生态环境学报 ›› 2021, Vol. 30 ›› Issue (12): 2285-2293.DOI: 10.16258/j.cnki.1674-5906.2021.12.002
马炳鑫1(), 靖娟利1,2, 徐勇1,*(
), 何宏昌1, 刘兵1
收稿日期:
2021-07-22
出版日期:
2021-12-18
发布日期:
2022-01-04
通讯作者:
*徐勇(1988年生),男,讲师,博士,研究方向为气候变化和植被覆盖反演。E-mail: yongxu@glut.edu.cn作者简介:
马炳鑫(1996年生),男,硕士研究生,研究方向为生态遥感。E-mail: 1654397198@qq.com
基金资助:
MA Bingxin1(), JING Juanli1,2, XU Yong1,*(
), HE Hongchang1, LIU Bing1
Received:
2021-07-22
Online:
2021-12-18
Published:
2022-01-04
摘要:
滇黔桂岩溶区属于生态环境脆弱区,对其植被NPP(Net Primary Production)动态变化进行监测并探索其与气候变化的关系,对于研究区生态环境治理与保护具有重要意义。基于2000—2019年的MOD17A3 NPP数据,结合同期基于站点的气象数据,采用趋势分析、Mann-Kendall显著性检验、R/S分析及相关分析等方法,研究了滇黔桂岩溶区植被NPP的时空变化特征和未来趋势,并探讨了滇黔桂岩溶区植被NPP与气候变化之间的关系。研究结果表明:(1)2000—2019年滇黔桂岩溶区植被NPP均值为845.49 g∙m-2∙a-1(以C计),空间上呈现南高北低的分布格局,20 a间植被NPP总体呈现波动上升趋势,上升速度为4.02 g∙m-2∙a-1,呈上升趋势的面积占总面积的80.19%,其中呈显著上升的区域占46.60%;(2)研究区未来植被NPP以上升趋势为主,且未来同向变化趋势远大于反向变化趋势;(3)研究区气温对研究区植被NPP呈现显著促进作用,而降水、相对湿度和日照时数对研究区植被NPP无明显作用。气候变化对植被NPP的影响有明显的空间异质性,不同地带岩溶区植被NPP对气候变化的响应程度相差较大;(4)植被NPP对前0—1月气温和日照时数变化响应程度较高,而对前2—3月降水及相对湿度变化响应程度较高。
中图分类号:
马炳鑫, 靖娟利, 徐勇, 何宏昌, 刘兵. 2000—2019年滇黔桂岩溶区植被NPP时空变化及与气候变化的关系研究[J]. 生态环境学报, 2021, 30(12): 2285-2293.
MA Bingxin, JING Juanli, XU Yong, HE Hongchang, LIU Bing. Spatial-Temporal Changes of NPP and Its Relationship with Climate Change in Karst Areas of Yunnan, Guizhou and Guangxi from 2000 to 2019[J]. Ecology and Environment, 2021, 30(12): 2285-2293.
变化类型 Change type | 判断依据 Judgment based | 面积占比 Area proportion/% |
---|---|---|
显著增加 | S>0, |Z|>1.96 | 46.61 |
不显著增加 | S>0, |Z|<1.96 | 33.58 |
显著减少 | S<0, |Z|>1.96 | 15.13 |
不显著减少 | S<0, |Z|<1.96 | 4.68 |
表1 滇黔桂喀斯特地区植被NPP变化趋势
Table 1 Change trend of NPP in karst areas of Yunnan, Guizhou and Guangxi
变化类型 Change type | 判断依据 Judgment based | 面积占比 Area proportion/% |
---|---|---|
显著增加 | S>0, |Z|>1.96 | 46.61 |
不显著增加 | S>0, |Z|<1.96 | 33.58 |
显著减少 | S<0, |Z|>1.96 | 15.13 |
不显著减少 | S<0, |Z|<1.96 | 4.68 |
变化类型 Change type | 判断依据 Judgment based | 面积占比 Area proportion/% |
---|---|---|
1. 强持续显著增加 | S>0, |Z|>1.96, H>0.75 | 33.03 |
2. 强持续不显著增加 | S>0, |Z|<1.96, H>0.75 | 8.20 |
3. 弱持续显著增加 | S>0, |Z|>1.96, 0.5<H<0.75 | 13.27 |
4. 弱持续不显著增加 | S>0, |Z|<1.96, 0.5<H<0.75 | 22.86 |
5. 反持续显著减少 | S<0, |Z|>1.96, H<0.5 | 0.01 |
6. 反持续不显著减少 | S<0, |Z|<1.96, H<0.5 | 1.16 |
7. 反持续不显著增加 | S>0, |Z|<1.96, H<0.5 | 2.65 |
8. 反持续显著增加 | S>0, |Z|>1.96, H<0.5 | 0.09 |
9. 弱持续不显著减少 | S<0, |Z|<1.96, 0.5<H<0.75 | 8.27 |
10. 弱持续显著减少 | S<0, |Z|>1.96, 0.5<H<0.75 | 0.72 |
11. 强持续不显著减少 | S<0, |Z|<1.96, H>0.75 | 5.77 |
12. 强持续显著减少 | S<0, |Z|>1.96, H>0.75 | 3.97 |
表2 滇黔桂喀斯特地区植被NPP未来变化趋势
Table 2 Future change trend of NPP in karst areas of Yunnan, Guizhou and Guangxi
变化类型 Change type | 判断依据 Judgment based | 面积占比 Area proportion/% |
---|---|---|
1. 强持续显著增加 | S>0, |Z|>1.96, H>0.75 | 33.03 |
2. 强持续不显著增加 | S>0, |Z|<1.96, H>0.75 | 8.20 |
3. 弱持续显著增加 | S>0, |Z|>1.96, 0.5<H<0.75 | 13.27 |
4. 弱持续不显著增加 | S>0, |Z|<1.96, 0.5<H<0.75 | 22.86 |
5. 反持续显著减少 | S<0, |Z|>1.96, H<0.5 | 0.01 |
6. 反持续不显著减少 | S<0, |Z|<1.96, H<0.5 | 1.16 |
7. 反持续不显著增加 | S>0, |Z|<1.96, H<0.5 | 2.65 |
8. 反持续显著增加 | S>0, |Z|>1.96, H<0.5 | 0.09 |
9. 弱持续不显著减少 | S<0, |Z|<1.96, 0.5<H<0.75 | 8.27 |
10. 弱持续显著减少 | S<0, |Z|>1.96, 0.5<H<0.75 | 0.72 |
11. 强持续不显著减少 | S<0, |Z|<1.96, H>0.75 | 5.77 |
12. 强持续显著减少 | S<0, |Z|>1.96, H>0.75 | 3.97 |
图6 滇黔桂岩溶区植被NPP与降水(a)、气温(b)、相对湿度(c)及日照时数(d)的相关显著性
Fig. 6 Correlation significance between NPP and precipitation (a), temperature (b), relative humidity (c) and sunshine hours (d) in karst areas of Yunnan, Guizhou and Guangxi
图7 滇黔桂岩溶区植被NPP对降水(a)、气温(b)、相对湿度(c)及日照时数(d)变化最大响应滞后期
Fig. 7 The maximum response lag of NPP to the changes of precipitation (a), temperature (b), relative humidity (c) and sunshine hours (d) in the karst area of Yunnan, Guizhou and Guangxi
[1] |
GAO T, XU B, YANG X C, et al., 2017. Aboveground net primary productivity of vegetation along a climate-related gradient in a Eurasian temperate grassland: spatiotemporal patterns and their relationships with climate factors[J]. Environmental Earth Sciences, 76(1): 56.
DOI URL |
[2] |
KAMALI A, KHOSRAVI M, HAMIDIANPOUR M, 2020. Spatial-temporal analysis of net primary production (NPP) and its relationship with climatic factors in Iran[J]. Environmental Monitoring and Assessment, 192(11): 1-20.
DOI URL |
[3] |
MALLICK J, TALUKDAR S, ALSUBIH M, et al., 2021. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis[J]. Theoretical and Applied Climatology, 143(1): 823-841.
DOI URL |
[4] |
MICHALETZ S T, CHENG D, KERKHOFFA J, et al., 2014. Convergence of terrestrial plant production across global climate gradients[J]. Nature, 512(7512): 39-43.
DOI URL |
[5] |
PIAO S L, WANG X H, CIAIS P, et al., 2011. Changes in satellite‐derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006 [J]. Global change biology, 17(10): 3228-3239.
DOI URL |
[6] |
STOW D, DAESCHNER S, HOPE A, et al., 2003. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s[J]. International journal of Remote sensing, 24(5): 1111-1117.
DOI URL |
[7] |
TWINE T E, KUCHARIK C J, 2009. Climate impacts on net primary productivity trends in natural and managed ecosystems of the central and eastern United States[J]. Agricultural and Forest Meteorology, 149(12): 2143-2161.
DOI URL |
[8] |
WU L H, WANG S J, BAI X Y, et al., 2020. Climate change weakens the positive effect of human activities on karst vegetation productivity restoration in southern China[J]. Ecological Indicators, DOI: 10.1016/j.ecolind.2020.106392.
DOI |
[9] | 董丹, 倪健, 2011. 利用CASA模型模拟西南喀斯特植被净第一性生产力[J]. 生态学报, 31(7): 1855-1866. |
DONG D, NI J, 2011. Modeling changes of net primary productivity of karst vegetation in southwestern China using the CASA model[J]. Acta Ecologica Sinica, 31(7): 1855-1866. | |
[10] | 黄晓云, 林德根, 王静爱, 等, 2013. 气候变化背景下中国南方喀斯特地区NPP时空变化[J]. 林业科学, 49(5): 10-16. |
HUANG X Y, LIN D G, WANG J A, et al., 2013. Temporal and Spatial NPP Variation in the Karst Region in South China under the Background of Climate Change[J]. Scientra Silvae Sinicae, 49(5): 10-16. | |
[11] | 金芳芳, 2018. 西南山区生态特征的变化及其与人类活动的关系[D]. 开封: 河南大学. |
JIN F F, 2018. The Change of Ecological Characteristics of Mountainous Areas of Southwest China and lts Relationship with Human Activities[D]. Kaifeng: Henan University. | |
[12] | 靖娟利, 罗福林, 王永锋, 等, 2019. 1998-2017年滇黔桂岩溶区降水时空动态特征[J]. 水土保持研究, 26(5): 158-165. |
JING J L, LUO F L, WANG Y F, et al., 2019. Spatial and Temporal Dynamics of Precipitation in Dian-Qian-Gui Karst Area from 1998 to 2017 [J]. Research of Soil and Water Conservation, 26(5): 158-165. | |
[13] | 靖娟利, 王永锋, 2017. 滇黔桂岩溶区NDVI变化及其与气候因子的耦合关系[J]. 桂林理工大学学报, 37(1): 146-153. |
JING J L, WANG Y F, 2017. NDVI variation and coupling relation with climate factors in Yunnan-Guizhou-Guangxi karst area[J]. Journal of Guilin University of Technology, 37(1): 146-153. | |
[14] | 兰小丽, 孙慧兰, 许玉凤, 2020. 贵州植被NPP时空格局及其对气候变化的响应[J]. 安徽农学通报, 26(18): 162-166. |
LAN X L, SUN H L, XU Y F, 2020. Spatial and Temporal Pattern of Vegetation NPP Variations in Guizhou and Its Response to Climate Change[J]. Anhui Agricultural Science Bulletin, 26(18): 162-166. | |
[15] | 李辉, 红英, 邓国荣, 等, 2021. 1982-2015年气候变化和人类活动对内蒙古草地净初级生产力的影响[J]. 应用生态学报, 32(2): 415-424. |
LI H, HONG Y, DENG G R, et al., 2021. Impacts of climate change and human activities on net primary productivity of grasslands in Inner Mongolia, China during 1982-2015 [J]. Chinese Journal of Applied Ecology, 32(2): 415-424. | |
[16] | 李阳兵, 侯建筠, 谢德体, 2002. 中国西南岩溶生态研究进展[J]. 地理科学, 22(3): 365-370. |
LI Y B, HOU J J, XIE D L, 2002. The Recent Development of Research on Karst Ecology in Southwest China[J]. Scientia Geographica Sinica, 22(3): 365-370. | |
[17] | 李应中, 毕于运, 1996. 滇黔桂岩溶地区资源, 人口, 环境分析与对策[J]. 中国农业资源与区划 (5): 19-23. |
LI Y Z, BI Y Y, 1996. Analysis and Countermeasures of resources, population and environment in karst areas of Yunnan, Guizhou and Guangxi[J]. Chinese Journal of Agricultural Resources and Regional Planning (5): 19-23. | |
[18] | 刘刚, 孙睿, 肖志强, 等, 2017. 2001-2014年中国植被净初级生产力时空变化及其与气象因素的关系[J]. 生态学报, 37(15): 4936-4945. |
LIU G, SUN R, XIAO Z Q, et al., 2017. Analysis of spatial and temporal variation of net primary productivity and climate controls in China from 2001 to 2014 [J]. Acta Ecologica Sinica, 37(15): 4936-4945. | |
[19] | 刘炜, 焦树林, 李银久, 等, 2021. 喀斯特地表植被覆盖变化及其与气候因子相关性分析[J]. 水土保持研究, 28(3): 203-215. |
LIU W, JIAO S L, LI Y J, et al., 2021. Analysis on the Correlation Between Vegetation Cover of Land Surface and Climatic Factors in Karst Area[J]. Research of Soil and Water Conservation, 28(3): 203-215. | |
[20] | 盛叶子, 曾蒙秀, 林德根, 等, 2020. 2000-2014年人类活动对贵州省植被净初级生产力的影响[J]. 中国岩溶, 39(1): 62-70. |
SHENG Y Z, ZENG M X, LIN D G, et al., 2020. Impacts of human activities on net primary productivity of vegetation in Guizhou Province from 2000 to 2014 [J]. Carsologica Sinica, 39(1): 62-70. | |
[21] | 史晨璐, 2020. 喀斯特断陷盆地生态系统生产力对土地利用及石漠化治理措施时空变化的响应[D]. 北京: 北京林业大学. |
SHI C L, 2020. The response of ecosystem productivity in karst fault basin to the spatial and temporal changes of land use and rock desertification control measures[D]. Beijing: Beijing Forestry University. | |
[22] | 史雯雨, 杨胜勇, 李增永, 等, 2021. 近57年金沙江流域气温变化特征及未来趋势预估[J]. 水土保持研究, 28(1): 211-217. |
SHI W Y, YANG Y S, LI Z Y, et al., 2021. Variation characteristics and the future trend estimation of temperature in Chinsha River basin over the past 57 years[J]. Research of Soil and Water Conservation, 28(1): 211-217. | |
[23] | 孙睿, 朱启疆, 2001. 气候变化对中国陆地植被净第一性生产力影响的初步研究[J]. 遥感学报, 5(1): 58-61, 83. |
SUN R, ZHU Q J, 2001. Effect of Climate Change of Terrestrial Net Primary Productivity in China[J]. National Remote Sensing Bulletin, 5(1): 58-61, 83. | |
[24] | 汤曾伟, 王宏, 李晓兵, 等, 2018. 锡林郭勒盟2006-2015年植被NPP变化分析[J]. 草业科学, 35(12): 2812-2821. |
TANG Z W, WANG H, LI X B, et al., 2018. Variation of vegetation net primary productivity and its influential factors in Xilingol League from 2006 to 2015 [J]. Pratacultural Science, 35(12): 2812-2821. | |
[25] | 王静, 王克林, 张明阳, 等, 2015. 南方丘陵山地带植被净第一性生产力时空动态特征[J]. 生态学报, 35(11): 3722-3732. |
WANG J, WANG K L, ZHANG M Y, et al., 2015. Tempo-spatial variations of net primary productivity in hilly terrain of southern China[J]. Acta Ecologica Sinica, 35(11): 3722-3732. | |
[26] | 谢胜金, 刘永和, 姚风欣, 2020. 1998-2015年北京市NDVI时空变化及其与气候因子的响应关系[J]. 水土保持研究, 27(3): 190-196. |
XIE S J, LIU Y H, YAO F X, 2020. Spatial-temporal characteristics of NDVI and its relationship with climate change in Beijing from 1998 to 2015 [J]. Research of Soil and Water Conservation, 27(3): 190-196. | |
[27] | 肖建勇, 王世杰, 白晓永, 等, 2018. 喀斯特关键带植被时空变化及其驱动因素[J]. 生态学报, 38(24): 8799-8812. |
XIAO J Y, WANG S J, BAI X Y, et al., 2018. Determinants and spatial-temporal evolution of vegetation coverage in the karst critical zone of South China[J]. Acta Ecologica Sinica, 38(24): 8799-8812. | |
[28] | 尹锴, 田亦陈, 袁超, 等, 2015. 基于CASA模型的北京植被NPP时空格局及其因子解释[J]. 国土资源遥感, 27(1): 133-139. |
YIN K, TIAN Y C, YUAN C, et al., 2015. NPP spatial and temporal pattern of vegetation in Beijing and its factor explanation based on CASA model[J]. Remote Sensing for Natural Resources, 27(1): 133-139. | |
[29] | 岳永杰, 乌云珠拉, 李旭, 等, 2020. 根河流域1980-2017年气候和径流的变化特征分析[J]. 灌溉排水学报, 39(4): 96-105. |
YUE Y J, WU Y Z L, LI X, et al., 2020. Analysis of climate and runoff variation characteristics in the Genhe River Basin from 1980-2017 [J]. Journal of Irrigation and Drainage, 39(4): 96-105. | |
[30] | 张继, 周旭, 蒋啸, 等, 2019. 贵州高原不同地貌区和植被类型水分利用效率的时空分异特征[J]. 山地学报, 37(2): 173-185. |
ZHANG J, ZHOU X, JIANG X, et al., 2019. Spatial and temporal variability characteristics of water use efficiency in different landform regions and vegetation types of Guizhou Plateau, China[J]. Mountain Research, 37(2): 173-185. | |
[31] | 张建云, 刘九夫, 金君良, 等, 2019. 青藏高原水资源演变与趋势分析[J]. 中国科学院院刊, 34(11): 1264-1273. |
ZHANGJ Y, LIU J F, JIN J L, et al., 2019. Evolution and trend of water resources in Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 34(11): 1264-1273. | |
[32] | 张凯选, 范鹏鹏, 王军邦, 等, 2019. 西南喀斯特地区植被变化及其与气候因子关系研究[J]. 生态环境学报, 28(6): 1080-1091. |
ZHANG K, FAN P P, WANG J B, et al., 2019. Study on Vegetation Changes and Climate Factors in A Karst Region of Southwest China[J]. Ecology and Environmental Sciences, 28(6): 1080-1091. | |
[33] | 张笑鹤, 2011. 西南地区NDVI和NPP时空动态及其与气候因子相关性分析[D]. 北京: 中国林业科学研究院. |
ZHANG X H, 2011. Spatio-temporal dynamic of NDVI and NPP and their Correlation with Climatic Factors in Southwest China[D]. Beijing: Chinese Academy of Forestry. | |
[34] | 赵东杰, 王学求, 2020. 滇黔桂岩溶区河漫滩土壤重金属含量、来源及潜在生态风险[J]. 中国环境科学, 40(4): 1609-1619. |
ZHAO D J, WANG X Q, 2020. Distribution, sources and potential ecological risk of heavy metals in the floodplain soils of the karst area of Yunnan, Guizhou, Guangxi[J]. China Environmental Science, 40(4): 1609-1619. | |
[35] | 赵志平, 吴晓莆, 李果, 等, 2015. 2009-2011年我国西南地区旱灾程度及其对植被净初级生产力的影响[J]. 生态学报, 35(2): 350-360. |
ZHAO Z P, WU X P, LI G, et al., 2015. Drought in southwestern China and its impact on the net primary productivity of vegetation from 2009-2011 [J]. Acta Ecologica Sinica, 35(2): 350-360. | |
[36] | 朱文泉, 陈云浩, 徐丹, 等, 2005. 陆地植被净初级生产力计算模型研究进展[J]. 生态学杂志, 24(3): 296-300. |
ZHU W Q, CHEN Y H, XU D, et al., 2005. Advances in terrestrial net primary productivity (NPP) estimation models[J]. Chinese Journal of Ecology, 24(3): 296-300. | |
[37] |
朱文泉, 潘耀忠, 张锦水, 2007. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 31(3): 413-424.
DOI |
ZHAO W Q, PAN Y Z, ZHANG J S, 2007. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Chinese Journal of Plant Ecology, 31(3): 413-424.
DOI URL |
[1] | 刘紫薇, 葛继稳, 王月环, 杨诗雨, 姚东, 谢金林. 大九湖泥炭湿地甲烷通量变异特征及影响因素[J]. 生态环境学报, 2023, 32(4): 706-714. |
[2] | 阮惠华, 许剑辉, 张菲菲. 2001—2020年粤港澳大湾区植被和地表温度时空变化研究[J]. 生态环境学报, 2022, 31(8): 1510-1520. |
[3] | 李梦华, 韩颖娟, 赵慧, 王云霞. 基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析[J]. 生态环境学报, 2022, 31(7): 1317-1325. |
[4] | 李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 2022, 31(6): 1071-1079. |
[5] | 孙建波, 畅文军, 李文彬, 张世清, 李春强, 彭明. 香蕉不同生育期根际微生物生物量及土壤酶活的变化研究[J]. 生态环境学报, 2022, 31(6): 1169-1174. |
[6] | 杨媛媛, 佘志鹏, 宋进喜, 朱大为. 2000年以来浐灞河流域不同地貌区植被变化特征及影响因素研究[J]. 生态环境学报, 2022, 31(2): 224-230. |
[7] | 何瑞, 蒋然, 杨芳, 张心凤, 林键銮, 朱小平, 彭松耀. 茂名近岸海域中、小型浮游动物群落特征及其与环境因子的关系[J]. 生态环境学报, 2022, 31(1): 142-150. |
[8] | 袁伟皓, 王华, 夏玉宝, 曾一川, 邓燕青, 李媛媛, 张心悦. 基于GAM模型的鄱阳湖叶绿素a与水质因子相关性分析[J]. 生态环境学报, 2021, 30(8): 1716-1723. |
[9] | 邓慧颖, 陈立新, 余永江, 王宏. 武夷山市臭氧分布特征及其与气象要素关系分析[J]. 生态环境学报, 2021, 30(7): 1428-1435. |
[10] | 王金杰, 赵安周, 胡小枫. 京津冀植被净初级生产力时空分布及自然驱动因子分析[J]. 生态环境学报, 2021, 30(6): 1158-1167. |
[11] | 张静, 杜加强, 盛芝露, 张杨成思, 吴金华, 刘博. 1982—2015年黄河流域植被NDVI时空变化及影响因素分析[J]. 生态环境学报, 2021, 30(5): 929-937. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||