗粒物的主要来源之一,对环境空气质量的影响较大。为探究济南市不同区域城市扬尘物理特性、微观形貌和化学组分的季节变化特征,采集了济南市有代表性的四个区域(钢铁集聚区、城郊结合部、市区和县区)2021年不同季节的扬尘样品,分析了扬尘的比表面积、微观形貌、化学组分的变化特征。结果表明,春季扬尘颗粒粒径较小,比表面积较大;钢铁集聚区PM2.5占比最高,为5.26%,比表面积为351.3 m2·kg-1;其次为市区PM2.5占比较高,为3.49%,比表面积为247.5 m2·kg-1。扫描电镜结果显示钢铁集聚区和市区扬尘颗粒主要有规则的“块状”“簇状”“片状”的矿物颗粒、不规则的“链状”和“蓬松状”的烟尘集合体以及“球状”燃煤飞灰颗粒,钢铁集聚区链状密集的烟尘集合体主要来源于机动车尾气和燃煤,市区聚合蓬松状烟尘集合体主要来源于机动车尾气;春季矿物颗粒比例较大,冬季密集链状烟尘集合体和燃煤飞灰较多,主要来源于机动车尾气和燃煤,其他季节聚合蓬松状烟尘集合体较多,主要来源于机动车尾气。各区域扬尘PM2.5中水溶性离子Ca2+、SO42-和Na+含量较高。4个区域中各季节AE/CE值均小于1,说明济南市扬尘PM2.5呈碱性,市区冬季的AE/CE最高为0.36。扬尘PM2.5中碳组分均以OC为主,济南市各区域扬尘中OC/EC比值在5.4-17.5之间,均存在明显的二次有机碳的生成,且碳组分主要来自于燃煤和生物质燃烧排放。扬尘PM2.5中金属元素Si、Al和Fe含量较高,主要受土壤风沙、燃煤和钢铁冶炼影响。
中图分类号:
张怀成, 韩红, 王在峰, 韩立钊, 刘克, 张桂芹, 范晶, 魏小锋. 济南市城市扬尘的微观形貌和化学组分特征分析[J]. 生态环境学报, 2023, 32(3): 545-555.
ZHANG Huaicheng, HAN Hong, WANG Zaifeng, HAN Lizhao, LIU Ke, ZHANG Guiqin, FAN Jing, WEI Xiaofeng. Micromorphology Characteristics and Chemical Composition of Urban Dust in Ji'nan[J]. Ecology and Environment, 2023, 32(3): 545-555.
区域 | 春季 | 夏季 | 秋季 | 冬季 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
比表面积/ (m2·kg-1) | PM2.5占比/ % | 比表面积/ (m2·kg-1) | PM2.5占比/ % | 比表面积/ (m2·kg-1) | PM2.5占比/ % | 比表面积/ (m2·kg-1) | PM2.5占比/ % | ||||
城郊结合部 | 248.2 | 3.10 | 138.6 | 1.22 | 170.7 | 1.88 | 162.5 | 1.40 | |||
钢铁集聚区 | 351.3 | 5.26 | 211.2 | 2.45 | 143.5 | 1.39 | 148.3 | 1.57 | |||
县区 | 145.6 | 1.47 | 143.5 | 1.21 | 251.5 | 2.87 | 116.1 | 0.93 | |||
市区 | 247.5 | 3.49 | 155.6 | 1.66 | 180.9 | 2.30 | 207.4 | 2.48 |
表1 不同区域不同季节扬尘比表面积及扬尘PM2.5占比
Table 1 Dust specific surface area and proportion of PM2.5 in dust indifferent cities in seasons
区域 | 春季 | 夏季 | 秋季 | 冬季 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
比表面积/ (m2·kg-1) | PM2.5占比/ % | 比表面积/ (m2·kg-1) | PM2.5占比/ % | 比表面积/ (m2·kg-1) | PM2.5占比/ % | 比表面积/ (m2·kg-1) | PM2.5占比/ % | ||||
城郊结合部 | 248.2 | 3.10 | 138.6 | 1.22 | 170.7 | 1.88 | 162.5 | 1.40 | |||
钢铁集聚区 | 351.3 | 5.26 | 211.2 | 2.45 | 143.5 | 1.39 | 148.3 | 1.57 | |||
县区 | 145.6 | 1.47 | 143.5 | 1.21 | 251.5 | 2.87 | 116.1 | 0.93 | |||
市区 | 247.5 | 3.49 | 155.6 | 1.66 | 180.9 | 2.30 | 207.4 | 2.48 |
季节 | 钢铁集聚区 | 市区 | 城郊结合部 | 县区 |
---|---|---|---|---|
春季 | 0.22 | 0.19 | 0.17 | 0.27 |
夏季 | 0.17 | 0.13 | 0.17 | 0.17 |
秋季 | 0.26 | 0.13 | 0.21 | 0.18 |
冬季 | 0.06 | 0.36 | 0.22 | 0.07 |
表2 不同区域不同季节扬尘PM2.5中AE/CE
Table 2 AE/CE in dust PM2.5 in different regions and different seasons
季节 | 钢铁集聚区 | 市区 | 城郊结合部 | 县区 |
---|---|---|---|---|
春季 | 0.22 | 0.19 | 0.17 | 0.27 |
夏季 | 0.17 | 0.13 | 0.17 | 0.17 |
秋季 | 0.26 | 0.13 | 0.21 | 0.18 |
冬季 | 0.06 | 0.36 | 0.22 | 0.07 |
碳组分 | 季节 | 钢铁集聚区 | 市区 | 城郊结合部 | 县区 |
---|---|---|---|---|---|
w(OC)/% | 春季 | 3.7 | 4.2 | 8.5 | 7.0 |
夏季 | 6.8 | 5.4 | 3.9 | 6.0 | |
秋季 | 5.4 | 6.9 | 8.7 | 4.5 | |
冬季 | 5.2 | 5.4 | 6.0 | 3.9 | |
w(EC)/% | 春季 | 0.2 | 0.3 | 1.0 | 0.7 |
夏季 | 0.8 | 0.6 | 0.3 | 0.7 | |
秋季 | 0.7 | 0.5 | 0.8 | 0.4 | |
冬季 | 0.7 | 1.0 | 0.8 | 0.3 | |
w(OC)/w(EC) | 春季 | 17.5 | 15.6 | 9.0 | 9.5 |
夏季 | 8.4 | 9.0 | 13.9 | 8.7 | |
秋季 | 8.0 | 13.3 | 10.6 | 11.7 | |
冬季 | 7.0 | 5.4 | 7.5 | 15.8 |
表3 不同区域不同季节扬尘PM2.5中碳组分质量分数和w(OC)/w(EC)
Table 3 Carbon components in dust PM2.5 in different regions and different seasons
碳组分 | 季节 | 钢铁集聚区 | 市区 | 城郊结合部 | 县区 |
---|---|---|---|---|---|
w(OC)/% | 春季 | 3.7 | 4.2 | 8.5 | 7.0 |
夏季 | 6.8 | 5.4 | 3.9 | 6.0 | |
秋季 | 5.4 | 6.9 | 8.7 | 4.5 | |
冬季 | 5.2 | 5.4 | 6.0 | 3.9 | |
w(EC)/% | 春季 | 0.2 | 0.3 | 1.0 | 0.7 |
夏季 | 0.8 | 0.6 | 0.3 | 0.7 | |
秋季 | 0.7 | 0.5 | 0.8 | 0.4 | |
冬季 | 0.7 | 1.0 | 0.8 | 0.3 | |
w(OC)/w(EC) | 春季 | 17.5 | 15.6 | 9.0 | 9.5 |
夏季 | 8.4 | 9.0 | 13.9 | 8.7 | |
秋季 | 8.0 | 13.3 | 10.6 | 11.7 | |
冬季 | 7.0 | 5.4 | 7.5 | 15.8 |
[1] |
ALVES C A, EVTYUGINA M, VICENTE A M P, et al., 2018. Chemical profiling of PM10 from urban road dust[J]. Science of The Total Environment, 634: 41-51.
DOI URL |
[2] | BI C J, ZHOU Y, CHEN Z L, et al., 2018. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China[J]. Science of The Total Environment, 619-620: 1349-1357. |
[3] |
BI X H, FENG Y C, WU J H, et al., 2007. Source apportionment of PM10 in six cities of northern China[J]. Atmospheric Environment, 41(5): 903-912.
DOI URL |
[4] |
CHOW J C, WATSON J G, ASHBAUGH L L, et al., 2003. Similarities and differences in PM10 chemical source profiles for geological dust from the San Joaquin Valley, California[J]. Atmospheric Environment, 37(9-10): 1317-1340.
DOI URL |
[5] |
CHOW J C, WATSON J G, LU Z, et al., 1996. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX[J]. Atmospheric Environment, 30(12): 2079-2112.
DOI URL |
[6] | HAN B, BI X H, XUE Y H, et al., 2011. Source apportionment of ambient PM10 in urban areas of Wuxi, China[J]. Frontiers of Environmental Science & Engineering, 5(4): 552-563. |
[7] |
LIN Y C, LI Y C, AMESHO K T T, et al., 2020. Chemical characterization of PM2.5 emissions and atmospheric metallic element concentrations in PM2.5 emitted from mobile source gasoline-fueled vehicles[J]. Science of the Total Environment, 739: 139942.
DOI URL |
[8] |
WEI N N, XU Z Y, LIU J W, et al., 2019. Characteristics of size distributions and sources of water-soluble ions in Lhasa during monsoon and non-monsoon seasons[J]. Journal of Environmental Sciences, 82: 155-168.
DOI URL |
[9] | 邓文叶, 贾尔恒·阿哈提, 杨静, 等, 2017. 乌鲁木齐PM10和PM2.5的形貌特征与来源解析[J]. 环境工程, 35(8): 96-101. |
DENG W Y, JIAERHENG A, YANG J, et al., 2017. Morphology characteristics and source analysis of PM10 and PM2.5 in Urumqi[J]. Environmental Engineering, 35(8): 96-101. | |
[10] | 樊啸辰, 郎建垒, 程水源, 等, 2018. 北京市大气环境PM2.5和PM1及其碳质组分季节变化特征及来源分析[J]. 环境科学, 39(10): 4430-4438. |
FAN X C, LANG J L, CHENG S Y, 2018. Seasonal variation and source analysis for PM2.5, PM1 and their carbonaceous components in Beijing[J]. Environmental Science, 39(10): 4430-4438. | |
[11] | 方小珍, 孙列, 毕晓辉, 等, 2014. 宁波城市扬尘化学组成特征及其来源解析[J]. 环境污染与防治, 36(1): 55-59. |
FANG X Z, SUN L, BI X H, et al., 2014. The chemical compositions and sources apportionment of re-suspended dust in Ningbo[J]. Environmental Pollution & Control, 36(1): 55-59. | |
[12] | 冯于耀, 史建武, 钟曜谦, 等, 2020. 有色冶炼园区道路扬尘中重金属污染特征及健康风险评价[J]. 环境科学, 41(8): 3547-3555. |
FENG Y Y, SHI J W, ZHONG Y Q, et al., 2020. Pollution characteristics and health risk assessment of heavy metals in road dust from non-ferrous smelting parks[J]. Environmental Science, 41(8): 3547-3555. | |
[13] | 胡月琪, 李萌, 颜旭, 等, 2019. 北京市典型道路扬尘化学组分特征及年际变化[J]. 环境科学, 40(4): 1645-1655. |
HU Y Q, LI M, YAN X, et al., 2019. Characteristics and interannual variation of chemical components in typical road dust in Beijing[J]. Environmental Science, 40(4): 1645-1655. | |
[14] | 李冬, 陈建华, 张凯, 等, 2020. 保定市春季道路扬尘颗粒物中碳组分特征及来源分析[J]. 环境污染与防治, 42(10): 1293-1297. |
LI D, CHEN J H, ZHANG K, et al., 2020. Characteristics and source apportionment of carbon components in road dust particles of Baoding during spring[J]. Environmental Pollution & Control, 42(10): 1293-1297. | |
[15] |
李恒庆, 丁椿, 潘光, 等, 2019. 济南市居住区采暖季大气PM2.5中碳组分构成及变化分析[J]. 生态环境学报, 28(9): 1810-1817.
DOI |
LI H Q, DING C, PAN G, et al., 2019. Analysis on the composition and change of carbon components in PM2.5 of residential area in Jinan during heating period[J]. Ecology and Environmental Sciences, 28(9): 1810-1817. | |
[16] | 李廷昆, 冯银厂, 毕晓辉, 等, 2022. 城市扬尘污染主要成因与精准治尘思路[J]. 环境科学, 43(3): 1323-1331. |
LI T K, FENG Y C, BI X H, et al., 2022. Main problems and refined solutions of urban fugitive dust pollution in China[J]. Environmental Science, 43(3): 1323-1331. | |
[17] | 林孜, 姬亚芹, 林宇, 等, 2020. 鞍山市道路扬尘碳组分特征及来源解析[J]. 环境科学, 41(9): 3918-3923. |
LIN Z, JI Y Q, LIN Y, et al., 2020. Characteristics and source apportionment of carbon components in road dust in Anshan[J]. Environmental Science, 41(9): 3918-3923.
DOI URL |
|
[18] |
刘寿东, 张莉, 张园园, 等, 2018. 温湿度对南京北郊PM2.5中二次无机离子生成演化的影响[J]. 生态环境学报, 27(4): 714-721.
DOI |
LIU S D, ZHANG L, ZHANG Y Y, et al., 2018. Influences of temperature and humidity on formation and evolution of secondary aerosol inorganic ions of PM2.5 at northern suburban Nanjing[J]. Ecology and Environmental Sciences, 27(4): 714-721. | |
[19] | 鲁斯唯, 林婷, 李森琳, 等, 2015. 厦门城区秋季不同粒径大气颗粒物的微观形貌分析[J]. 厦门大学学报(自然科学版), 54(2): 216-223. |
LU S W, LIN T, LI S L, et al., 2015. Morphological characteristics of atmospheric aerosols with different sizes in Xiamen during autumn[J]. Journal of Xiamen University (Natural Science), 54(2): 216-223. | |
[20] | 宋晓晖, 毕晓辉, 吴建会, 等, 2012. 杭州市空气颗粒物污染特征及变化规律研究[J]. 环境污染与防治, 34(7): 60-63. |
SONG X H, BI X H, WU J H, et al., 2012. Study on the characters and variation of ambient particulate matter pollution in Hangzhou[J]. Environmental Pollution & Control, 34(7): 60-63. | |
[21] | 生态环境部, 2022. 2021年中国生态环境状况公报[EB/OL]. 北京: 生态环境部, (2022-05-26) [2022-09-21] http://www.mee.gov.cn/hjzl/sthjzk/. |
Ministry of Ecology and Environment, 2022. Bulletin of China's ecological environment 2021[EB/OL]. Beijing: Ministry of Ecology and Environment, (2022-05-26) [2022-09-21] http://www.mee.gov.cn/hjzl/sthjzk/. | |
[22] | 时宗波, 邵龙义, 李红, 等, 2002. 北京市西北城区取暖期环境大气中PM10的物理化学特征[J]. 环境科学, 23(1): 30-34. |
SHI Z B, SHAO L Y, LI H, et al., 2002. Physicochemical characterization of the PM10 in ambient air of north-western Beijing urban area during heating-period[J]. Environmental Science, 23(1): 30-34.
DOI URL |
|
[23] | 孙友敏, 范晶, 徐标, 等, 2022. 省会城市不同功能区大气PM2.5化学组分季节变化及来源分析[J]. 环境科学, 43(5): 2304-2316. |
SUN Y M, FAN J, XU B, et al., 2022. Source apportionment and seasonal changes of PM2.5 chemical components from different functional areas of a provincial capital city[J]. Environmental Science, 43(5): 2304-2316. | |
[24] | 田莎莎, 2019. 济南市秋冬季不同污染程度下PM2.5组分特征及来源解析[D]. 天津: 天津师范大学. |
TIAN S S, 2019. Characteristics and source apportionment of PM2.5components in different pollution levels of autumn and winter in Ji'nan[D]. Tianjin: Tianjin Normal University. | |
[25] | 王晓东, 王平, 2020. 开封大气扬尘颗粒物的来源解析[J]. 中国粉体技术, 26(4): 74-80. |
WANG X D, WANG P, 2018. Source apportionment of urban suspended dust in Kaifeng[J]. China Powder Science and Technology, 26(4): 74-80. | |
[26] | 王燕, 彭林, 李丽娟, 等, 2016. 晋城城市扬尘化学组成特征及来源解析[J]. 环境科学, 37(1): 82-87. |
WANG Y, PENG L, LI L J, et al., 2016. Chemical compositions and sources apportionment of re-suspended dust in Jincheng[J]. Environmental Science, 37(1): 82-87. | |
[27] | 王铮, 华蕾, 胡月琪, 等, 2007. 北京市无组织排放源颗粒物的粒度分布[J]. 中国环境监测, 23(2): 75-78. |
WANG Z, HUA L, HU Y Q, et al., 2007. Diameter distribution of particles from fugitive emission sources in Beijing[J]. Environmental Monitoring in China, 23(2): 75-78. | |
[28] | 魏欣, 毕晓辉, 董海燕, 等, 2012. 天津市夏季灰霾与非灰霾天气下颗粒物污染特征与来源解析[J]. 环境科学研究, 25(11): 1193-1200. |
WEI X, BI X H, DONG H Y, et al., 2012. Characteristics and sources of particulate matter during hazy and non-hazy episodes in Tianjin city in summer[J]. Research of Environmental Sciences, 25(11): 1193-1200. | |
[29] | 吴一鸣, 王乙斐, 周怡静, 等, 2019. 1995-2015年中国风蚀扬尘TSP、PM10和PM2.5排放清单及未来趋势预测[J]. 中国环境科学, 39(3): 908-914. |
WU Y M, WANG Y F, ZHOU Y J, et al., 2019. An inventory of atmospheric wind erosion dust emissions of China, 1995-2015[J]. China Environmental Science, 39(3): 908-914. | |
[30] | 武媛媛, 李如梅, 彭林, 等, 2017. 运城市道路扬尘化学组成特征及来源分析[J]. 环境科学, 38(5): 1799-1806. |
WU Y Y, LI R M, PENG L, et al., 2017. Chemical compositions and source apportionment of road dust in Yuncheng[J]. Environmental Science, 38(5): 1799-1806.
DOI URL |
|
[31] | 杨书申, 邵龙义, 李卫军, 等, 2007b. 上海市冬季可吸入颗粒物微观形貌和粒度分布[J]. 环境科学, 28(1): 20-25. |
YANG S S, SHAO L Y, LI W J, et al., 2007. Morphology and size distribution of inhalable particulates in Shanghai during winter[J]. Environmental Science, 28(1): 20-25. | |
[32] | 杨书申, 邵龙义, 沈蓉蓉, 等, 2007a. 上海市大气可吸入颗粒物的粒度分布分形特征[J]. 中国环境科学, 27(5): 594-598. |
YANG S S, SHAO L Y, SHEN R R, et al., 2007. Fractal dimensions of size distribution of PM10 in Shanghai[J]. China Environmental Science, 27(5): 594-598. | |
[33] | 杨书申, 邵龙义, 王志石, 等, 2009. 澳门夏季大气颗粒物单颗粒微观形貌分析[J]. 环境科学, 30(5): 1514-1519. |
YANG S S, SHAO L Y, WANG Z S, et al., 2009. Investigations of microscopic morphology of individual inhalable particulates in Macao in summer[J]. Environmental Science, 30(5): 1514-1519. | |
[34] | 张金, 姬亚芹, 邢雅彤, 等, 2020. 天津市高校夏季道路扬尘PM2.5中水溶性离子污染特征及来源[J]. 环境科学学报, 40(5): 1604-1610. |
ZHANG J, JI Y Q, XING Y T, et al., 2020. Characteristics and sources of water-soluble ions in road dust PM2.5 during summer in university campuses of Tianjin[J]. Acta Scientiae Circumstantiae, 40(5): 1604-1610. | |
[35] | 张静, 张衍杰, 方小珍, 等, 2017. 道路扬尘PM2.5中金属元素污染特征及健康风险评价[J]. 环境科学, 38(10): 4071-4076. |
ZHANG J, ZHANG Y J, FANG X Z, et al., 2017. Characteristics and health risk assessment of metallic elements in PM2.5 fraction of road dust[J]. Environmental Science, 38(10): 4071-4076.
DOI URL |
|
[36] | 张敏会, 王建明, 2018. 空气中重金属元素的分析方法研究进展[J]. 理化检验(化学分册), 54(7): 863-868. |
ZHANG M H, WANG J M, 2018. Recent progress of analytical methods for heavy metal elements in air[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 54(7): 863-868.
DOI |
|
[37] | 张涛, 孙彦敏, 2017. 石家庄市城市道路扬尘成分谱及特征分析[J]. 河北工业科技, 34(2): 150-154. |
ZHANG T, SUN Y M, 2017. Component spectrum and emission characteristic analysis of the urban road dust in Shijiazhuang City[J]. Hebei Journal of Industrial Science and Technology, 34(2): 150-154. | |
[38] | 张伟, 姬亚芹, 李树立, 等, 2018. 天津市春季道路降尘PM2.5和PM10中碳组分特征[J]. 环境科学研究, 31(2): 239-244. |
ZHANG W, JI Y Q, LI S L, et al., 2018. Characteristics of carbon fractions in PM2.5 and PM10of road dust fall during spring in Tianjin city[J]. Research of Environmental Sciences, 31(2): 239-244. | |
[39] | 张伟, 姬亚芹, 张军, 等, 2017. 辽宁典型城市道路扬尘PM2.5中水溶性无机离子组分特征及来源解析[J]. 环境科学, 38(12): 4951-4957. |
ZHANG W, JI Y Q, ZHANG J, et al., 2017. Characteristics and source apportionment of water-soluble inorganic ions in road dust PM2.5 in selected cities in Liaoning province[J]. Environmental Science, 38(12): 4951-4957. | |
[40] | 赵静琦, 姬亚芹, 张蕾, 等, 2018. 基于样方法的天津市春季道路扬尘PM2.5中水溶性离子特征及来源解析[J]. 环境科学, 39(5): 1994-1999. |
ZHAO J Q, JI Y Q, ZHANG L, et al., 2018. Characteristics and source apportionment of water-soluble inorganic ions in road dust PM2.5 during spring in Tianjin using the quadrat sampling method[J]. Environmental Science, 39(5): 1994-1999. | |
[41] | 郑永杰, 吕键, 2015. PM2.5中无机元素的污染特征和来源分析[J]. 科学技术与工程, 15(30): 58-62. |
ZHENG Y J, LÜ J, 2015. Pollution characteristics and sources analysis of elements in PM2.5[J]. Science Technology and Engineering, 15(30): 58-62. |
[1] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[2] | 李少宁, 李婷婷, 陶雪莹, 赵娜, 徐晓天, 鲁绍伟. 4种落叶树种释放有益挥发性有机物的比较研究[J]. 生态环境学报, 2023, 32(1): 123-128. |
[3] | 陈小南, 李琼雯, 余建平, 余顺海, 李双, 曹铭昌. 钱江源国家公园白颈长尾雉生境适宜性评价研究[J]. 生态环境学报, 2022, 31(9): 1832-1839. |
[4] | 马辉英, 李昕竹, 马鑫钰, 贡璐. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 2022, 31(6): 1124-1131. |
[5] | 王超, 杨倩楠, 张池, 李祥东, 陈静, 张晓龙, 陈金洁, 刘科学. 东南湿润区典型丹霞地貌土壤有机碳组分及其敏感性研究[J]. 生态环境学报, 2022, 31(6): 1132-1140. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||