生态环境学报 ›› 2022, Vol. 31 ›› Issue (8): 1616-1628.DOI: 10.16258/j.cnki.1674-5906.2022.08.014
石文静1(), 周翰鹏1, 孙涛2, 黄金涛1, 杨文焕1, 李卫平1,*(
)
收稿日期:
2022-03-22
出版日期:
2022-08-18
发布日期:
2022-10-10
通讯作者:
* 李卫平,E-mail: sjlwp@163.com作者简介:
石文静(1990年生),女,讲师,博士,主要研究方向为污染生态学、环境地球化学。E-mail: swj225@126.com
基金资助:
SHI Wenjing1(), ZHOU Hanpeng1, SUN Tao2, HUANG Jintao1, YANG Wenhuan1, LI Weiping1,*(
)
Received:
2022-03-22
Online:
2022-08-18
Published:
2022-10-10
摘要:
土壤重金属污染已严重威胁生态环境和人类健康。由于资源和成本的限制,确定土壤污染的优先控制因子和污染源是管控和治理土壤重金属污染的关键。于内蒙古河套地区某矿区及周边区域共采集31个土壤样品(0—20 cm),基于污染指数法、PMF模型、Monte Carlo模拟和USEPA健康风险评价模型等耦合模拟研究,探究其土壤重金属的污染特征、污染源及其对人体健康的危害,确定土壤重金属污染管控中的污染源和污染元素等优先控制因子,以期为矿区土壤重金属污染防治和管控提供科学依据。结果表明,Cd、Cu、Zn、Ni、Pb、Cr和As 7种重金属平均含量均超过内蒙古河套地区土壤背景值,Cu和Pb超过《土壤环境质量农用地土壤污染风险管控标准》(GB 15618—
中图分类号:
石文静, 周翰鹏, 孙涛, 黄金涛, 杨文焕, 李卫平. 矿区周边土壤重金属污染优先控制因子及健康风险评价研究[J]. 生态环境学报, 2022, 31(8): 1616-1628.
SHI Wenjing, ZHOU Hanpeng, SUN Tao, HUANG Jintao, YANG Wenhuan, LI Weiping. Research on Priority Control Factors and Health Risk Assessment of Heavy Metal Pollution in Soil Around Mining Areas[J]. Ecology and Environment, 2022, 31(8): 1616-1628.
等级 Level | Pi | 污染水平 Degree of pollution | P | 污染等级 Pollution level |
---|---|---|---|---|
1 | Pi ≤1.0 | 未污染 | P≤0.7 | 安全 |
2 | 1.0<Pi ≤2.0 | 轻度污染 | 0.7<P≤1.0 | 警戒线 |
3 | 2.0<Pi ≤3.0 | 中度污染 | 1.0<P≤2.0 | 轻度污染 |
4 | Pi >3.0 | 重度污染 | 2.0<P≤3.0 | 中度污染 |
5 | — | — | P>3 | 重度污染 |
表1 污染评价等级划分
Table 1 Classification of pollution assessment
等级 Level | Pi | 污染水平 Degree of pollution | P | 污染等级 Pollution level |
---|---|---|---|---|
1 | Pi ≤1.0 | 未污染 | P≤0.7 | 安全 |
2 | 1.0<Pi ≤2.0 | 轻度污染 | 0.7<P≤1.0 | 警戒线 |
3 | 2.0<Pi ≤3.0 | 中度污染 | 1.0<P≤2.0 | 轻度污染 |
4 | Pi >3.0 | 重度污染 | 2.0<P≤3.0 | 中度污染 |
5 | — | — | P>3 | 重度污染 |
参数符号 Parameter notation | 参数名称 (单位) Parameter name (unit) | 取值 Value | 文献 Literature |
---|---|---|---|
CS | 土壤中的污染物含量/(mg∙kg-1) | — | 本研究 |
IR | 土壤摄入率/(mg∙d-1) | 100 (成人), 200 (儿童) | 陈神剑, |
AF | 皮肤对土壤粘附因子/(mg∙cm-2) | 0.2 | 方晴等, |
TF | 转换因子/(kg∙mg-1) | 10-6 | 方晴等, |
EF | 暴露频率/(d∙a-1) | 180 | 陈神剑, |
ED | 暴露时间/a | 24 (成人), 6 (儿童) | 陈神剑, |
BW | 平均体质量/kg | 62 (成人), 儿童 (15.9) | 陈神剑, |
表2 暴露参数
Table 2 Exposure parameters
参数符号 Parameter notation | 参数名称 (单位) Parameter name (unit) | 取值 Value | 文献 Literature |
---|---|---|---|
CS | 土壤中的污染物含量/(mg∙kg-1) | — | 本研究 |
IR | 土壤摄入率/(mg∙d-1) | 100 (成人), 200 (儿童) | 陈神剑, |
AF | 皮肤对土壤粘附因子/(mg∙cm-2) | 0.2 | 方晴等, |
TF | 转换因子/(kg∙mg-1) | 10-6 | 方晴等, |
EF | 暴露频率/(d∙a-1) | 180 | 陈神剑, |
ED | 暴露时间/a | 24 (成人), 6 (儿童) | 陈神剑, |
BW | 平均体质量/kg | 62 (成人), 儿童 (15.9) | 陈神剑, |
项目 Project | As | Cu | Pb | Zn | Cd | Ni | Cr |
---|---|---|---|---|---|---|---|
RfDS | 3.00×10-3 | 4.00×10-2 | 3.50×10-3 | 3.00×10-1 | 1.00×10-3 | 2.00×10-2 | 1.50×100 |
RfDd | 3.83×10-6 | 1.20×10-2 | 5.20×10-3 | 6.00×10-2 | 2.50×10-5 | 8.00×10-4 | 1.95×10-2 |
SFS | 1.51×101 | — | — | — | 6.30×100 | 8.40×10-1 | 4.20×101 |
SFd | 1.50×100 | — | — | — | 6.10×100 | — | 2.00×101 |
表3 重金属不同暴露途径的RfD和致癌效率SF参考值
Table 3 Reference values of RfD and carcinogenic efficiency SF of different exposure routes of heavy metals
项目 Project | As | Cu | Pb | Zn | Cd | Ni | Cr |
---|---|---|---|---|---|---|---|
RfDS | 3.00×10-3 | 4.00×10-2 | 3.50×10-3 | 3.00×10-1 | 1.00×10-3 | 2.00×10-2 | 1.50×100 |
RfDd | 3.83×10-6 | 1.20×10-2 | 5.20×10-3 | 6.00×10-2 | 2.50×10-5 | 8.00×10-4 | 1.95×10-2 |
SFS | 1.51×101 | — | — | — | 6.30×100 | 8.40×10-1 | 4.20×101 |
SFd | 1.50×100 | — | — | — | 6.10×100 | — | 2.00×101 |
统计值 Statistics | 重金属含量 Heavy metal content | ||||||
---|---|---|---|---|---|---|---|
As | Cu | Pb | Zn | Cd | Ni | Cr | |
最大值 Maximum value/(mg∙kg-1) | 98.90 | 2202.00 | 1956.00 | 333.00 | 1.84 | 122.00 | 108.00 |
最小值 Minimum value/(mg∙kg-1) | 2.26 | 17.80 | 16.60 | 45.50 | 0.08 | 8.54 | 37.40 |
平均值 Average value/(mg∙kg-1) | 23.77 | 254.20 | 193.84 | 111.48 | 0.31 | 27.78 | 58.19 |
中值 Median/(mg∙kg-1) | 12.10 | 44.10 | 28.40 | 77.60 | 0.17 | 24.70 | 59.00 |
标准偏差 Standard deviation | 23.96 | 459.54 | 392.20 | 73.54 | 0.37 | 19.91 | 14.83 |
峰度 Kurtosis | 2.97 | 10.91 | 14.04 | 2.00 | 10.09 | 17.30 | 4.02 |
(GB 15618— (GB15618—2018) Risk screening value/(mg∙kg-1) | 25.00 | 100.00 | 170.00 | 300.00 | 0.60 | 190.00 | 250.00 |
表4 研究区土壤重金属含量统计特征值
Table 4 Statistical summary of heavy metals concentration in soils of the study area
统计值 Statistics | 重金属含量 Heavy metal content | ||||||
---|---|---|---|---|---|---|---|
As | Cu | Pb | Zn | Cd | Ni | Cr | |
最大值 Maximum value/(mg∙kg-1) | 98.90 | 2202.00 | 1956.00 | 333.00 | 1.84 | 122.00 | 108.00 |
最小值 Minimum value/(mg∙kg-1) | 2.26 | 17.80 | 16.60 | 45.50 | 0.08 | 8.54 | 37.40 |
平均值 Average value/(mg∙kg-1) | 23.77 | 254.20 | 193.84 | 111.48 | 0.31 | 27.78 | 58.19 |
中值 Median/(mg∙kg-1) | 12.10 | 44.10 | 28.40 | 77.60 | 0.17 | 24.70 | 59.00 |
标准偏差 Standard deviation | 23.96 | 459.54 | 392.20 | 73.54 | 0.37 | 19.91 | 14.83 |
峰度 Kurtosis | 2.97 | 10.91 | 14.04 | 2.00 | 10.09 | 17.30 | 4.02 |
(GB 15618— (GB15618—2018) Risk screening value/(mg∙kg-1) | 25.00 | 100.00 | 170.00 | 300.00 | 0.60 | 190.00 | 250.00 |
污染等级 Pollution level | As | Cu | Pb | Zn | Cd | Ni | Cr |
---|---|---|---|---|---|---|---|
未污染 Uncontaminated | 25.60% | 0.00% | 49.00% | 99.50% | 68.60% | 99.90% | 100.00% |
轻度污染 Light pollution | 43.00% | 59.20% | 42.50% | 0.50% | 30.90% | 0.01% | 0.00% |
中度污染 Moderately pollution | 21.90% | 17.20% | 6.90% | 0.00% | 0.40% | 0.00% | 0.00% |
表5 各重金属单因子指数处于不同污染水平的概率
Table 5 Probability of each heavy metal single factor index at different pollution levels
污染等级 Pollution level | As | Cu | Pb | Zn | Cd | Ni | Cr |
---|---|---|---|---|---|---|---|
未污染 Uncontaminated | 25.60% | 0.00% | 49.00% | 99.50% | 68.60% | 99.90% | 100.00% |
轻度污染 Light pollution | 43.00% | 59.20% | 42.50% | 0.50% | 30.90% | 0.01% | 0.00% |
中度污染 Moderately pollution | 21.90% | 17.20% | 6.90% | 0.00% | 0.40% | 0.00% | 0.00% |
单因子指数 One-Factor Index | As | Cu | Pb | Zn | Cd | Ni | Cr | 综合污染指数 Comprehensive pollution index |
---|---|---|---|---|---|---|---|---|
最大值 Maximum value | 3.95 | 22.02 | 11.51 | 1.11 | 3.06 | 0.64 | 0.43 | — |
平均值 Average value | 0.95 | 2.54 | 1.14 | 0.37 | 0.51 | 0.15 | 0.23 | 15.60 |
表6 内梅罗污染指数
Table 6 Nemero Pollution Index
单因子指数 One-Factor Index | As | Cu | Pb | Zn | Cd | Ni | Cr | 综合污染指数 Comprehensive pollution index |
---|---|---|---|---|---|---|---|---|
最大值 Maximum value | 3.95 | 22.02 | 11.51 | 1.11 | 3.06 | 0.64 | 0.43 | — |
平均值 Average value | 0.95 | 2.54 | 1.14 | 0.37 | 0.51 | 0.15 | 0.23 | 15.60 |
重金属 Heavy metal | As | Cu | Pb | Zn | Cd | Ni | Cr |
---|---|---|---|---|---|---|---|
As | 1 | ||||||
Cu | 0.593** | 1 | |||||
Pb | 0.682** | 0.341 | 1 | ||||
Zn | 0.584** | 0.764** | 0.528** | 1 | |||
Cd | 0.193 | 0.457** | 0.151 | 0.814** | 1 | ||
Ni | -0.381* | -0.225 | -0.310 | 0.214 | 0.636** | 1 | |
Cr | -0.505** | -0.156 | -0.402* | 0.040 | 0.349 | 0.755** | 1 |
表7 土壤重金属相关性分析
Table 7 Correlation analysis of heavy metals in soils
重金属 Heavy metal | As | Cu | Pb | Zn | Cd | Ni | Cr |
---|---|---|---|---|---|---|---|
As | 1 | ||||||
Cu | 0.593** | 1 | |||||
Pb | 0.682** | 0.341 | 1 | ||||
Zn | 0.584** | 0.764** | 0.528** | 1 | |||
Cd | 0.193 | 0.457** | 0.151 | 0.814** | 1 | ||
Ni | -0.381* | -0.225 | -0.310 | 0.214 | 0.636** | 1 | |
Cr | -0.505** | -0.156 | -0.402* | 0.040 | 0.349 | 0.755** | 1 |
重金属 Heavy metal | r2 | 斜率 Slope | 截距 Intercept |
---|---|---|---|
As | 0.751 | 0.652 | 5.533 |
Cu | 0.989 | 0.919 | 11.14 |
Pb | 0.999 | 0.982 | 1.993 |
Zn | 0.902 | 0.817 | 14.83 |
Cd | 0.867 | 0.878 | 0.007 |
Ni | 0.984 | 1.009 | -0.773 |
Cr | 0.942 | 0.928 | 3.900 |
表8 PMF模型土壤重金属实测值与模拟预测值拟合结果
Table 8 Fitting results of PMF model between measured and predicted values of soil heavy metals
重金属 Heavy metal | r2 | 斜率 Slope | 截距 Intercept |
---|---|---|---|
As | 0.751 | 0.652 | 5.533 |
Cu | 0.989 | 0.919 | 11.14 |
Pb | 0.999 | 0.982 | 1.993 |
Zn | 0.902 | 0.817 | 14.83 |
Cd | 0.867 | 0.878 | 0.007 |
Ni | 0.984 | 1.009 | -0.773 |
Cr | 0.942 | 0.928 | 3.900 |
[1] | CHENG W, CHANG A C, WU L, 2007. Assessing long-term environmental risks of trace elements in phosphate fertilizers[J]. Ecotoxicology & Environmental Safety, 67(1): 48-58. |
[2] |
FEI X F, LOU Z H, XIAO R, et al., 2020. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models[J]. Science of the Total Environment, 747(3): 141293.
DOI URL |
[3] |
GUAN Q Y, WANG F F, XU C Q, et al., 2017. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China[J]. Chemosphere, 193: 189-197.
DOI URL |
[4] |
HONG N, YANG B, TSANG D, et al., 2020. Comparison of pollutant source tracking approaches: Heavy metals deposited on urban road surfaces as a case study[J]. Environmental Pollution, 266(Part 3): 115253.
DOI URL |
[5] |
HU H J, HAN L, LI L Z, et al., 2021. Soil heavy metal pollution source analysis based on the land use type in Fengdong District of Xi’an, China[J]. Environmental Monitoring and Assessment, 193(10): 1-14.
DOI URL |
[6] |
HUANG L, WU H Y, JAN V, 2015. The health effects of exposure to arsenic-contaminated drinking water: A review by global geographical distribution[J]. International Journal of Environmental Health Research, 25(4): 432-452.
DOI PMID |
[7] |
IMRAN S, RAJA U, MA P M, 2019. Cristina P, Comparison of two receptor models PCA-MLR and PMF for source identification and apportionment of pollution carried by runoff from catchment and sub-watershed areas with mixed land cover in South Korea[J]. The Science of the total environment, 663: 764-775.
DOI PMID |
[8] |
JAIN S, SHAMA S K, VIJAYAN N, et al., 2021. Investigating the seasonal variability in source contribution to PM2.5 and PM10 using different receptor models during 2013-2016 in Delhi, India[J]. Environmental Science and Pollution Research, 28(4): 4660-4675.
DOI URL |
[9] |
LI Y F, ZHAO Z Q, YUAN Y, et al., 2019. Application of modified receptor model for soil heavy metal sources apportionment: a case study of an industrial city, China[J]. Environmental Science and Pollution Research, 26(16): 16345-16354.
DOI URL |
[10] |
LIU J, LIU Y J, LIU Y, et al., 2018. Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China[J]. Ecotoxicology and environmental safety, 164: 261-269.
DOI PMID |
[11] |
LÜ J S, WANG Y M, 2019. PMF receptor models and sequential Gaussian simulation to determine the quantitative sources and hazardous areas of potentially toxic elements in soils[J]. Geoderma, 353: 347-358.
DOI URL |
[12] |
LUO L, MA Y N, ZHANG S Z, et al., 2009. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 90(8): 2524-2530.
DOI PMID |
[13] | MEN C, LIU R M, XU L B, et al., 2019. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China[J]. Journal of Hazardous Materials, 388: 121763. |
[14] | PARK E J, KIM D S, PARK K, 2008. Monitoring of ambient particles and heavy metals in a residential area of Seoul, Korea[J]. Environmental Monitoring & Assessment, 137(1-3): 441-449. |
[15] |
SINGH U K, KUMAR B, 2017. Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India[J]. Chemosphere, 174: 183-199.
DOI PMID |
[16] | SUN J X, ZHAO M L, HUANG J L, et al., 2022. Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment[J]. Journal of Hazardous Materials, 423(Part A): 127116. |
[17] |
WANG F F, GUAN Q Y, TIAN J, et al., 2020. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor[J]. Catena, 191: 104573
DOI URL |
[18] |
WANG L W, JIN Y L, WEISS D J, et al., 2021. Possible application of stable isotope compositions for the identification of metal sources in soil[J]. Journal of Hazardous Materials, 407: 124812.
DOI URL |
[19] |
WANG S, CAI L M, WEN H H, et al., 2019. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China[J]. Science of The Total Environment, 655: 92-101.
DOI URL |
[20] |
ZHANG M, WANG X P, LIU C, et al., 2020. Identification of the heavy metal pollution sources in the rhizosphere soil of farmland irrigated by the Yellow River using PMF analysis combined with multiple analysis methods--using Zhongwei city, Ningxia, as an example[J]. Environmental Science and Pollution Research, 27(14): 16203-16214.
DOI URL |
[21] | 陈丹丹, 谭璐, 聂紫萌, 等, 2021. 湖南典型金属冶炼与采选行业企业周边土壤重金属污染评价及源解析[J]. 环境化学, 40(9): 2667-2679. |
CHEN D D, TAN L, NIE Z M, et al., 2021. Evaluation and source analysis of heavy metal pollution in the soilaround typical metal smelting and mining enterprisesin Hunan Province[J]. Environmental Chemistry, 40(9): 2667-2679. | |
[22] | 陈航, 王颖, 王澍, 2021. 铜山矿区周边农田土壤重金属来源解析及污染评价[J]. 环境科学, 43(05):2719-2731. |
CHEN H, WANG Y, WANG S, 2021. Source analysis and pollution assessment of heavy metals in farmland soil around Tongshan mining area[J]. Environmental Science, 43(05):2719-2731. | |
[23] | 陈神剑, 2020. 基于Monte Carlo模拟的土壤重金属生态风险评价与健康风险评价研究[D]. 合肥: 合肥工业大学: 24-25. |
CHEN S J, 2020. Research on soil heavy metal ecological risk assessment and health risk assessment based on Monte Carlo simulation[D]. Hefei: Hefei University of Technology: 24-25. | |
[24] | 成晓梦, 孙彬彬, 吴超, 等, 2022. 浙中典型硫铁矿区农田土壤重金属含量特征及健康风险[J]. 环境科学, 43(1): 442-453. |
CHENG X M, SUN B B, WU C, et al., 2022. Heavy metal concentrations characteristics and health risks of farmland soils in typical pyrite mining area of the central Zhejiang province, China[J]. Environmental Science, 43(1): 442-453. | |
[25] | 储杨阳, 杨龙, 周媛, 等, 2022. 典型生物滞留设施重金属累积分布特征与风险评价[J]. 环境科学, 43(07): 3608-3622. |
CHU Y Y, YANG L, ZHOU Y, et al., 2022. Distribution characteristics and risk assessment of accumulated heavy metals in bioretention systems[J]. Environmental Science, 43(07): 3608-3622. | |
[26] | 方晴, 冼萍, 蒙政成, 2021. 基于蒙特卡罗模拟的农用地土壤健康风险评价[J]. 环境工程, 39(2): 147-152. |
FANG Q, XIAN P, MENG Z C, 2021. Environmental health risk assessment model of agricultural land based on monte carlo simulation and its application[J]. Environmental Engineering, 39(2): 147-152. | |
[27] | 顾梦娜, 潘月鹏, 何月欣, 等, 2020. 稳定同位素模型解析大气氨来源的参数敏感性[J]. 环境科学, 41(7): 3095-3101. |
GU M N, PAN Y P, HE Y X, et al., 2020. Source apportionment of atmospheric ammonia: Sensitivity test based on stable isotope analysis in R language[J]. Environmental Science, 41(7): 3095-3101. | |
[28] | 郭杰, 王珂, 于琪, 等, 2021. 长江中游近岸表层沉积物重金属污染特征分析及风险评估[J]. 环境科学学报, 41(11): 4625-4636. |
GUO J, WANG K, YU Q, et al., 2021. Pollution characteristics of the heavy metals and their potential ecological risk assessment in nearshore sediments of the middle reaches of the Yangtze River[J]. Acta Scientiae Circumstantiae, 41(11): 4625-4636. | |
[29] | 国家环境保护总局, 2004. 土壤环境检测技术规范:HJ/T166-2004[S]. 北京: 中国环境出版社. |
State Environmental Protection Administration, 2004. Technical specification for soil environmental testing: HJ/T166-2004[S]. Beijing: China Environment Press. | |
[30] | 李娇, 滕彦国, 吴劲, 等, 2020. PMF模型解析土壤重金属来源的不确定性[J]. 中国环境科学, 40(2): 716-725. |
LI J, TENG Y G, WU J, et al., 2020. Uncertainty analysis of soil heavy metal source apportionment by PMF model[J]. China Environmental Science, 40(2): 716-725. | |
[31] | 刘洋, 何朝辉, 牛学奎, 等, 2022. 云南某矿区小流域土壤重金属健康风险评价[J]. 环境科学, 43(2): 936-945. |
LIU Y, HE Z H, NIU X K, et al., 2022. Health risk assessment of soil heavy metals in a small watershed of a mining area in Yunnan[J]. Environmental Science, 43(2): 936-945 | |
[32] | 曲春风, 李保华, 葛长字, 2014. 基于Monte Carlo模拟的潜在生态危害评价[J]. 江苏农业科学, 42(6): 320-323. |
QU C F, LI B H, GE C Z, 2014. Potential ecological hazards assessment based on Monte Carlo simulation[J]. Jiangsu Agricultural Sciences, 42(6): 320-323. | |
[33] | 王喜宽, 黄增芳, 苏美霞, 等, 2007. 河套地区土壤基准值及背景值特征[J]. 岩矿测试, 26(4): 287-292. |
WANG X K, HUANG Z F, SU M X, et al., 2007. Characteristics of reference and background values of soils in Hetao area[J]. Rock and Mineral Analysis, 26(4): 287-292. | |
[34] | 夏子书, 白一茹, 王幼奇, 等, 2022. 基于PMF模型的宁南山区小流域土壤重金属空间分布及来源解析[J]. 环境科学, 43(1): 432-441. |
XIA Z S, BAI Y R, WANG Y Q, et al., 2022. Spatial distribution and source analysis of soil heavy metals in a small watershed in the mountainous area of southern Ningxia based on PMF model[J]. Environmental Science, 43(1): 432-441. | |
[35] | 谢桃园, 高玉文, 谭林, 等, 2021. 土壤重金属空间特征及潜在生态风险评价--以西南某典型毒重石成矿区为例[J]. 环境生态学, 3(7): 17-23. |
XIE T Y, GAO Y W, TAN L, et al., 2021. Spatial characteristics and potential ecological risk assessment of heavy metals in soil: A typical toxic and heavy stone metallogenic area in southwest China was taken as an example[J]. Environmental Ecology, 3(7): 17-23. | |
[36] | 熊鸿斌, 陈神剑, 2020. 基于Monte Carlo-Hakanson模型的土壤重金属生态风险评价研究[J]. 农业环境科学学报, 39(8): 1706-1712. |
XIONG W B, CHEN S J, 2020. Reducing uncertainty in ecological risk assessment for heavy metal contamination based on Monte Carlo-Hakanson model[J]. Journal of Agro-Environment Science, 39(8): 1706-1712. | |
[37] | 徐小涛, 韩桥, 王明仕, 等, 2021. 安阳市大型工业区和周围社区土壤中重金属污染特征及健康风险评价[J]. 地球与环境, 49(5): 551-560. |
XU X T, HAN Q, WANG M S, et al., 2021. Pollution characteristics and health risk assessment of Heavy metals in soils of large industrial areas and surrounding communities in Anyang City[J]. Earth and Environment, 49(5): 551-560. | |
[38] | 杨阳, 代丹, 蔡怡敏, 等, 2015. 基于Monte Carlo模拟的土壤重金属综合风险评价与案例分析[J]. 环境科学, 36(11): 4225-4231. |
YANG Y, DAI D, CAI Y M, et al., 2015. Comprehensive risk assessment of soil heavy metals based on Monte Carlo simulation and case study[J]. Environmental Science, 36(11): 4225-4231. | |
[39] | 殷秀莲, 谢志宜, 汪婉萍, 等, 2021. 广州市土壤重金属元素源解析: 三种受体模型的比较[J]. 中国科学技术大学学报, 51(11): 813-821. |
YIN X L, XIE Z Y, WANG W P, 2021. Source apportionment of heavy metals in soil of Guangzhou: Comparison of three receptor models[J]. Journal of University of Science and Technology of China, 51(11): 813-821. | |
[40] | 袁旭峰, 2021. 农田土壤中镉的来源及水稻控镉生产技术[J]. 基层农技推广, 9(3): 95-97. |
YUAN X F, 2021. The source of cadmium in farmland soil and the production technology of cadmium control in rice[J]. Primary Agricultural Technology Extension, 9(3): 95-97. | |
[41] |
张双银, 吴琳娜, 张广映, 等, 2021. 都柳江上游沿岸喀斯特地区土壤重金属污染及健康风险分析[J]. 环境科学学报: 1-14[2022-07-12]. DOI: 10.13671/j.hjkxxb.2021.0474.
DOI |
ZHANG S Y, WU L N, ZHANG G Y, et al., 2021. oil heavy metal pollution analysis and health risk assessment in Karst areasalong the upper reaches of the Du Liujiang River[J]. Acta Scientiae Circumstantiae: 1-14[2022-07-12]. DOI: 10.13671/j.hjkxxb.2021.0474.
DOI |
|
[42] | 张云, 胡正生, 王艳, 等, 2011. 某氧化铜矿尾矿区重金属污染特征及农作物健康风险评价[J]. 有色金属工程, 11(4): 125-132. |
ZHANG Y, HU Z S, WANG Y, et al., 2011. Heavy metals pollution characteristics and crop health risk assessment around a copper oxide tailings pond[J]. Nonferrous Metals Engineering, 11(4): 125-132. | |
[43] | 中华人民共和国环境保护部, 2014. 污染场地风险评估技术导则:HJ 25.3-2014[S]. 北京: 中国环境科学出版社. |
Ministry of Environmental Protection of the People’s Republic of China, 2014. Technical Guidelines for Risk Assessment of Contaminated Sites: HJ 25.3-2014[S]. Beijing: China Environmental Science Press. | |
[44] | 中华人民共和国生态环境部, 2018. 土壤环境质量农用地土壤污染风险标准(试行):GB15618-2018[S]. 北京: 中国环境科学出版社. |
Ministry of Ecology and Environment of the People’s Republic of China, 2018. Soil environmental quality agricultural land soil pollution risk standard (Trial):GB15618-2018[S]. Beijing: China Environmental Science Press. |
[1] | 许肖云, 饶芝菡, 蒋红斌, 张巍, 陈超, 杨永安, 胡艳丽, 魏海川. 遂宁工业园区夏季VOCs污染特征及其对O3、SOA生成潜势研究[J]. 生态环境学报, 2023, 32(5): 956-968. |
[2] | 温丽容, 江明, 黄渤, 袁鸾, 周炎, 陆炜梅, 张莹, 刘明, 张力昀. 珠三角典型区域臭氧成因分析与VOCs来源解析——以中山为例[J]. 生态环境学报, 2023, 32(3): 500-513. |
[3] | 江明, 张子洋, 李婷婷, 林勃机, 张正恩, 廖彤, 袁鸾, 潘苏红, 李军, 张干. 基于氮同位素的珠三角典型地区大气PM2.5中NH4+来源解析[J]. 生态环境学报, 2022, 31(9): 1840-1848. |
[4] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
[5] | 陈景辉, 郭毅, 杨博, 屈撑囤. 省会城市土壤重金属污染水平与健康风险评价[J]. 生态环境学报, 2022, 31(10): 2058-2069. |
[6] | 王飞, 赵颖. 太原市污灌区农田土壤中多环芳烃污染特征及生态风险评价[J]. 生态环境学报, 2022, 31(1): 160-169. |
[7] | 石慧斌, 黄艺, 程馨, 李婷, 何敏, 王进进. 成都市冬季PM2.5中碳组分污染特征及来源解析[J]. 生态环境学报, 2021, 30(7): 1420-1427. |
[8] | 冉晓追, 刘鸿雁, 涂宇, 顾小凤, 于恩江. 大气TSP微观形貌、重金属分布特征及健康风险评价——以黔西北地质高背景与污染叠加区典型小流域为例[J]. 生态环境学报, 2021, 30(12): 2339-2350. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||