生态环境学报 ›› 2023, Vol. 32 ›› Issue (4): 766-775.DOI: 10.16258/j.cnki.1674-5906.2023.04.014
赵良侠(), 高坤(
), 黄婷婷, 高也, 琚唐丹, 蒋秋阳, 金珩, 熊蕾, 汤在琳, 高灿红(
)
收稿日期:
2023-02-08
出版日期:
2023-04-18
发布日期:
2023-07-12
通讯作者:
*高灿红,E-mail: gaocanhong@163.com作者简介:
赵良侠(1981年生),女,实验师,博士,研究方向为玉米遗传育种。E-mail: 1040298660@qq.com基金资助:
ZHAO Liangxia(), GAO Kun(
), HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong(
)
Received:
2023-02-08
Online:
2023-04-18
Published:
2023-07-12
摘要:
玉米是潜在的植物修复材料,研究镉(Cd)胁迫下玉米籽粒镉高/低积累自交系不同生育期的镉累积特性,为选育籽粒Cd低积累和高富集玉米品种提供参考。于安徽农业大学试验农场对籽粒镉高积累(‘Zhong69’)和低积累(‘K22’)的玉米自交系进行盆栽试验,测定苗期、拔节期、抽雄期、灌浆期、乳熟期、蜡熟期、完熟期7个生育期的根、茎、叶和籽粒4个部位的生物量、Cd质量分数等指标,并采用逐步回归法分析玉米不同生育期各部位Cd质量分数对总生物量的影响及其贡献程度。结果表明,Cd胁迫抑制‘Zhong69’生长,而对‘K22’生长影响较小。Cd胁迫下‘Zhong69’各生育期的根、茎、叶和籽粒Cd质量分数分别是‘K22’的1.07-2.02、3.48-14.0、7.87-23.8、65.4倍。两自交系镉积累特性分别为:‘Zhong69’为叶>茎>根>籽粒,叶片Cd积累量占整株总量比例在42.3%-92.0%之间,随生育期呈先降后升趋势;‘K22’为根>叶>茎>籽粒,根部Cd积累量占整株总量比例在37.8%-66.2%之间,无明显变化规律。Cd胁迫下,‘Zhong69’和‘K22’的Cd质量分数在苗期最高,分别为6.60 mg?kg?1和4.60 mg?kg?1;Cd积累量在苗期最低,分别为3.63 μg和0.96 μg,在灌浆期达到最高,分别为222 μg和77.5 μg。逐步回归分析表明,Cd胁迫下,‘Zhong69’总生物量主要受茎部和叶片Cd质量分数共同影响,呈显著负相关(P=0.028),而‘K22’总生物量仅受茎部Cd质量分数影响,呈显著正相关(P=0.008)。该研究表明,‘Zhong69’和‘K22’的主要Cd积累部位分别为叶片和根部;茎部和叶片Cd质量分数是影响玉米植株总生物量的潜在影响因素,苗期至灌浆期是玉米吸收Cd的重要时期,灌浆期是修复Cd污染土壤的关键时期。
中图分类号:
赵良侠, 高坤, 黄婷婷, 高也, 琚唐丹, 蒋秋阳, 金珩, 熊蕾, 汤在琳, 高灿红. 玉米籽粒高/低镉积累自交系不同生育期的镉累积特性研究[J]. 生态环境学报, 2023, 32(4): 766-775.
ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages[J]. Ecology and Environment, 2023, 32(4): 766-775.
生育期 | Zhong69 | K22 | |||
---|---|---|---|---|---|
对照 | Cd胁迫 | 对照 | Cd胁迫 | ||
苗期 | 0.52±0.05Da | 0.42±0.07Da | 0.42±0.05Da | 0.44±0.01Ca | |
拔节期 | 4.23±0.80Db | 6.22±0.89Da | 3.46±0.43Db | 5.20±1.27Cab | |
抽雄期 | 56.2±1.84Ca | 54.2±3.36Ca | 44.0±3.98Cb | 51.4±4.79Bab | |
灌浆期 | 106±4.16Aa | 90.3±4.94Ac | 98.4±2.54Bb | 101±2.05Aab | |
乳熟期 | 92.4±5.44Bb | 96.2±1.68Aab | 103±1.17Ba | 100±3.79Aa | |
蜡熟期 | 95.7±8.50Bb | 69.4±0.42Bc | 118±5.23Aa | 106±3.43Ab | |
完熟期 | 93.3±4.53Bb | 66.1±2.56Bc | 103±5.37Ba | 103±4.25Aa |
表1 两种基因型玉米自交系不同生育期总生物量
Table 1 Total biomass of two genotype maize inbred lines at different growth stages g
生育期 | Zhong69 | K22 | |||
---|---|---|---|---|---|
对照 | Cd胁迫 | 对照 | Cd胁迫 | ||
苗期 | 0.52±0.05Da | 0.42±0.07Da | 0.42±0.05Da | 0.44±0.01Ca | |
拔节期 | 4.23±0.80Db | 6.22±0.89Da | 3.46±0.43Db | 5.20±1.27Cab | |
抽雄期 | 56.2±1.84Ca | 54.2±3.36Ca | 44.0±3.98Cb | 51.4±4.79Bab | |
灌浆期 | 106±4.16Aa | 90.3±4.94Ac | 98.4±2.54Bb | 101±2.05Aab | |
乳熟期 | 92.4±5.44Bb | 96.2±1.68Aab | 103±1.17Ba | 100±3.79Aa | |
蜡熟期 | 95.7±8.50Bb | 69.4±0.42Bc | 118±5.23Aa | 106±3.43Ab | |
完熟期 | 93.3±4.53Bb | 66.1±2.56Bc | 103±5.37Ba | 103±4.25Aa |
图1 两种基因型玉米自交系不同生育期根部Cd质量分数 图中数据为平均值±标准差,n=3;K22+CK和Zhong69+CK表示对照(未处理),K22+Cd和Zhong69+Cd表示Cd处理;不同小写字母表示同一生育期不同材料间差异显著(P<0.05)。下同
Figure 1 Cadmium concentration in roots of two genotype maize inbred lines at different growth stages
自交系 | 处理 | 生育期 | 镉积累量/ (μg∙plant−1) | 分配 | ||
---|---|---|---|---|---|---|
根 | 茎 | 叶 | ||||
Zhong69 | 对照 | 苗期 | 0.26±0.14b | 77.3±8.2%a | 4.96±3.26%b | 17.7±5.5%bc |
拔节期 | 2.35±0.88b | 34.9±9.16%b | 7.31±1.98%b | 57.8±7.48%a | ||
抽雄期 | 14.8±2.89a | 56.0±11.8%ab | 16.2±3.33%ab | 27.9±8.56%b | ||
灌浆期 | 24.6±8.21a | 71.5±17.3%a | 14.9±8.92%ab | 13.6±8.35%c | ||
乳熟期 | 22.0±7.13a | 60.5±15.7%ab | 16.8±6.93%ab | 22.8±8.78%bc | ||
蜡熟期 | 20.6±7.06a | 67.0±9.74%a | 17.6±5.09%ab | 15.5±4.69%bc | ||
完熟期 | 18.1±7.16a | 61.8±13.8%a | 21.3±9.17%a | 16.8±4.85%bc | ||
Cd胁迫 | 苗期 | 3.63±1.08e | 3.19±1.67%a | 4.86±0.25%e | 92.0±1.88%a | |
拔节期 | 29.8±2.89d | 4.00±1.85%a | 9.70±0.2%e | 86.3±1.84%a | ||
抽雄期 | 146±11.4b | 7.24±4.45%a | 25.05±4.6%d | 67.7±8.64%b | ||
灌浆期 | 222±17.8a | 7.15±3.73%a | 50.6±1.26%a | 42.3±3.05%d | ||
乳熟期 | 161±9.07b | 9.38±5.06%a | 40.5±2.84%b | 50.1±2.32%c | ||
蜡熟期 | 145±1.89b | 7.50±3.43%a | 35.3±1.22%bc | 57.2±2.22%c | ||
完熟期 | 112±3.59c | 8.46±4.51%a | 34.3±3.98%c | 57.2±1.5%c | ||
K22 | 对照 | 苗期 | 0.04±0d | 47.4±5.64%a | 9.73±3.67%de | 42.8±3.4%a |
拔节期 | 0.20±0.02d | 47.7±4.29%a | 12.5±1.69%cd | 39.8±3.65%a | ||
抽雄期 | 1.50±0.35c | 49.2±0.32%a | 8.32±0.79%e | 42.5±0.61%a | ||
灌浆期 | 2.28±0.42b | 47.7±4.63%a | 22.4±1.56%a | 29.9±3.34%b | ||
乳熟期 | 2.76±0.13a | 44.9±0.72%a | 14.5±0.75%bc | 40.6±1.31%a | ||
蜡熟期 | 2.21±0.09b | 45.9±4.64%a | 14.5±1.24%bc | 39.6±5.27%a | ||
完熟期 | 1.55±0.17c | 52.7±3.39%a | 17.8±2.19%b | 29.5±1.28%b | ||
Cd胁迫 | 苗期 | 0.96±0.11d | 45.1±11.9%bc | 11.0±1.94%b | 43.9±10.4%bc | |
拔节期 | 5.31±1.21d | 66.2±4.44%a | 5.64±0.83%c | 28.2±4.41%d | ||
抽雄期 | 46.3±11.6c | 56.9±5.57%a | 20.7±2.62%a | 22.4±3.03%e | ||
灌浆期 | 77.5±7.63a | 51.2±1.5%ab | 10.5±0.62%b | 38.3±0.92%cd | ||
乳熟期 | 77.3±6.73a | 59.9±3%a | 13.1±0.98%b | 27.1±2.03%e | ||
蜡熟期 | 60.7±9.47b | 37.8±1.77%cd | 13.0±0.80%b | 49.2±1.14%b | ||
完熟期 | 45.4±5.55c | 50.5±5.42%ab | 18.2±2.69%a | 31.3±2.74%de |
表2 两种基因型玉米自交系不同生育期各部位Cd的分配
Table 2 The distribution of Cd in different tissues of two genotypes of maize inbred lines at different growth stages
自交系 | 处理 | 生育期 | 镉积累量/ (μg∙plant−1) | 分配 | ||
---|---|---|---|---|---|---|
根 | 茎 | 叶 | ||||
Zhong69 | 对照 | 苗期 | 0.26±0.14b | 77.3±8.2%a | 4.96±3.26%b | 17.7±5.5%bc |
拔节期 | 2.35±0.88b | 34.9±9.16%b | 7.31±1.98%b | 57.8±7.48%a | ||
抽雄期 | 14.8±2.89a | 56.0±11.8%ab | 16.2±3.33%ab | 27.9±8.56%b | ||
灌浆期 | 24.6±8.21a | 71.5±17.3%a | 14.9±8.92%ab | 13.6±8.35%c | ||
乳熟期 | 22.0±7.13a | 60.5±15.7%ab | 16.8±6.93%ab | 22.8±8.78%bc | ||
蜡熟期 | 20.6±7.06a | 67.0±9.74%a | 17.6±5.09%ab | 15.5±4.69%bc | ||
完熟期 | 18.1±7.16a | 61.8±13.8%a | 21.3±9.17%a | 16.8±4.85%bc | ||
Cd胁迫 | 苗期 | 3.63±1.08e | 3.19±1.67%a | 4.86±0.25%e | 92.0±1.88%a | |
拔节期 | 29.8±2.89d | 4.00±1.85%a | 9.70±0.2%e | 86.3±1.84%a | ||
抽雄期 | 146±11.4b | 7.24±4.45%a | 25.05±4.6%d | 67.7±8.64%b | ||
灌浆期 | 222±17.8a | 7.15±3.73%a | 50.6±1.26%a | 42.3±3.05%d | ||
乳熟期 | 161±9.07b | 9.38±5.06%a | 40.5±2.84%b | 50.1±2.32%c | ||
蜡熟期 | 145±1.89b | 7.50±3.43%a | 35.3±1.22%bc | 57.2±2.22%c | ||
完熟期 | 112±3.59c | 8.46±4.51%a | 34.3±3.98%c | 57.2±1.5%c | ||
K22 | 对照 | 苗期 | 0.04±0d | 47.4±5.64%a | 9.73±3.67%de | 42.8±3.4%a |
拔节期 | 0.20±0.02d | 47.7±4.29%a | 12.5±1.69%cd | 39.8±3.65%a | ||
抽雄期 | 1.50±0.35c | 49.2±0.32%a | 8.32±0.79%e | 42.5±0.61%a | ||
灌浆期 | 2.28±0.42b | 47.7±4.63%a | 22.4±1.56%a | 29.9±3.34%b | ||
乳熟期 | 2.76±0.13a | 44.9±0.72%a | 14.5±0.75%bc | 40.6±1.31%a | ||
蜡熟期 | 2.21±0.09b | 45.9±4.64%a | 14.5±1.24%bc | 39.6±5.27%a | ||
完熟期 | 1.55±0.17c | 52.7±3.39%a | 17.8±2.19%b | 29.5±1.28%b | ||
Cd胁迫 | 苗期 | 0.96±0.11d | 45.1±11.9%bc | 11.0±1.94%b | 43.9±10.4%bc | |
拔节期 | 5.31±1.21d | 66.2±4.44%a | 5.64±0.83%c | 28.2±4.41%d | ||
抽雄期 | 46.3±11.6c | 56.9±5.57%a | 20.7±2.62%a | 22.4±3.03%e | ||
灌浆期 | 77.5±7.63a | 51.2±1.5%ab | 10.5±0.62%b | 38.3±0.92%cd | ||
乳熟期 | 77.3±6.73a | 59.9±3%a | 13.1±0.98%b | 27.1±2.03%e | ||
蜡熟期 | 60.7±9.47b | 37.8±1.77%cd | 13.0±0.80%b | 49.2±1.14%b | ||
完熟期 | 45.4±5.55c | 50.5±5.42%ab | 18.2±2.69%a | 31.3±2.74%de |
图5 两种基因型玉米自交系的总生物量与各部位Cd质量分数的相关性 *表示在0.05水平相关性显著,**表示在0.01水平相关性极显著;圆形越大,颜色越深表示相关系数越大,圆形越小,颜色越浅表示相关系数越小;图中数字表示相关系数。下同
Figure 5 The correlation between the total biomass and Cd concentration in different tissues of two genotypes maize inbred lines
自交系 | 回归方程 | r2 | P |
---|---|---|---|
Zhong69 | Y1=166.666−11.976X2−3.912X3 | 0.926 | 0.028 |
K22 | Y2=88.376+44.892X2 | 0.522 | 0.008 |
表3 两种基因型玉米自交系总生物量与各部位Cd质量分数的逐步回归分析
Table 3 Stepwise regression analysis of total biomass and Cd concentration in different tissues of two genotypes maize inbred lines
自交系 | 回归方程 | r2 | P |
---|---|---|---|
Zhong69 | Y1=166.666−11.976X2−3.912X3 | 0.926 | 0.028 |
K22 | Y2=88.376+44.892X2 | 0.522 | 0.008 |
[1] |
GAO C H, HU J, ZHANG S, et al., 2009. Association of polyamines in governing the chilling sensitivity of maize genotypes[J]. Plant Growth Regulation, 57(1): 31-38.
DOI URL |
[2] | GAJDOS É, BÁKONYI N, MAROZSÁN M, et al., 2011. Cadmium tolerance of maize and sunflower seedlings[C]//46th Croatian and 6th International Symposium on Agriculture. Croatia: Opatija: 700-703. |
[3] |
GAO J, ZHANG Y Z, LU C, et al., 2015. The development dynamics of the maize root transcriptome responsive to heavy metal Pb pollution[J]. Biochemical and Biophysical Research Communications, 458(2): 287-293.
DOI PMID |
[4] |
GUO G L, ZHOU Q X, MA L Q, 2006. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: A review[J]. Environmental Monitoring and Assessment, 116(1-3): 513-528.
PMID |
[5] |
LIN K, WILLIAMS D V, ZENG M, et al., 2022. Identification of low grain cadmium accumulation genotypes and its physiological mechanism in maize (Zea mays L.)[J]. Environmental Science and Pollution Research, 29(14): 20721-20730.
DOI |
[6] |
LUX A, MARTINKA M, VACULIK M, et al., 2010. Root responses to cadmium in the rhizosphere: A review[J]. Journal of Experimental Botany, 62(1): 21-37.
DOI URL |
[7] |
NORTON G J, DUAN G L, DASGUPTA T, et al., 2009. Environmental and genetic control of arsenic accumulation and speciation in rice grain: comparing a range of common cultivars grown in contaminated sites across Bangladesh, China, and India[J]. Environmental Science & Technology, 43(21): 8381-8386.
DOI URL |
[8] | TAKAHASHI R, ISHIMARU Y, NAKANISHI H, et al., 2011. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice[J]. Plant Signaling & Behavior, 6(11): 1813-1816. |
[9] |
TANG B, LUO M J, ZHANG Y X, et al., 2021. Natural variations in the P-type ATPase heavy metal transporter gene ZmHMA3 control cadmium accumulation in maize grains[J]. Journal of Experimental Botany, 72(18): 6230-6246.
DOI URL |
[10] |
WIEBE K, HARRIS N S, FARIS J D, et al., 2010. Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum)[J]. Theoretical and Applied Genetics, 121(6): 1047-1058.
DOI URL |
[11] |
YAN H L, XU W X, XIE J Y, et al., 2019. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J]. Nature Communications, 10(1): 2562.
DOI PMID |
[12] |
ZHENG X, CHEN L, LI X F, 2018. Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress[J]. Botanical Studies, 59(1): 22.
DOI PMID |
[13] | 安婷婷, 黄帝, 王浩, 等, 2021. 植物响应镉胁迫的生理生化机制研究进展[J]. 植物学报, 56(3): 347-362. |
AN T T, HUANG D, WANG H, et al., 2021. Research advances in plant physiological and biochemical mechanisms in response to cadmium stress[J]. Chinese Bulletin of Botany, 56(3): 347-362. | |
[14] | 鲍士旦, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
BAO S D, 2000. Soil agrochemical analysis method[M]. Beijing: China Agricultural Science and Technology Press. | |
[15] | 曹莹, 赵艺欣, 刘洋, 等, 2011. 铅镉复合胁迫对不同耐性玉米衰老特性的影响[J]. 玉米科学, 19(6): 70-73. |
CAO Y, ZHAO Y X, LIU Y, et al., 2011. Effect of the combined stress of cadmium and lead on senescence characteristics of maize with different tolerances[J]. Journal of Maize Sciences, 19(6): 70-73. | |
[16] | 常世豪, 李金花, 李琼, 等, 2022. 不同大豆类型产量及相关性状的逐步回归与通径分析[J]. 种子, 41(4): 96-99, 105. |
CHANG S H, LI J H, LI Q, et al., 2022. Stepwise regression and path analysis of yield and related traits in different soybean types[J]. Seed, 41(4): 96-99, 105. | |
[17] | 党志, 卢桂宁, 杨琛, 等, 2012. 金属硫化物矿区环境污染的源头控制与修复技术[J]. 华南理工大学学报(自然科学版), 40(10): 83-89. |
DANG Z, LU G N, YANG C, et al., 2012. Source control and remediation of environmental contamination in metal sulfide mine areas[J]. Journal of South China University of Technology (Natural Science Edition), 40(10): 83-89. | |
[18] | 杜昊辉, 王旭东, 2019. 渭北高原黑垆土土壤养分变异及其与小麦产量的关系研究[J]. 现代农业科技, 741(7): 3-7. |
DU H H, WANG X D, 2019. Variations of soil nutrients and its relationship with wheat yield in dark loessial soil on weibei plateau[J]. Modern Agricultural Science and Technology, 741(7): 3-7. | |
[19] | 段桂兰, 张红梅, 刘云霞, 等, 2013. 水稻基因类型与生长环境对精米中砷积累的影响[J]. 生态毒理学报, 8(2): 156-162. |
DUAN G L, ZHANG H M, LIU Y X, et al., 2013. Impact of rice genotype and growing environment on arsenic accumulation in rice polished grains[J]. Asian Journal of Ecotoxicology, 8(2): 156-162. | |
[20] | 邓婷, 卢维盛, 吴家龙, 等, 2019. 不同玉米品种对土壤镉富集和转运的差异研究[J]. 华南农业大学学报, 40(4): 33-39. |
DENG T, LU W S, WU J L, et al., 2019. Differences in cadmium accumulation and translocation in different Zea mays cultivars[J]. Journal of Agro-Environment Science, 38(6): 1265-1271. | |
[21] |
冯亚娟, 李廷轩, 蒲勇, 等, 2022. 不同镉积累类型小麦各器官镉积累分布规律及机理分析[J]. 作物学报, 48(7): 1761-1770.
DOI |
FENG Y J, LI T X, PU Y, et al., 2022. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type[J]. Acta Agronomica Sinica, 48(7): 1761-1770. | |
[22] | 韩佳慧, 万思涛, 俞娇, 等, 2019. 参与植物体内镉元素转运的植物锌铁转运蛋白ZIP研究进展[J]. 植物生理学报, 55(10): 1449-1457. |
HAN J H, WAN S T, YU J, et al., 2019. Progress on zinc and iron transporter (ZIP) involved in Cd transport in plants[J]. Plant Physiology Journal, 55(10): 1449-1457. | |
[23] | 刘赞, 高燕哺, 王建英, 等, 2022. 我国土壤环境污染现状及防治办法[J]. 黑龙江环境通报, 35(1): 97-99. |
LIU Z, GAO Y B, WANG J Y, et al., 2022. Present situation and prevention measures of soil environmental pollution in China[J]. Heilongjiang Huanjing Tongbao, 35(1): 97-99. | |
[24] | 刘健, 邱冠杰, 邓敏, 等, 2022. 不同土壤镉浓度对玉米植株镉积累分配特征的影响[J/OL]. 分子植物育种, https:/kns.cnki.net/kems/detail/46.1068.S.20220427.0738.002.html |
LIU J, QIU G J, DENG M, et al., 2022. Effects of cadmium stress on the characteristics of cadmium accumulation and distribution in maize plants[J]. Molecular Plant Breeding, https:/kns.cnki.net/kems/detail/46.1068.S.20220427.0738.002.html | |
[25] | 李丽君, 郑普山, 谢苏婧, 2001. 镉对玉米种子萌发和生长的影响[J]. 山西大学学报 (自然科学版), 24(1): 93-94. |
LI L J, ZHENG P S, XIE S J, 2001. Effect of cadmium on maize seeds germination and growth[J]. Journal of Shanxi University (Natural Science Edition), 24(1): 93-94. | |
[26] |
倪中应, 章明奎, 王京文, 等, 2020. 水稻不同生育期镉吸收与积累特征研究[J]. 农学学报, 10(3): 49-54.
DOI |
NI Z Y, ZHANG M K, WANG J W, et al., 2020. Cadmium uptake and accumulation in rice at different growth stages[J]. Journal of Agriculture, 10(3): 49-54.
DOI |
|
[27] | 潘建清, 陆敏, 杨肖娥, 2021. 不同小麦品种灌浆期生长和镉积累的差异研究[J]. 农业环境科学学报, 40(4): 756-765. |
PAN J Q, LU M, YANG X E, 2021. Variations in growth and cadmium accumulation among 30 wheat (Triticum aestivum L.) cultivars during the grain filling stage[J]. Journal of Agro-Environment Science, 40(4): 756-765. | |
[28] |
曲梦雪, 宋杰, 孙菁, 等, 2022. 镉胁迫对不同耐镉型玉米品种苗期根系生长的影响[J]. 作物学报, 48(11): 2945-2952.
DOI |
QU M X, SONG J, SUN J, et al., 2022. Effects of cadmium stress on root growth of maize (Zea mays L.) varieties with different cadmium-tolerant at seedling stage[J]. Acta Agronomica Sinica, 48(11): 2945-2952. | |
[29] | 任洪雷, 李春霞, 龚士琛, 等, 2019. 利用SPSS实现玉米杂交种主要农艺性状与产量的相关和通径分析[J]. 作物杂志, 190(3): 86-90. |
REN H L, LI C X, GONG S C, et al., 2019. Genetic correlation and path analysis of yield and agronomic characteristics of maize hybrids in spss software[J]. Crops, 190(3): 86-90. | |
[30] | 孙姣辉, 2017. 不同玉米品种对镉的吸收积累差异研究[D]. 长沙: 湖南农业大学: 22-26. |
SUN J H, 2017. Uptake and accumulation of cadmium in different maize varieties[D]. Changsha: Hunan Agricultural University: 22-26. | |
[31] | 邵华伟, 葛春辉, 马彦茹, 等, 2013. 施入城市生活垃圾堆肥对玉米植株重金属分布及土壤养分的影响[J]. 农业资源与环境学报, 30(6): 58-63. |
SHAO H W, GE C H, MA Y R, et al., 2013. Effect of municipal solid waste (MSW) compost application on heavy metal distribution in maize plant and soil nutrients[J]. Journal of Agricultural Resources and Environment, 30(6): 58-63. | |
[32] |
唐皓, 李廷轩, 张锡洲, 等, 2015. 水稻镉高积累材料的筛选及其镉积累特征研究[J]. 生态环境学报, 24(11): 1910-1916.
DOI URL |
TANG H, LI T X, ZHANG X Z, et al., 2015. Screening of rice cultivars with high cadmium accumulation and its cadmium accumulation characteristics[J]. Ecology and Environmental Sciences, 24(11): 1910-1916. | |
[33] | 吴传星, 2010. 不同玉米品种对重金属吸收累积特性研究[D]. 雅安: 四川农业大学: 16-37. |
WU C X, 2010. Study on characteristics of heavy metal absorption and accumulation in the different maize varieties[D]. Yaan: Sichuan Agricultural University: 16-37. | |
[34] | 吴文梅, 2019. 玉米ZmHMA2-1和ZmHMA2-2基因重金属Cd胁迫响应功能的初步研究[D]. 雅安: 四川农业大学: 42-44. |
WU W M, 2019. Response of ZmHMA2-1 and ZmHMA2-2 genes to Cd stress in maize a preliminary study of function[D]. Yaan: Maize research institute of Sichuan Agricultural University:42-44. | |
[35] | 魏锋, 张学舜, 2014. 重金属胁迫对玉米生长发育的影响[J]. 种业导刊, 232(10): 13-15. |
WEI F, ZHANG X S, 2014. Effects of heavy metal stress on growth and development of maize[J]. Journal of Seed Industry Guide, 232(10): 13-15. | |
[36] |
王璐瑶, 陈謇, 赵守清, 等, 2022. 水稻镉积累特性的生理和分子机制研究概述[J]. 植物学报, 57(2): 236-249.
DOI |
WANG L Y, CHEN J, ZHAO S Q, et al., 2022. Research progress of the physiological and molecular mechanisms of cadmium accumulation in rice[J]. Chinese Bulletin of Botany, 57(2): 236-249. | |
[37] | 徐建明, 孟俊, 刘杏梅, 等, 2018. 我国农田土壤重金属污染防治与粮食安全保障[J]. 中国科学院院刊, 33(2): 153-159. |
XU J M, MENG J, LIU X M, et al., 2018. Control of heavy metal pollution in farmland of China in terms of food security[J]. Bulletin of the Chinese Academy of Sciences, 33(2): 153-159. | |
[38] | 徐稳定, 2014. 超甜38玉米对镉的耐受机理及强化富集研究[D]. 广州: 华南理工大学: 23-51. |
XU W D, 2014. The Mechanism of Cd Tolerance and the Enhancement of Cd Phytoremediation in Maize (Zea mays L.)CT38[D]. Guangzhou: South China University of Technology: 23-51. | |
[39] | 辛艳卫, 梁成华, 杜立宇, 等, 2017. 不同玉米品种对镉的富集和转运特性[J]. 农业环境科学学报, 36(5): 839-846. |
XIN Y W, LIANG C H, DU L Y, et al., 2017. Accumulation and translocation of cadmium in different maize cultivars[J]. Journal of Agro-Environment Science, 36(5): 839-846. | |
[40] | 袁林, 刘颖, 兰玉书, 等, 2018. 不同玉米品种对镉吸收累积特性研究[J]. 四川农业大学学报, 36(1): 22-27. |
YUAN L, LIU Y, LAN Y S, et al., 2018. Variations of cadmium absorption and accumulation among corn cultivars of metal pollution in soil from lead-zinc mining area[J]. Journal of Sichuan Agricultural University, 36(1): 22-27. | |
[41] | 杨惟薇, 刘敏, 曹美珠, 等, 2014. 不同玉米品种对重金属铅镉的富集和转运能力[J]. 生态与农村环境学报, 30(6): 774-779. |
YANG W W, LIU M, CAO M Z, et al., 2014. Accumulation and Transfer of lead (Pb) and cadmium (Cd) on different species of maize[J]. Journal of Ecology and Rural Environment, 30(6): 774-779. | |
[42] | 张宁, 陶荣浩, 张慧敏, 等, 2022. 不同玉米品种对镉积累和转运差异研究[J]. 农业资源与环境学报, 39(6): 1208-1216. |
ZHANG N, TAO R H, ZHANG H M, et al., 2022. Differences in cadmium accumulation and translocation in different varieties of Zea mays[J]. Journal of Agricultural Resources and Environment, 39(6): 1208-1216. | |
[43] | 张星雨, 叶志彪, 张余洋, 2021. 植物响应镉胁迫的生理与分子机制研究进展[J]. 植物生理学报, 57(7): 1437-1450. |
ZHANG X Y, YE Z B, ZHANG Y Y, 2021. Advances in physiological and molecular mechanism of plant response to cadmium stress[J]. Plant Physiology Journal, 57(7): 1437-1450. | |
[44] | 赵娜娜, 彭鸥, 刘玉玲, 等, 2021. 不同形态硫叶面喷施对水稻镉积累影响[J]. 农业环境科学学报, 40(7): 1387-1401. |
ZHAO N N, PENG O, LIU Y L, et al., 2021. Effect of foliar spraying different forms of sulfur on cadmium accumulation in rice[J]. Journal of Agro-Environment Science, 40(7): 1387-1401. |
[1] | 杨耀东, 陈玉梅, 涂鹏飞, 曾清如. 经济作物轮作模式下镉污染农田修复潜力[J]. 生态环境学报, 2023, 32(3): 627-634. |
[2] | 刘抗旱, 郑刘根, 张理群, 丁丹, 单士锋. 复合型植物源活化剂强化蜈蚣草修复砷污染土壤的效应研究[J]. 生态环境学报, 2023, 32(3): 635-642. |
[3] | 孙建波, 畅文军, 李文彬, 张世清, 李春强, 彭明. 香蕉不同生育期根际微生物生物量及土壤酶活的变化研究[J]. 生态环境学报, 2022, 31(6): 1169-1174. |
[4] | 伍德, 彭鸥, 刘玉玲, 张朴心, 尹雪斐, 黄薪铭, 铁柏清. 螯合剂及组配对伴矿景天修复两种镉污染土壤的影响[J]. 生态环境学报, 2022, 31(12): 2414-2421. |
[5] | 俞龙生, 李卫, 许铭宇, 林泽帆. 赤霉素浸种对2种矿区修复先锋植物种子萌发和幼苗生长的影响[J]. 生态环境学报, 2022, 31(11): 2225-2233. |
[6] | 丛超, 杨宁柯, 王海娟, 王宏镔. 吲哚乙酸和激动素配合施用提高蜈蚣草和龙葵对砷、镉富集的田间试验[J]. 生态环境学报, 2021, 30(6): 1299-1309. |
[7] | 李富荣, 王琳清, 李文英, 吴志超, 王旭. 水芹对重金属的吸收累积及其应用研究进展[J]. 生态环境学报, 2021, 30(12): 2423-2430. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||