生态环境学报 ›› 2021, Vol. 30 ›› Issue (11): 2232-2243.DOI: 10.16258/j.cnki.1674-5906.2021.11.014
崔丽蓉1(), 叶丽丽1, 陈永山2, 闫超凡1, 蒋金平1,3,*(
)
收稿日期:
2021-06-16
出版日期:
2021-11-18
发布日期:
2021-12-29
通讯作者:
* 蒋金平(1972年生),男,研究员,博士,主要从事土壤环境与污染修复研究工作。E-mail: jiangjinping74@163.com作者简介:
崔丽蓉(1996年生),女,硕士研究生,主要从事土壤环境与污染修复研究工作。E-mail: 296079239@qq.com
基金资助:
CUI Lirong1(), YE Lili1, CHEN Yongshan2, YAN Chaofan1, JIANG Jinping1,3,*(
)
Received:
2021-06-16
Online:
2021-11-18
Published:
2021-12-29
摘要:
有色金属矿开采后复垦土地污染状况评估对其安全利用具有重要意义。为了查明广西典型露天铝土矿复垦土壤的环境质量状况,对平果铝矿采空区不同时期复垦土壤(A区1998年复垦;B区2003年复垦;C区2013年复垦)的肥力因子、重金属含量、空间分布、污染程度及生态风险进行研究。结果表明,铝土矿区复垦土壤肥力较低,与C区土壤养分相比,A区和B区土壤有不同程度的提高。不同复垦区土壤Hg、Cd、Cr、Pb、As平均含量均超过了广西土壤背景值,且Cd、As是农用地筛选值的6.67—16.03、2.42—4.10倍,重金属存在高度的空间变异。复垦土壤中Al含量较高,是广西背景值的1.51、1.65、1.36倍。活性Al质量分数最小,为4722.65 mg∙kg-1,已超过部分植物的铝毒临界值,对植物产生了一定的影响。污染负荷指数结果表明,铝土矿复垦区土壤均属于重度污染。潜在生态风险评价结果显示,B区处于中等环境风险水平,而A区和C区仍处于较强生态风险水平。健康风险评价结果表明,通过摄食途径重金属对儿童健康危害程度比成人高;致癌重金属As对人群危害大于Cd。平果铝矿复垦土壤受到重金属的污染,对周边环境及人群产生一定的危害。因此,该铝土矿复垦地在安全利用的过程中,需要不断改良以降低复垦土壤的生态风险。
中图分类号:
崔丽蓉, 叶丽丽, 陈永山, 闫超凡, 蒋金平. 广西露天铝土矿区复垦地土壤重金属空间分布特征及风险评价[J]. 生态环境学报, 2021, 30(11): 2232-2243.
CUI Lirong, YE Lili, CHEN Yongshan, YAN Chaofan, JIANG Jinping. Spatial Distribution Characteristics and Pollution Assessment of Heavy Metals in Reclaimed Land of A Bauxite Mine Region in Guangxi[J]. Ecology and Environment, 2021, 30(11): 2232-2243.
重金属i的污染指数 Individual pollution index (Fi) | 污染负荷指数 Pollution load index ( IPL ) | 污染等级 Pollution degree |
---|---|---|
Fi ≤0.7 | IPL ≤0.7 | 无污染 Clean (Safety) |
0.7<Fi ≤1 | 0.7< IPL ≤1 | 轻微污染 Non-pollution (Security limit) |
1<Fi ≤2 | 1< IPL ≤2 | 轻度污染 Slight pollution |
2<Fi ≤3 | 2< IPL ≤3 | 中度污染 Moderate pollution |
Fi >3 | IPL >3 | 重度污染 Heavy pollution |
表1 污染负荷指数分级标准
Table 1 Classification standard of pollution load index
重金属i的污染指数 Individual pollution index (Fi) | 污染负荷指数 Pollution load index ( IPL ) | 污染等级 Pollution degree |
---|---|---|
Fi ≤0.7 | IPL ≤0.7 | 无污染 Clean (Safety) |
0.7<Fi ≤1 | 0.7< IPL ≤1 | 轻微污染 Non-pollution (Security limit) |
1<Fi ≤2 | 1< IPL ≤2 | 轻度污染 Slight pollution |
2<Fi ≤3 | 2< IPL ≤3 | 中度污染 Moderate pollution |
Fi >3 | IPL >3 | 重度污染 Heavy pollution |
单项潜在生态风险 指数 ( The single potential ecological risk index ( | 综合潜在生态风险 指数 (IRj) The potential ecological risk index (IRj) | 潜在生态风险等级 Potential ecological risk degree |
---|---|---|
| IRj≤150 | 轻微风险 Slight pollution |
40< | 150<IRj≤300 | 中等风险 Medium pollution |
80< | 300<IRj≤600 | 较强风险 Strong pollution |
160< | 600<IRj≤1200 | 很强风险 Very strong pollution |
| IRj>1200 | 极强风险 Fortissimo pollution |
表2 潜在生态风险指数和分级标准
Table 2 Ecological risk index and classification of risk intensity
单项潜在生态风险 指数 ( The single potential ecological risk index ( | 综合潜在生态风险 指数 (IRj) The potential ecological risk index (IRj) | 潜在生态风险等级 Potential ecological risk degree |
---|---|---|
| IRj≤150 | 轻微风险 Slight pollution |
40< | 150<IRj≤300 | 中等风险 Medium pollution |
80< | 300<IRj≤600 | 较强风险 Strong pollution |
160< | 600<IRj≤1200 | 很强风险 Very strong pollution |
| IRj>1200 | 极强风险 Fortissimo pollution |
Element | Hg | As | Pb | Cr | Cd |
---|---|---|---|---|---|
Drf | 0.0003 | 0.0035 | 0.003 | ||
Fs | 1.5 | 6.1 |
表3 各金属健康风险评价风险参考剂量及斜率系数
Table 3 Reference dose and slope factor value for each heavy metal element in soil
Element | Hg | As | Pb | Cr | Cd |
---|---|---|---|---|---|
Drf | 0.0003 | 0.0035 | 0.003 | ||
Fs | 1.5 | 6.1 |
暴露参数 Exposure parameter values | 摄取速率 Ri/(mg∙d-1) | 暴露频率 Fe/(d∙a-1) | 暴露时间 De/a | 体质量 mb/kg | 平均接触时间(致癌) ta (carcinogenic)/d | 平均接触时间(非致癌) ta (non-carcinogenic)/d |
---|---|---|---|---|---|---|
成人 Adults | 100 | 365 | 30 | 62.5 | 70 | 30 |
儿童 Children | 200 | 10 | 16 | 10 |
表4 健康风险评价暴露参数
Table 4 Exposure parameter values of health risk assessment
暴露参数 Exposure parameter values | 摄取速率 Ri/(mg∙d-1) | 暴露频率 Fe/(d∙a-1) | 暴露时间 De/a | 体质量 mb/kg | 平均接触时间(致癌) ta (carcinogenic)/d | 平均接触时间(非致癌) ta (non-carcinogenic)/d |
---|---|---|---|---|---|---|
成人 Adults | 100 | 365 | 30 | 62.5 | 70 | 30 |
儿童 Children | 200 | 10 | 16 | 10 |
复垦区 Reclaimed land | pH | w(OM)/ (g·kg-1) | w(TN)/ (g·kg-1) | w(TP)/ (g·kg-1) | w(TK)/ (g·kg-1) |
---|---|---|---|---|---|
A | 6.89±0.76A | 27.14±5.16A | 1.75±0.65A | 0.83±0.42A | 0.97±0.29A |
B | 6.95±0.38A | 11.98±0.65B | 2.97±0.53B | 2.95±1.52B | 1.21±0.25A |
C | 6.78±0.79A | 11.84±2.18B | 0.67±0.34C | 1.49±0.22B | 1.18±0.39A |
表5 土壤养分含量特征
Table 5 Characteristics of soil nutrients
复垦区 Reclaimed land | pH | w(OM)/ (g·kg-1) | w(TN)/ (g·kg-1) | w(TP)/ (g·kg-1) | w(TK)/ (g·kg-1) |
---|---|---|---|---|---|
A | 6.89±0.76A | 27.14±5.16A | 1.75±0.65A | 0.83±0.42A | 0.97±0.29A |
B | 6.95±0.38A | 11.98±0.65B | 2.97±0.53B | 2.95±1.52B | 1.21±0.25A |
C | 6.78±0.79A | 11.84±2.18B | 0.67±0.34C | 1.49±0.22B | 1.18±0.39A |
复垦区 Reclaimed land | 项目 Items | Hg | As | Pb | Cr | Cd |
---|---|---|---|---|---|---|
A | 范围 Range/(mg∙kg-1) | 0.75‒2.08 | 88.5‒173.66 | 31.21‒103.73 | 87.82‒267.16 | 0.42‒7.18 |
均值 Mean/(mg∙kg-1) | 1.27 | 122.96 | 46.90 | 179.12 | 2.80 | |
标准差 Standard deviation/(mg∙kg-1) | 0.32 | 17.25 | 11.14 | 42.11 | 1.18 | |
变异系数 Variable coefficient | 0.25 | 0.14 | 0.24 | 0.24 | 0.42 | |
B | 范围 Range/(mg∙kg-1) | 0.61‒1.69 | 82.32‒151.34 | 20.2‒85.09 | 82.53‒243.51 | 0.99‒3.37 |
均值 Mean/(mg∙kg-1) | 0.90 | 116.60 | 46.01 | 161.02 | 2.00 | |
标准差 Standard deviation/(mg∙kg-1) | 0.26 | 15.55 | 13.66 | 37.86 | 0.64 | |
变异系数 Variable coefficient | 0.29 | 0.13 | 0.30 | 0.24 | 0.32 | |
C | 范围 Range/(mg∙kg-1) | 0.48‒3.87 | 51.66‒97.24 | 26.46‒65.01 | 12.89‒262.30 | 0.66‒11.58 |
均值 Mean/(mg∙kg-1) | 1.42 | 72.80 | 42.73 | 152.17 | 4.81 | |
标准差 Standard deviation/(mg∙kg-1) | 0.71 | 11.37 | 8.06 | 39.15 | 2.84 | |
变异系数 Variable coefficient | 0.50 | 0.16 | 0.19 | 0.26 | 0.59 | |
背景值 Background value/(mg∙kg-1) | 0.152 | 20.5 | 24 | 82.1 | 0.27 | |
标准值 Standard value/(mg∙kg-1) | 2.4 | 30 | 120 | 200 | 0.3 |
表6 不同复垦区土壤重金属质量分数统计
Table 6 Statistics of heavy metal quality score in different reclamation areas soil
复垦区 Reclaimed land | 项目 Items | Hg | As | Pb | Cr | Cd |
---|---|---|---|---|---|---|
A | 范围 Range/(mg∙kg-1) | 0.75‒2.08 | 88.5‒173.66 | 31.21‒103.73 | 87.82‒267.16 | 0.42‒7.18 |
均值 Mean/(mg∙kg-1) | 1.27 | 122.96 | 46.90 | 179.12 | 2.80 | |
标准差 Standard deviation/(mg∙kg-1) | 0.32 | 17.25 | 11.14 | 42.11 | 1.18 | |
变异系数 Variable coefficient | 0.25 | 0.14 | 0.24 | 0.24 | 0.42 | |
B | 范围 Range/(mg∙kg-1) | 0.61‒1.69 | 82.32‒151.34 | 20.2‒85.09 | 82.53‒243.51 | 0.99‒3.37 |
均值 Mean/(mg∙kg-1) | 0.90 | 116.60 | 46.01 | 161.02 | 2.00 | |
标准差 Standard deviation/(mg∙kg-1) | 0.26 | 15.55 | 13.66 | 37.86 | 0.64 | |
变异系数 Variable coefficient | 0.29 | 0.13 | 0.30 | 0.24 | 0.32 | |
C | 范围 Range/(mg∙kg-1) | 0.48‒3.87 | 51.66‒97.24 | 26.46‒65.01 | 12.89‒262.30 | 0.66‒11.58 |
均值 Mean/(mg∙kg-1) | 1.42 | 72.80 | 42.73 | 152.17 | 4.81 | |
标准差 Standard deviation/(mg∙kg-1) | 0.71 | 11.37 | 8.06 | 39.15 | 2.84 | |
变异系数 Variable coefficient | 0.50 | 0.16 | 0.19 | 0.26 | 0.59 | |
背景值 Background value/(mg∙kg-1) | 0.152 | 20.5 | 24 | 82.1 | 0.27 | |
标准值 Standard value/(mg∙kg-1) | 2.4 | 30 | 120 | 200 | 0.3 |
项目 Item | 单位 Unit | 复垦区 Reclaimed land | ||
---|---|---|---|---|
A | B | C | ||
Al总量 Total Al (T-Al) | % | 9.85 | 10.80 | 8.87 |
交换铝 Exchangeable aluminum (E-Al) | mg∙kg-1 | 1.77 | 14.85 | 2.18 |
单聚体羟基铝 Sorbed inorganic aluminum (S-Al) | mg∙kg-1 | 106.21 | 66.32 | 99.90 |
酸溶无机铝 Hydrous oxide and hydroxide (Hy-Al) | mg∙kg-1 | 1225.11 | 2374.60 | 1114.73 |
腐殖酸铝 Humic acid aluminum (H-Al) | mg∙kg-1 | 3389.56 | 5462.45 | 5644.75 |
活性铝 Total active aluminum | mg∙kg-1 | 4722.65 | 7917.22 | 6861.56 |
表7 不同复垦区土壤Al总量及活性铝形态含量表
Table 7 Total amount and speciation content of soil Al in different reclamation areas
项目 Item | 单位 Unit | 复垦区 Reclaimed land | ||
---|---|---|---|---|
A | B | C | ||
Al总量 Total Al (T-Al) | % | 9.85 | 10.80 | 8.87 |
交换铝 Exchangeable aluminum (E-Al) | mg∙kg-1 | 1.77 | 14.85 | 2.18 |
单聚体羟基铝 Sorbed inorganic aluminum (S-Al) | mg∙kg-1 | 106.21 | 66.32 | 99.90 |
酸溶无机铝 Hydrous oxide and hydroxide (Hy-Al) | mg∙kg-1 | 1225.11 | 2374.60 | 1114.73 |
腐殖酸铝 Humic acid aluminum (H-Al) | mg∙kg-1 | 3389.56 | 5462.45 | 5644.75 |
活性铝 Total active aluminum | mg∙kg-1 | 4722.65 | 7917.22 | 6861.56 |
Element | As | Hg | Pb | Cd | Cr | Al |
---|---|---|---|---|---|---|
As | 1.00 | |||||
Hg | -0.08 | 1.00 | ||||
Pb | 0.18 | 0.25** | 1.00 | |||
Cd | -0.55** | -0.06 | -0.07 | 1.00 | ||
Cr | 0.16 | 0.05 | 0.33** | 0.00 | 1.00 | |
Al | 0.21* | -0.05 | 0.63** | -0.11 | 0.52** | 1.00 |
表8 土壤金属元素之间的相关系数
Table 8 Correlation analysis between metals in soil
Element | As | Hg | Pb | Cd | Cr | Al |
---|---|---|---|---|---|---|
As | 1.00 | |||||
Hg | -0.08 | 1.00 | ||||
Pb | 0.18 | 0.25** | 1.00 | |||
Cd | -0.55** | -0.06 | -0.07 | 1.00 | ||
Cr | 0.16 | 0.05 | 0.33** | 0.00 | 1.00 | |
Al | 0.21* | -0.05 | 0.63** | -0.11 | 0.52** | 1.00 |
元素 Element | 主成分 Principle Component | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
Hg | 0.14 | 0.21 | 0.94 |
As | 0.52 | -0.71 | -0.05 |
Pb | 0.77 | 0.30 | 0.22 |
Cr | 0.66 | 0.30 | -0.23 |
Cd | -0.38 | 0.79 | -0.21 |
Al | 0.84 | 0.25 | -0.24 |
特征根 Characteristic root | 2.16 | 1.42 | 1.08 |
方差贡献率 Variance contribution rate/% | 36.07 | 23.61 | 17.97 |
累积贡献率 Cumulative contribution rate/% | 36.07 | 59.68 | 77.65 |
表9 铝矿区土壤金属主成分分析
Table 9 Principle component analysis of soil metal in Aluminum Mining Area
元素 Element | 主成分 Principle Component | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
Hg | 0.14 | 0.21 | 0.94 |
As | 0.52 | -0.71 | -0.05 |
Pb | 0.77 | 0.30 | 0.22 |
Cr | 0.66 | 0.30 | -0.23 |
Cd | -0.38 | 0.79 | -0.21 |
Al | 0.84 | 0.25 | -0.24 |
特征根 Characteristic root | 2.16 | 1.42 | 1.08 |
方差贡献率 Variance contribution rate/% | 36.07 | 23.61 | 17.97 |
累积贡献率 Cumulative contribution rate/% | 36.07 | 59.68 | 77.65 |
复垦区 Reclaimed land | Hg | Cr | As | Cd | Pb | 污染等级 Class of pollution | |
---|---|---|---|---|---|---|---|
Fi | IPL | ||||||
A | 8.38 | 2.18 | 6.00 | 10.35 | 1.95 | 4.55 | 重度污染 Heavy pollution |
B | 5.90 | 1.96 | 5.69 | 7.42 | 1.92 | 3.84 | 重度污染 Heavy pollution |
C | 9.36 | 1.85 | 3.55 | 17.80 | 1.78 | 4.29 | 重度污染 Heavy pollution |
| | ||||||
A | 21.23 | 1.79 | 40.99 | 279.56 | 1.95 | 304.54 | 较强风险 Strong pollution |
B | 14.96 | 1.61 | 38.87 | 200.39 | 1.92 | 218.88 | 中等风险 Medium pollution |
C | 23.72 | 1.52 | 24.27 | 480.59 | 1.78 | 531.87 | 较强风险 Strong pollution |
表10 铝矿区重金属污染负荷指数和潜在生态风险指数评价指数
Table 10 Evaluation index of heavy metal pollution load index and potential ecological risk index in aluminum mining area
复垦区 Reclaimed land | Hg | Cr | As | Cd | Pb | 污染等级 Class of pollution | |
---|---|---|---|---|---|---|---|
Fi | IPL | ||||||
A | 8.38 | 2.18 | 6.00 | 10.35 | 1.95 | 4.55 | 重度污染 Heavy pollution |
B | 5.90 | 1.96 | 5.69 | 7.42 | 1.92 | 3.84 | 重度污染 Heavy pollution |
C | 9.36 | 1.85 | 3.55 | 17.80 | 1.78 | 4.29 | 重度污染 Heavy pollution |
| | ||||||
A | 21.23 | 1.79 | 40.99 | 279.56 | 1.95 | 304.54 | 较强风险 Strong pollution |
B | 14.96 | 1.61 | 38.87 | 200.39 | 1.92 | 218.88 | 中等风险 Medium pollution |
C | 23.72 | 1.52 | 24.27 | 480.59 | 1.78 | 531.87 | 较强风险 Strong pollution |
复垦区 Reclaimed land | Cd | As | 致癌风险指数 Carcinogenic risk index (Rc) | Hg | Pb | Cr | 非致癌风险指数 Non-carcinogenic risk index (R) |
---|---|---|---|---|---|---|---|
A | 1.17×10-5 | 1.26×10-4 | 1.38×10-4 | 6.77×10-9 | 1.34×10-8 | 5.97×10-8 | 7.99×10-8 |
B | 0.84×10-5 | 1.20×10-4 | 1.28×10-4 | 4.80×10-9 | 1.31×10-8 | 5.37×10-8 | 7.16×0-8 |
C | 2.01×10-5 | 0.75×10-4 | 0.95×10-4 | 7.57×10-9 | 1.22×10-8 | 5.07×10-8 | 7.05×10-8 |
表11 铝矿区土壤重金属对成人健康危害的平均年风险
Table 11 Average annual risk values of heavy metals for adults in aluminum mining area (a-1)
复垦区 Reclaimed land | Cd | As | 致癌风险指数 Carcinogenic risk index (Rc) | Hg | Pb | Cr | 非致癌风险指数 Non-carcinogenic risk index (R) |
---|---|---|---|---|---|---|---|
A | 1.17×10-5 | 1.26×10-4 | 1.38×10-4 | 6.77×10-9 | 1.34×10-8 | 5.97×10-8 | 7.99×10-8 |
B | 0.84×10-5 | 1.20×10-4 | 1.28×10-4 | 4.80×10-9 | 1.31×10-8 | 5.37×10-8 | 7.16×0-8 |
C | 2.01×10-5 | 0.75×10-4 | 0.95×10-4 | 7.57×10-9 | 1.22×10-8 | 5.07×10-8 | 7.05×10-8 |
复垦区 Reclaimed land | Cd | As | 致癌风险指数 Carcinogenic risk index ( Rc ) | Hg | Pb | Cr | 非致癌风险指数 Non-carcinogenic risk index (R) |
---|---|---|---|---|---|---|---|
A | 3.05×10-5 | 3.29×10-4 | 3.60×10-4 | 5.29×10-8 | 1.68×10-7 | 7.46×10-7 | 9.67×10-7 |
B | 2.18×10-5 | 3.12×10-4 | 3.34×10-4 | 3.75×10-8 | 1.64×10-7 | 6.71×10-7 | 8.73×10-7 |
C | 5.24×10-5 | 1.95×10-4 | 2.47×10-4 | 5.92×10-8 | 1.53×10-7 | 6.34×10-7 | 8.46×10-7 |
表12 铝矿区土壤重金属对儿童健康危害的平均年风险
Table 12 Average annual risk values of heavy metals for children in aluminum mining area (a-1)
复垦区 Reclaimed land | Cd | As | 致癌风险指数 Carcinogenic risk index ( Rc ) | Hg | Pb | Cr | 非致癌风险指数 Non-carcinogenic risk index (R) |
---|---|---|---|---|---|---|---|
A | 3.05×10-5 | 3.29×10-4 | 3.60×10-4 | 5.29×10-8 | 1.68×10-7 | 7.46×10-7 | 9.67×10-7 |
B | 2.18×10-5 | 3.12×10-4 | 3.34×10-4 | 3.75×10-8 | 1.64×10-7 | 6.71×10-7 | 8.73×10-7 |
C | 5.24×10-5 | 1.95×10-4 | 2.47×10-4 | 5.92×10-8 | 1.53×10-7 | 6.34×10-7 | 8.46×10-7 |
[1] |
HAKANSON L, 1980. An ecological risk index for aquatic pollution control. a sediment logical approach[J]. Water Research, 14(8): 975-1001.
DOI URL |
[2] | MACLEOD D A, 1992. Plant adaptation to aluminum toxicity and its role in forage production[J]. Forages on red soil in China. ACIAR proceedings, 38: 57-63. |
[3] | 蔡刚刚, 张学洪, 梁美娜, 等, 2014. 南丹大厂矿区周边农田土壤重金属健康风险评价[J]. 桂林理工大学学报, 34(3): 554-559. |
CAI G G, ZHANG X H, LIANG M N, et al., 2014. Health risk assessment of heavy metals pollution in farmland soil surrounding Dachang ore district in Nandan[J]. Journal of Guilin University of Technology, 34(3): 554-559. | |
[4] | 陈同斌, 庞瑞, 王佛鹏, 等, 2020. 桂西南土壤镉地质异常区水稻种植安全性评估[J]. 环境科学, 41(4): 1855-1863. |
CHEN T B, PANG R, WANG F P, et al., 2020. Safety assessment of rice planting in soil cadmium geological anomaly areas in southwest Guangxi[J]. Environmental Science, 41(4): 1855-1863. | |
[5] | 陈微微, 陈传奇, 刘鹏, 等, 2007. 荞麦和金荞麦根际土壤铝形态变化及对其生长的影响[J]. 水土保持学报, 21(1): 176-179. |
CHEN W W, CHEN C Q, LIU P, et al., 2007. Forms of aluminum in rhizosphere soil and its effect on growth of Fagopyrum esculentum and Fagopyrum cymosum[J]. Journal of Soil and Water Conservation, 21(1): 176-179. | |
[6] | 陈秀端, 卢新卫, 杨光, 等, 2012. 西安市二环内表层土壤重金属污染评价[J]. 干旱区资源与环境, 26(11): 81-86. |
CHEN X D, LU X W, YANG G, et al., 2012. Assessment of heavy metal pollution in the urban topsoil of interior area of Xi’an[J]. Journal of Arid Land Resources and Environment, 26(11): 81-86. | |
[7] | 郭天荣, 王元元, 刘金川, 等, 2013. 铝, 镉胁迫下不同大麦品种根际的铝, 镉形态分析[J]. 麦类作物学报, 33(2): 377-381. |
GUO T R, WANG Y Y, LIU J C, et al., 2013. Forms of aluminum and cadmium in the rhizosphere of two barley genotypes with aluminum tolerances under aluminum and cadmium stresses[J]. Journal of Triticeae Crops, 33(2): 377-381. | |
[8] | 洪涛, 孔祥胜, 岳祥飞, 2019. 滇东南峰丛洼地土壤重金属含量、来源及潜在生态风险评价[J]. 环境科学, 40(10): 4620-4627. |
HONG T, KONG X S, YUE X F, 2019. Concentration characteristics, source analysis, and potential ecological risk assessment of heavy metals in a peak-cluster depression area, southeast of Yunnan Province[J]. Environmental Science, 40(10): 4620-4627. | |
[9] | 蒋时姣, 钟宇, 刘海鹰, 等, 2015. 铝胁迫对柳杉组培苗生长及生理特性的影响[J]. 植物生理学报, 51(2): 227-232. |
JIANG S J, ZHONG Y, LIU H Y, 2015. Effect of aluminum stress on the growth and some physiological characteristics in Cryptomeria fortunei Tisssue culture seedlings[J]. Plant Physiology Communications, 51(2): 227-232. | |
[10] | 孔繁翔, 桑伟莲, 蒋新, 等, 2000. 铝对植物毒害及植物抗铝作用机理[J]. 生态学报, 20(5): 855-862. |
KONG F Y, SANG W L, JIANG X, et al., 2000. Aluminum toxicity and tolerance in plants[J]. Acta Ecologica Sinica, 20(5): 855-862. | |
[11] | 李小平, 2007. 平果铝赤泥堆场的边坡环境问题与治理对策研究[J]. 有色金属(矿山部分), 59(2): 29-31. |
LI X P, 2007. Study on Side Slope Environment Problems and the countermeasure of Pingguo red mud disposal field[J]. Nonferrous Metals (Mine section), 59(2): 29-31. | |
[12] | 李一蒙, 马建华, 刘德新, 等, 2015. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 36(3): 1037-1044. |
LI Y M, MA J H, LIU D X, et al., 2015. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China[J]. Environmental Science, 36(3): 1037-1044. | |
[13] | 李忠义, 张超兰, 邓超冰, 等, 2009. 铅锌矿区农田土壤重金属有效态空间分布及其影响因子分析[J]. 生态环境学报, 18(5): 1772-1776. |
LI Z L, ZHANG C L, DENG C B, et al., 2009. Analysis on spatial distribution of soil available heavy metals and its influential factors in a lead-zinc mining area of Guangxi, China[J]. Ecology and Environmental Sciences, 18(5): 1772-1776. | |
[14] | 梁玉祥, 袁辉, 谢瑞, 等, 2020. 铝土矿区土壤中Cu、Zn、Mn的富集和迁移特征[J]. 河南科技, 703(5): 134-136. |
LIANG Y X, YUAN H, XIE R, et al., 2020. Enrichment and migration of Cu, Zn, and Mn in the bauxite soil[J]. Journal of Henan Science and Technology, 703(5): 134-136. | |
[15] | 刘厚田, 田仁生, 1992. 重庆南山马尾松衰亡与土壤铝活化的关系[J]. 环境科学学报, 12(3): 297-305. |
LIU H T, TIAN R S, 1992. Relationship between decline of a masson pine forest and aluminum activation in Nanshan, Chongqing[J]. Acta Scientiae Circumstantiae, 12(3): 297-305. | |
[16] | 罗承德, 张健, 刘继龙, 2000. 四川盆周山地杉木人工林衰退与铝毒害阈值的探讨[J]. 林业科学, 36(1): 9-14. |
LUO C D, ZHANG J, LIU J L, 2000. Researches on the threshold of aluminum toxicity and the decline of Chinese fir plantation in hilly area around the Sichuan basin[J]. Forestry Science, 36(1): 9-14. | |
[17] | 聂兴山, 2017. 铝矿复垦土壤重金属含量变化及污染风险评价[J]. 水土保持通报, 37(2): 321-326. |
NIE X S, 2017. Contents and pollution risk assessment of heavy mentals in reclaimed soil[J]. Bulletin of Soil and Water Conservation, 37(2): 321-326. | |
[18] | 聂兴山, 2018. 孝义铝矿复垦土壤重金属污染潜在生态风险评价[J]. 中国水土保持科学, 16(1): 116-122. |
NIE X S, 2018. Potential ecological risk assessment of heavy metals in the reclaimed soil of Xiaoyi Bauxite Mine[J]. Science of Soil and Water Conservation, 16(1): 116-122. | |
[19] | 潘文灿, 2017. 对广西平果铝土矿采矿用地方式改革的建议--广西平果铝土矿采矿用地改革试点10年的成效、问题及措施[J]. 中国国土资源经济, 30(2): 4-8. |
PAN W C, 2017. Suggestions for the reform with regard to the pattern of land use for mining bauxite in Pingguo of Guangxi: Introduction the results they have achieved, the problems they have faced in ten-year experimental reform of land use for mining bauxite in Pingguo of Guangxi, and some addressing methods[J]. Natural Resource Economics of China, 30(2): 4-8. | |
[20] | 秦瑞君, 陈福兴, 1999. 湘南红壤作物苗期铝中毒的研究[J]. 植物营养与肥料学报, 5(1): 50-56. |
QIN R J, CHEN F X, 1999. The aluminum toxicity of some crop seedlings in red soil of southern Hunan[J]. Plant Nutrition and Fertilizer Science, 5(1): 50-56. | |
[21] | 孙钦帮, 张冲, 乌立国, 等, 2017. 广东红海湾表层沉积物重金属含量的空间分布特征与污染状况评价[J]. 生态环境学报, 26(5): 843-849. |
SUN Q B, ZHANG C, WU L G, et al., 2017. Concentration distribution and pollution assessment of heavy metals in surface sediments in Honghai Bay[J]. Ecology and Environmental Sciences, 26(5): 843-849. | |
[22] | 覃事娅, 陈建宏, 唐常春, 2010. 广西壮族自治区平果铝土矿区待复垦土地适宜性评价[J]. 水土保持通报, 30(3): 211-215. |
QIN S Y, CHEN J H, TANG C C, 2010. Land suitability evaluation for reclamation of bauxite region in Pingguo County of Guangxi Zhuang Autonomous Region[J]. Bulletin Soil and Water Conservation, 30(3): 211-215. | |
[23] | 田绪庆, 陈为峰, 申宏伟, 等, 2015. 日照市城区绿地土壤肥力质量评价[J]. 水土保持研究, 22(6): 138-143. |
TIAN X Q, CHEN W F, SHENG H W, et al., 2015. Assessment on quality of soil fertility of the urban green space in Rizhao City[J]. Research of Soil and Water Conservation, 22(6): 138-143. | |
[24] | 仝雅娜, 丁贵杰, 2008. 铝对植物生长发育及生理活动的影响[J]. 西部林业科学, 37(4): 56-60. |
TONG Y N, DING G J, 2008. Influences of aluminum on development and physiological activities of plants[J]. Journal of West China Forestry Science, 37(4):56-60. | |
[25] | 王浩, 叶丽丽, 陈永山, 等, 2020. 广西典型铝矿区复垦地蔬菜中重金属含量特征及健康风险评价[J]. 西南农业学报, 33(11): 2655-2661. |
WANG H, YE L L, CHEN Y S, et al., 2020. Heavy metal content characteristics and health risk assessment of vegetables in reclaimed land of bauxite mine region in Guangxi[J]. Southwest China Journal of Agricultural Sciences, 33(11): 2655-2661. | |
[26] | 王建波, 化伟, 2019. 兰州某铝厂旧址周围土壤重金属污染及分布特征[J]. 矿产勘查, 66(6): 288-292. |
WANG J B, HUA W, 2019. Pollution and distribution characteristics of heavy metals in soil around the former site of an aluminum plant in Lanzhou[J]. Mineral Exploration, 66(6): 288-292. | |
[27] | 王陆军, 范拴喜, 2015. 宝鸡市城郊农田土壤重金属污染风险评估[J]. 中国农学通报, 31(3): 179-185. |
WANG L J, FAN S X, 2015. Risk assessment of heavy metals in farmland soil in the outskirts of Baoji City[J]. Chinese Agricultural Science Bulletin, 31(3): 179-185. | |
[28] | 王锐, 邓海, 贾中民, 等, 2021. 汞矿区周边土壤重金属空间分布特征、污染与生态风险评价[J]. 环境科学, 42(6): 3018-3027. |
WANG R, DENG H, JIA Z M, et al., 2021. Spatial distribution characteristics, pollution, and ecological risk assessment of soil heavy metals around mercury mining areas[J]. Environmental Science, 42(6): 3018-3027.
DOI URL |
|
[29] | 王太海, 陈建宏, 2016. 堆积型铝土矿剥离-采矿-复垦一体化技术架构[J]. 矿冶工程, 36(5): 147-149. |
WANG T H, CHEN J H, 2016. A framework of integrated technology of stripping, mining and reclamation for accumulative bauxite deposit[J]. Mining and Metallurgical Engineering, 36(5): 147-149. | |
[30] | 王雄, 2019. 铝矿区复垦土地重金属质量分数特征及潜在生态风险评价[J]. 中国水土保持科学, 17(2): 98-106. |
WANG X, 2019. Characteristics and potential ecological risk assessment of heavy metals in reclaimed land of a bauxite mine[J]. Science of Soil and Water Conservation, 17(2): 98-106. | |
[31] | 王志杰, 柳书俊, 郑杰, 等, 2019. 草海流域土壤重金属污染及其生态风险评价[J]. 生态环境学报, 28(12): 2438-2446. |
WANG Z J, LIU S J, ZHENG J, et al., 2019. Ecological risk assessment of heavy metals in soils of Caohai Watershed[J]. Ecology and Environment Sciences, 28(12): 2438-2446. | |
[32] | 魏世清, 张磊, 李艳宾, 等, 2007. 生物措施缓解酸性土壤铝毒害研究进展[J]. 土壤, 39(4): 536-540. |
WEI S Q, ZHANG L, LI Y B, et al., 2007. Advancements in the study on biologics means mitigating aluminum toxicity in acid soils[J]. Soil, 39(4): 536-540. | |
[33] | 文衍科, 杨海洋, 程运材, 2006. 平果铝土矿采空区的工程复垦技术[J]. 金属矿山 (8): 68-71. |
WEN Y K, YANG H Y, CHEN Y C, 2006. Engineering reclamation technology for mined area in Pingguo bauxite mine[J]. Metal Mine, (8): 68-71. | |
[34] | 吴健, 王敏, 张辉鹏, 等, 2018. 复垦工业场地土壤和周边河道沉积物重金属污染及潜在生态风险[J]. 环境科学, 39(12): 5620-5627. |
WU J, WANG M, ZHANG H P, et al., 2018. Heavy metal pollution and potential ecological risk of soil from reclaimed industrial sites and surrounding river sediments[J]. Environmental Science, 39(12): 5620-5627.
DOI URL |
|
[35] | 谢萍娟, 郭掌珍, 2014. 宝鸡市近郊农田土壤重金属含量及风险评价[J]. 山西农业大学学报(自然科学版), 34(5): 442-446. |
XIE P J, GUO Z Z, 2014. Heavy metal contents detection and risk assessment in farmland soil from Baoji[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 34(5): 442-446. | |
[36] | 徐慧秋, 黄银华, 吴志峰, 等, 2016. 广州市农业土壤As和Cd污染及其对景观异质性的多尺度响应[J]. 应用生态学报, 27(10): 3283-3289. |
XU H Q, HUANG Y H, WU Z F, et al., 2016. Agricultural soil contamination from As and Cd and its responses to landscape heterogeneity at multiple scales in Guangzhou, China[J]. Chinese Journal of Applied Ecology, 27(10): 3283-3289. | |
[37] | 徐莉, 黄亮亮, 吴志强, 等, 2016. 广西会仙湿地土壤重金属分布特征及风险评估[J]. 安徽农业科学, 44(29): 35-38, 101. |
XU L, HUANG L L, WU Z Q, et al., 2016. Distribution characteristics and risk assessment of heavy metals in Huixian Wetland of Guangxi Province[J]. Journal of Anhui Agricultural Sciences, 44(29): 35-38, 101. | |
[38] | 徐玉霞, 汪庆华, 彭囿凯, 等, 2018. 煤矿周边土壤重金属影响评价及来源分析[J]. 环境监测管理与技术, 30(3): 32-37. |
XU Y X, WANG Q H, PENG Y K, et al., 2018. Impact assessment and source analysis of heavy metal pollution in soil around coal mine[J]. The Administration and Technique of Environmental Monitoring, 30(3): 32-37. | |
[39] | 薛燕琴, 冯婉君, 2013. 矿区复垦土地土壤肥力研究--以孝义矿区为例[J]. 安徽农业科学, 41(28): 11361-11362, 11451. |
XUE Y Q, FENG W J, 2013. On soil fertility of reclamation land in Xiaoyi mining area of Shanxi Province[J]. Journal of Anhui Agricultural Sciences, 41(28): 11361-11362, 11451. | |
[40] | 易文利, 董奇, 杨飞, 等, 2018. 宝鸡市不同功能区土壤重金属污染特征、来源及风险评价[J]. 生态环境学报, 27(11): 2142-2149. |
YI W L, DONG Q, YANG F, et al., 2018. Pollution characteristics, sources analysis and potential ecological risk assessment of heavy metals in different functional zones of Baoji City[J]. Ecology and Environment Sciences, 27(11): 2142-2149. | |
[41] | 尹炳, 汪建飞, 师胜, 等, 2020. 矿业废弃地复垦土壤-作物硒吸收特征及其对重金属拮抗效应[J]. 环境科学, 41(4): 1904-1913. |
YIN B, WANG J F, SHI S, et al., 2020. Selenium uptake characteristics of reclaimed soil-crop from mining wasteland and its antagonistic effects on heavy metals[J]. Environmental Science, 41(4): 1904-1913. | |
[42] | 张菁, 江山, 王改玲, 2018. 安太堡露天矿不同复垦年限苜蓿地土壤养分和酶活性剖面特征[J]. 灌溉排水学报, 37(1): 4042-4248. |
ZHANG J, JIANG S, WANG G L, 2018. Soil profile characteristics of soil nutrients and enzyme activity after reclaiming alfafa in Antaibao opencast coal mine[J]. Journal of Irrigation and Drainage, 37(1): 4042-4248. | |
[43] | 张连科, 李海鹏, 黄学敏, 等, 2016. 包头某铝厂周边土壤重金属的空间分布及来源解析[J]. 环境科学, 37(3): 1139-1146. |
ZHANG L K, LI H P, HUANG X M, et al., 2016. Soil heavy metal spatial distribution and source analysis around an aluminum plant in Baotou[J]. Environmental Science, 37(3): 1139-1146. | |
[44] | 张乃明, 武雪萍, 谷晓滨, 等, 2003. 矿区复垦土壤养分变化趋势研究[J]. 土壤通报, 34(1): 59-61. |
ZHANG N M, WU X P, GU X B, et al., 2003. Variability in fertility of reclaimed soil in colliery regions[J]. Chinese Journal of Soil Science, 34(1): 59-61. | |
[45] | 张起源, 秦颖君, 刘香华, 等, 2020. 广东红树林沉积物有毒金属分布及生态风险评价[J]. 生态环境学报, 29(1): 187-195. |
ZHANG Q Y, QIN Y J, LIU X H, et al., 2020. Distribution characteristics and ecological risk assessment of toxic metals in mangrove sediments in Guangdong[J]. Ecology and Environmental Sciences, 29(1): 187-195. | |
[46] | 张文敏, 马彦卿, 李小平, 等, 2000. 平果铝土矿复垦技术研究[J]. 冶金矿山设计与建设, 32(5): 34-37, 47. |
ZHANG W M, MA X Q, LI X P, et al., 2000. Research on reclamation technology for Pingguo bauxite mine[J]. Metal Mine Design and Construction, 32(5): 34-37, 47. | |
[47] | 张云芸, 马瑾, 魏海英, 等, 2019. 浙江省典型农田土壤重金属污染及生态风险评价[J]. 生态环境学报, 28(6): 1233-1241. |
ZHANG Y Y, MA J, WEI H Y, et al., 2019. Heavy metals in typical farmland soils of Zhejiang Province: levels, sources and ecological risks[J]. Ecology and Environment Sciences, 28(6): 1233-1241. | |
[48] | 赵富强, 侯颖, 杨雪, 等, 2014. 河南永城采煤塌陷复垦区不同复垦年限土壤理化性质的研究[J]. 安徽农业科学, 42(23): 7863-7865. |
ZHAO F Q, HOU Y, YANG X, et al., 2014. Study on soil physical and chemical properties of different reclamation years in coal mining subsidence reclamation area in Yongcheng, Henan Province[J]. Journal of Anhui Agricultural Sciences, 42(23): 7863-7865. | |
[49] | 赵曦, 黄艺, 李娟, 等, 2015. 大型垃圾焚烧厂周边土壤重金属含量水平、空间分布、来源及潜在生态风险评价[J]. 生态环境学报, 24(6): 1013-1021. |
ZHAO X, HUANG Y, LI J, et al., 2015. Environmental levels, spatial distribution, sources and potential ecological risk of heavy metals in soils surrounding a large solid waste incinerator[J]. Ecology and Environmental Sciences, 24(6): 1013-1021. | |
[50] | 中华人民共和国生态环境部, 2018. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618-2018 [S]. 北京: 中国环境出版社. |
Ministry of Ecology and Environment of the People's Republic of China, 2018. Soil Environmental Quality Standards for Agricultural Land Soil Pollution Risk Control (Trial): GB 15618-2018 [S]. Beijing: China Environmental Science Press. | |
[51] | 钟雪梅, 夏德尚, 宋波, 等, 2017. 广西土壤镉含量状况与风险评估研究进展[J]. 自然资源学报, 32(7): 1256-1270. |
ZHONG X M, XIA S D, SONG B, et al., 2017. Review on soil cadmium study and risk assessment in Guangxi[J]. Journal of Natural Resources, 32(7): 1256-1270. | |
[52] | 周伟, 王文杰, 何兴元, 等, 2018. 哈尔滨城市绿地土壤肥力及其空间特征[J]. 林业科学, 54(9): 9-17. |
ZHOU W, WANG W J, HE X Y, et al., 2018. Soil fertility and spatial variability of urban green land in Harbin[J]. Forestry Science, 54(9): 9-17. | |
[53] | 周亚龙, 杨志斌, 王乔林, 等, 2021. 雄安新区农田土壤-农作物系统重金属潜在生态风险评估及其源解析[J]. 环境科学, 42(4): 2003-2015. |
ZHOU Y L, YANG Z B, WANG Q L, et al., 2021. Potential ecological risk assessment and source analysis of heavy metals in soil-crop system in Xiong’an New District[J]. Environmental Science, 42(4): 2003-2015. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[3] | 杨春亮, 刘旻霞, 王千月, 苗乐乐, 肖音迪, 王敏. 单户与联户放牧经营下草玉梅与嵩草种群空间格局及其关联性[J]. 生态环境学报, 2023, 32(4): 651-659. |
[4] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[5] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[6] | 肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182. |
[7] | 吴胜义, 王飞, 徐干君, 马浩, 党禹杰, 吴菲. 川西北高山峡谷区森林碳储量及空间分布研究--以四川洛须自然保护区为例[J]. 生态环境学报, 2022, 31(9): 1735-1744. |
[8] | 黄宏, 郑欣芸, 李迎东, 赵旭, 俞锦辰, 汪振华. 大陈岛海域不同年龄褐菖鲉对重金属富集作用研究[J]. 生态环境学报, 2022, 31(9): 1885-1891. |
[9] | 马闯, 王雨阳, 周通, 吴龙华. 污染土壤颗粒态有机质镉锌富集特征及其解吸行为研究[J]. 生态环境学报, 2022, 31(9): 1892-1900. |
[10] | 石文静, 周翰鹏, 孙涛, 黄金涛, 杨文焕, 李卫平. 矿区周边土壤重金属污染优先控制因子及健康风险评价研究[J]. 生态环境学报, 2022, 31(8): 1616-1628. |
[11] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[12] | 陶玲, 黄磊, 周怡蕾, 李中兴, 任珺. 污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022, 31(8): 1637-1646. |
[13] | 李莹, 张洲, 杨高明, 祖艳群, 李博, 陈建军. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657-1666. |
[14] | 罗松英, 李秋霞, 邱锦坤, 邓素炎, 李一锋, 陈碧珊. 南三岛土壤-红树植物系统中重金属形态特征及迁移转化规律[J]. 生态环境学报, 2022, 31(7): 1409-1416. |
[15] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||