生态环境学报 ›› 2023, Vol. 32 ›› Issue (10): 1811-1821.DOI: 10.16258/j.cnki.1674-5906.2023.10.010
收稿日期:
2023-07-21
出版日期:
2023-10-18
发布日期:
2024-01-16
通讯作者:
解建仓(1963年生)。E-mail: hsianglee@mail.nwpu.edu.cn基金资助:
FAN Yanxiang1(), LEI Sheping1,*(
), XIE Jiancang2,*(
)
Received:
2023-07-21
Online:
2023-10-18
Published:
2024-01-16
摘要:
广东省是中国经济最为发达的省份之一。随着其经济的不断发展以及城市化的快速推进,出现了一定程度的河流水生态问题,深入探究河流水生态问题对广东省持续健康发展具有深刻意义。以广东省21个地级市累计94个河流监测断面为研究对象,选取了总氮、总磷、溶解氧、氨氮、电导率、浊度、高锰酸盐指数等7个指标,使用博弈论组合赋权法与VIKOR模型综合评估了其水体富营养化状况,并探讨了不同程度富营养化的治理措施与原则。研究发现,1)广东省河流断面整体水质状况良好,绝大部分断面均无富营养化出现,但仍然有一部分区域出现了极重富营养化、重度富营养化、中度富营养化、轻度富营养化,而针对不同的富营养化状况需要遵循不同的治理原则和采取不同的治理措施,以提升河流水体富营养化治理的效率。2)潮州市、茂名市、韶关市、清远市、河源市、梅州市、佛山市、中山市、肇庆市所监测评价的河流断面均未出现富营养化状态。3)广东省水体富营养化存在明显的空间集聚效应,相较严重的地区整体分布于东南沿海区域。其中珠三角和粤东水体富营养化较为严重,其次是粤西地区,而粤北地区最轻,整体呈现由东南沿海向西北内陆水体富营养化程度减轻的空间演变态势。整体而言,广东省水资源保护对区域可持续发展具有深刻的影响,各区域应积极践行生态文明发展理念,扎实推进区域水环境治理,为区域经济、社会、生态环境协调发展奠定基础。
中图分类号:
樊艳翔, 雷社平, 解建仓. 广东省河流水体富营养化综合评价及分异特征——基于博弈论组合赋权法与VIKOR模型[J]. 生态环境学报, 2023, 32(10): 1811-1821.
FAN Yanxiang, LEI Sheping, XIE Jiancang. Comprehensive Evaluation and Differentiation Characteristics of Eutrophication in River Waters of Guangdong Province: Based on Game Theory Combined Empowerment Method and VIKOR Model[J]. Ecology and Environment, 2023, 32(10): 1811-1821.
指标 | 符号 | 单位 | 指标类型 | 选择依据 (文献来源) |
---|---|---|---|---|
总氮 | TN | mg∙L−1 | 监测指标 | 朱志雄等, |
总磷 | TP | mg∙L−1 | 监测指标 | 朱志雄等, |
溶解氧 | DO | mg∙L−1 | 监测指标 | 朱志雄等, |
氨氮 | NH3N | mg∙L−1 | 监测指标 | 王焕松等, |
电导率 | EC | μs∙cm−1 | 监测指标 | 杨朝霞等, |
浊度 | NTU | NTU | 监测指标 | 杨朝霞等, |
高锰酸盐指数 | CODMn_ | mg∙L−1 | 监测指标 | 王焕松等, |
表1 广东省河流水体富营养化综合评价指标体系
Table 1 Comprehensive evaluation index system of river eutrophication in Guangdong Province
指标 | 符号 | 单位 | 指标类型 | 选择依据 (文献来源) |
---|---|---|---|---|
总氮 | TN | mg∙L−1 | 监测指标 | 朱志雄等, |
总磷 | TP | mg∙L−1 | 监测指标 | 朱志雄等, |
溶解氧 | DO | mg∙L−1 | 监测指标 | 朱志雄等, |
氨氮 | NH3N | mg∙L−1 | 监测指标 | 王焕松等, |
电导率 | EC | μs∙cm−1 | 监测指标 | 杨朝霞等, |
浊度 | NTU | NTU | 监测指标 | 杨朝霞等, |
高锰酸盐指数 | CODMn_ | mg∙L−1 | 监测指标 | 王焕松等, |
赋值aij | 1 | 3 | 5 | 7 | 8 |
---|---|---|---|---|---|
Bi较Bj | 一样重要 | 稍微重要 | 明显重要 | 强烈重要 | 极端重要 |
表2 评价指标相对重要性参考
Table 2 Reference table of the relative importance of evaluation indicatorse
赋值aij | 1 | 3 | 5 | 7 | 8 |
---|---|---|---|---|---|
Bi较Bj | 一样重要 | 稍微重要 | 明显重要 | 强烈重要 | 极端重要 |
指标 | 总氮 | 总磷 | 溶解氧 | 氨氮 | 电导率 | 浊度 | 高锰酸盐指数 |
---|---|---|---|---|---|---|---|
总氮 | 1 | 1 | 3.03 | 3.03 | 4 | 2 | 3.03 |
总磷 | 1 | 1 | 3.03 | 3.03 | 4 | 2 | 3.03 |
溶解氧 | 0.33 | 0.33 | 1 | 1 | 2 | 2 | 1 |
氨氮 | 0.33 | 0.33 | 1 | 1 | 2 | 2 | 1 |
电导率 | 0.25 | 0.25 | 0.5 | 0.5 | 1 | 1 | 0.5 |
浊度 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 1 | 2 |
高锰酸盐指数 | 0.33 | 0.33 | 1 | 1 | 2 | 0.5 | 1 |
表3 专家评分
Table 3 Expert scoring matrix
指标 | 总氮 | 总磷 | 溶解氧 | 氨氮 | 电导率 | 浊度 | 高锰酸盐指数 |
---|---|---|---|---|---|---|---|
总氮 | 1 | 1 | 3.03 | 3.03 | 4 | 2 | 3.03 |
总磷 | 1 | 1 | 3.03 | 3.03 | 4 | 2 | 3.03 |
溶解氧 | 0.33 | 0.33 | 1 | 1 | 2 | 2 | 1 |
氨氮 | 0.33 | 0.33 | 1 | 1 | 2 | 2 | 1 |
电导率 | 0.25 | 0.25 | 0.5 | 0.5 | 1 | 1 | 0.5 |
浊度 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 1 | 2 |
高锰酸盐指数 | 0.33 | 0.33 | 1 | 1 | 2 | 0.5 | 1 |
得分 | 水体富营养化水平 | 总磷TP 质量浓度/ (mg∙L−1) | 总氮TN 质量浓度/ (mg∙L−1) | 高锰酸盐指数(COD)/ (mg∙L−1) |
---|---|---|---|---|
0<Qi ≤0.2 | 极重富营养化 | (0, 0.005] | (0, 0.007] | (0, 1.40] |
0.2<Qi ≤0.4 | 重度富营养化 | (0.005, 0.019] | (0.007, 0.24] | (1.40, 2.96] |
0.4<Qi ≤0.6 | 中度富营养化 | (0.019, 0.065] | (0.24, 0.77] | (2.96, 6.29] |
0.6<Qi ≤0.8 | 轻度富营养化 | (0.065, 0.413] | (0.77, 4.50] | (6.29, 19.40] |
0.8<Qi ≤0.1 | 无富营养化 | (0.413, 1.415] | (4.50, 14.64] | (19.4, 41.4] |
表4 广东省河流水体富营养化评价参考
Table 4 Reference table for the evaluation of eutrophication of river bodies in Guangdong Province
得分 | 水体富营养化水平 | 总磷TP 质量浓度/ (mg∙L−1) | 总氮TN 质量浓度/ (mg∙L−1) | 高锰酸盐指数(COD)/ (mg∙L−1) |
---|---|---|---|---|
0<Qi ≤0.2 | 极重富营养化 | (0, 0.005] | (0, 0.007] | (0, 1.40] |
0.2<Qi ≤0.4 | 重度富营养化 | (0.005, 0.019] | (0.007, 0.24] | (1.40, 2.96] |
0.4<Qi ≤0.6 | 中度富营养化 | (0.019, 0.065] | (0.24, 0.77] | (2.96, 6.29] |
0.6<Qi ≤0.8 | 轻度富营养化 | (0.065, 0.413] | (0.77, 4.50] | (6.29, 19.40] |
0.8<Qi ≤0.1 | 无富营养化 | (0.413, 1.415] | (4.50, 14.64] | (19.4, 41.4] |
得分 | 水体富营养化水平 | 富营养化特征 | 河流健康水平 | 水质等级 |
---|---|---|---|---|
0<Qi ≤0.2 | 极重富营养化 | 水体中营养物质的浓度极高, 导致水藻等微生物暴发性繁殖, 水体中可能出现大规模的水华现象, 水生生物严重受到影响, 甚至可能导致水体富氧化死亡, 水体生态系统彻底崩溃 | 病态 | Ⅴ |
0.2<Qi ≤0.4 | 重度富营养化 | 水体中营养物质的浓度非常高, 导致水藻等微生物大规模繁殖, 水体中可能出现严重的水华现象, 水生生物的种类和数量明显受到影响, 水体生态系统严重破坏 | 亚病态 | Ⅳ |
0.4<Qi ≤0.6 | 中度富营养化 | 水体中营养物质的浓度明显增加, 导致水藻等微生物大量繁殖, 水体中可能出现较明显的水华现象, 水生生物的种类和数量可能发生变化 | 中等 | Ⅲ |
0.6<Qi ≤0.8 | 轻度富营养化 | 水体中营养物质的浓度略微超过正常水平, 导致水藻等微生物的增殖, 水体中可能出现轻微的蓝藻或绿藻水华现象 | 亚健康 | Ⅱ |
0.8<Qi ≤0.1 | 无富营养化 | 水体营养物质的浓度处于正常范围内, 水生生物种类和数量相对平衡, 水体生态系统正常运转 | 健康 | Ⅰ |
表5 广东省河流水体富营养化评价等级
Table 5 Evaluation level of eutrophication of river bodies in Guangdong Province
得分 | 水体富营养化水平 | 富营养化特征 | 河流健康水平 | 水质等级 |
---|---|---|---|---|
0<Qi ≤0.2 | 极重富营养化 | 水体中营养物质的浓度极高, 导致水藻等微生物暴发性繁殖, 水体中可能出现大规模的水华现象, 水生生物严重受到影响, 甚至可能导致水体富氧化死亡, 水体生态系统彻底崩溃 | 病态 | Ⅴ |
0.2<Qi ≤0.4 | 重度富营养化 | 水体中营养物质的浓度非常高, 导致水藻等微生物大规模繁殖, 水体中可能出现严重的水华现象, 水生生物的种类和数量明显受到影响, 水体生态系统严重破坏 | 亚病态 | Ⅳ |
0.4<Qi ≤0.6 | 中度富营养化 | 水体中营养物质的浓度明显增加, 导致水藻等微生物大量繁殖, 水体中可能出现较明显的水华现象, 水生生物的种类和数量可能发生变化 | 中等 | Ⅲ |
0.6<Qi ≤0.8 | 轻度富营养化 | 水体中营养物质的浓度略微超过正常水平, 导致水藻等微生物的增殖, 水体中可能出现轻微的蓝藻或绿藻水华现象 | 亚健康 | Ⅱ |
0.8<Qi ≤0.1 | 无富营养化 | 水体营养物质的浓度处于正常范围内, 水生生物种类和数量相对平衡, 水体生态系统正常运转 | 健康 | Ⅰ |
指标 | 层次分析法权重 | 独立性权重法权重 | 博弈论组合权重 |
---|---|---|---|
总氮 | 0.263 | 0.096 | 0.180 |
总磷 | 0.263 | 0.094 | 0.178 |
溶解氧 | 0.111 | 0.134 | 0.123 |
氨氮 | 0.111 | 0.112 | 0.111 |
电导率 | 0.062 | 0.348 | 0.205 |
浊度 | 0.100 | 0.113 | 0.106 |
高锰酸盐指数 | 0.091 | 0.103 | 0.097 |
表6 广东省河流水体富营养化评价指标权重
Table 6 Weight table of evaluation index of eutrophication of river bodies in Guangdong Province
指标 | 层次分析法权重 | 独立性权重法权重 | 博弈论组合权重 |
---|---|---|---|
总氮 | 0.263 | 0.096 | 0.180 |
总磷 | 0.263 | 0.094 | 0.178 |
溶解氧 | 0.111 | 0.134 | 0.123 |
氨氮 | 0.111 | 0.112 | 0.111 |
电导率 | 0.062 | 0.348 | 0.205 |
浊度 | 0.100 | 0.113 | 0.106 |
高锰酸盐指数 | 0.091 | 0.103 | 0.097 |
区域 | 城市 | 断面 | Qi值 | 区域 | 城市 | 断面 | Qi值 |
---|---|---|---|---|---|---|---|
粤东 | 汕头市 | 隆都 | 0.941 | 珠三角地区 | 广州市 | 蕉门 | 0.681 |
海门湾桥闸 | 0.714 | 洪奇沥 | 0.751 | ||||
升平 | 0.156 | 莲花山 | 0.664 | ||||
外砂 | 0.938 | 流溪河庄 | 0.967 | ||||
莲阳桥闸 | 0.940 | 官坦 | 0.824 | ||||
大衙 | 0.925 | 大龙涌口 | 0.870 | ||||
汕尾市 | 海丰西闸 | 0.913 | 九龙潭 | 0.953 | |||
东溪水闸 | 0.753 | 增江口 | 0.897 | ||||
乌坎 | 0.288 | 鸦岗 | 0.667 | ||||
潮州市 | 赤凤 | 0.877 | 墩头基 | 0.692 | |||
凤江桥 | 0.856 | 大墩 | 0.826 | ||||
揭阳市 | 地都 | 0.673 | 深圳市 | 深圳河口 | 0.139 | ||
隆溪大道桥 | 0.541 | 小漠桥 | 0.528 | ||||
鬼山塔 | 0.932 | 共和村 | 0.540 | ||||
粤西 | 湛江市 | 渠首 | 0.882 | 珠海市 | 尖峰大桥 | 0.861 | |
黄坡 | 0.807 | 珠海大桥 | 0.859 | ||||
山角 | 0.900 | 石角咀水闸 | 0.761 | ||||
赤坎水厂 | 0.873 | 鸡啼门大桥 | 0.833 | ||||
排里 | 0.802 | 布洲 | 0.881 | ||||
南渡河桥 | 0.788 | 佛山市 | 平洲 | 0.850 | |||
石碧 | 0.637 | 乌洲 | 0.875 | ||||
营子 | 0.803 | 江门市 | 古劳 | 0.901 | |||
黄竹尾水闸 | 0.797 | 下东 | 0.886 | ||||
茂名市 | 塘口 | 0.861 | 苍山渡口 | 0.693 | |||
石骨水库 | 1.000 | 牛湾 | 0.797 | ||||
良德水库 | 0.983 | 肇庆市 | 梁村 | 0.886 | |||
江口门 | 0.816 | 白沙街 | 0.946 | ||||
米急渡 | 0.807 | 黄岗 | 0.878 | ||||
阳江市 | 江城 | 0.823 | 永安 | 0.863 | |||
尖山 | 0.782 | 惠州市 | 紫溪 | 0.726 | |||
埠场 | 0.793 | 东江江口 | 0.916 | ||||
大泉 | 0.770 | 博罗城下 | 0.866 | ||||
寿长 | 0.571 | 惠州汝湖 | 0.922 | ||||
云浮市 | 古封 | 0.890 | 沙河河口 | 0.836 | |||
都骑 | 0.893 | 马安大桥下 | 0.779 | ||||
六都水厂上游 | 0.914 | 虎爪断桥 | 0.250 | ||||
粤北 | 韶关市 | 十里亭 | 0.946 | 吉隆商贸街前 | 0.726 | ||
长坝 | 0.952 | 公庄河口 | 0.812 | ||||
三溪桥 | 0.949 | 东莞市 | 樟村 | 0.581 | |||
高桥 | 0.919 | 沙田泗盛 | 0.758 | ||||
梅州市 | 青溪 | 0.915 | 旗岭 | 0.538 | |||
大麻 | 0.906 | 石龙南河 | 0.838 | ||||
西阳电站 | 0.834 | 中山市 | 中山港码头 | 0.855 | |||
五丰渡口 | 0.866 | 粤北 | 清远市 | 七星岗 | 0.932 | ||
新铺 | 0.881 | 北江石尾 | 0.914 | ||||
河源市 | 庙咀里 | 0.864 | 石角 | 0.930 | |||
龙川城铁路桥 | 0.930 | 连江西牛 | 0.980 |
表7 广东省河流水体富营养化评价
Table 7 Evaluation table of river eutrophication in Guangdong Province
区域 | 城市 | 断面 | Qi值 | 区域 | 城市 | 断面 | Qi值 |
---|---|---|---|---|---|---|---|
粤东 | 汕头市 | 隆都 | 0.941 | 珠三角地区 | 广州市 | 蕉门 | 0.681 |
海门湾桥闸 | 0.714 | 洪奇沥 | 0.751 | ||||
升平 | 0.156 | 莲花山 | 0.664 | ||||
外砂 | 0.938 | 流溪河庄 | 0.967 | ||||
莲阳桥闸 | 0.940 | 官坦 | 0.824 | ||||
大衙 | 0.925 | 大龙涌口 | 0.870 | ||||
汕尾市 | 海丰西闸 | 0.913 | 九龙潭 | 0.953 | |||
东溪水闸 | 0.753 | 增江口 | 0.897 | ||||
乌坎 | 0.288 | 鸦岗 | 0.667 | ||||
潮州市 | 赤凤 | 0.877 | 墩头基 | 0.692 | |||
凤江桥 | 0.856 | 大墩 | 0.826 | ||||
揭阳市 | 地都 | 0.673 | 深圳市 | 深圳河口 | 0.139 | ||
隆溪大道桥 | 0.541 | 小漠桥 | 0.528 | ||||
鬼山塔 | 0.932 | 共和村 | 0.540 | ||||
粤西 | 湛江市 | 渠首 | 0.882 | 珠海市 | 尖峰大桥 | 0.861 | |
黄坡 | 0.807 | 珠海大桥 | 0.859 | ||||
山角 | 0.900 | 石角咀水闸 | 0.761 | ||||
赤坎水厂 | 0.873 | 鸡啼门大桥 | 0.833 | ||||
排里 | 0.802 | 布洲 | 0.881 | ||||
南渡河桥 | 0.788 | 佛山市 | 平洲 | 0.850 | |||
石碧 | 0.637 | 乌洲 | 0.875 | ||||
营子 | 0.803 | 江门市 | 古劳 | 0.901 | |||
黄竹尾水闸 | 0.797 | 下东 | 0.886 | ||||
茂名市 | 塘口 | 0.861 | 苍山渡口 | 0.693 | |||
石骨水库 | 1.000 | 牛湾 | 0.797 | ||||
良德水库 | 0.983 | 肇庆市 | 梁村 | 0.886 | |||
江口门 | 0.816 | 白沙街 | 0.946 | ||||
米急渡 | 0.807 | 黄岗 | 0.878 | ||||
阳江市 | 江城 | 0.823 | 永安 | 0.863 | |||
尖山 | 0.782 | 惠州市 | 紫溪 | 0.726 | |||
埠场 | 0.793 | 东江江口 | 0.916 | ||||
大泉 | 0.770 | 博罗城下 | 0.866 | ||||
寿长 | 0.571 | 惠州汝湖 | 0.922 | ||||
云浮市 | 古封 | 0.890 | 沙河河口 | 0.836 | |||
都骑 | 0.893 | 马安大桥下 | 0.779 | ||||
六都水厂上游 | 0.914 | 虎爪断桥 | 0.250 | ||||
粤北 | 韶关市 | 十里亭 | 0.946 | 吉隆商贸街前 | 0.726 | ||
长坝 | 0.952 | 公庄河口 | 0.812 | ||||
三溪桥 | 0.949 | 东莞市 | 樟村 | 0.581 | |||
高桥 | 0.919 | 沙田泗盛 | 0.758 | ||||
梅州市 | 青溪 | 0.915 | 旗岭 | 0.538 | |||
大麻 | 0.906 | 石龙南河 | 0.838 | ||||
西阳电站 | 0.834 | 中山市 | 中山港码头 | 0.855 | |||
五丰渡口 | 0.866 | 粤北 | 清远市 | 七星岗 | 0.932 | ||
新铺 | 0.881 | 北江石尾 | 0.914 | ||||
河源市 | 庙咀里 | 0.864 | 石角 | 0.930 | |||
龙川城铁路桥 | 0.930 | 连江西牛 | 0.980 |
[1] |
BRICKER S B, FERREIRA J G, SIMAS T, 2003. An integrated methodology for assessment of estuarine trophic status[J]. Ecological Modelling, 169: 39-60.
DOI URL |
[2] |
CAPRIULO G M, SMITH G, TROY R, et al., 2002. The planktonic food web structure of a temperate zone estuary, and its alteration due to eutrophication[J]. Hydrobiologia, 475-476(1): 263-333.
DOI URL |
[3] | CARLSON R E, 1991. Expanding the trophic state concept to identify non-nutrient limited lake sand reservoirs[M]. In: Proceedings of a National Conference on Enhancing the States Lake Management Programs. Chicago: Monitoring and Lake Impact Assessment: 59-71. |
[4] |
DETTMANN E H, 2001. Effect of water residence time on annual export and denitrification of nitrogen in estuaries: A model analysis[J]. Estuaries, 24(4): 481-490.
DOI URL |
[5] |
DU H B, CHEN Z N, MAO G Z, et al., 2011. Evaluation of eutrophication in fresh water lakes: A new non-equilibrium statistical approach[J]. Ecological Indicators, 102: 686-692.
DOI URL |
[6] |
GLIBERT P M, SEITZINGER S, HEIL C A, et al., 2005. The role of eutrophication in the global proliferation of harmful algal blooms: New perspectives and new approaches[J]. Oceanography, 18(2): 198-209.
DOI URL |
[7] |
IGNATIADES L, KARYDIS M, VOUNATSOU P, 1992. A possible method for evaluating oligotrophy and eutrophication based on nutrient concentration scales[J]. Marine Pollution Bulletin, 24(5): 238-243.
DOI URL |
[8] |
JUSTIC D A, 1991. Simple oxygen index for trophic state description[J]. Marine Pollution Bulletin, 22(4): 201-204.
DOI URL |
[9] |
KHAN F A, ANSARI A A, 2005. Eutrophication: An ecological vision[J]. The Botanical Review, 71(4): 449-482.
DOI URL |
[10] |
LIU C M, LIU X Y, 2009. Healthy river and its indication, criteria and standards[J]. Journal of Geographical Sciences, 19: 3-11.
DOI |
[11] |
LOERN J E, 2011. Our evolving conceptual model of the coastal eutrophication problem[J]. Marine Ecology Progress, 210(4): 223-253.
DOI URL |
[12] | PENG Y R, HE X H, YANG C C, et al., 2020. Seasonal changes of eutrophication and retention functions of water bodies in the wetland landscape of West Lake in Dali[J]. Chinese Journal of Ecology, 39(12): 4078-4089. |
[13] | OSPAR COMMISSION, 2001. Draft common assessment criteria and their application within the comprehensive procedure of the common procedure[M]. London: Proceedings of the Meeting of the Eutrophication Task Group. |
[14] |
SUN W, XIA C Y, XU M Y, et al., 2016. Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River[J]. Ecological Indicators, 66: 306-312.
DOI URL |
[15] |
WU Z S, CAI Y J, ZHANG L, et al., 2018. Spatial and temporal heterogeneities in water quality and their potential drivers in Lake Poyang (China) from 2009 to 2015[J]. Limnologica, 69: 115-124.
DOI URL |
[16] |
YANG D, FEI D, ZHAO J Y, et al., 2020. Non-point source pollution simulation and best management practices analysis based on control units in Northern China[J]. International Journal of Environmental Research and Public Health, 17(3): 868.
DOI URL |
[17] | ZHU Z X, LUO L Z, CHEN S Q, et al., 2020. Analysis and evaluation of seawater eutrophication and heavy metal characteristics in small sea water in Hainan[J]. Bulletin of Oceano-Limnology, 176(5): 131-138. |
[18] | 鲍广强, 尹亮, 余金龙, 等, 2018. 基于综合营养状态指数和BP神经网络的黑河富营养化评价[J]. 水土保持通报, 38(1): 264-269. |
BAO G Q, YIN L, YU J L, et al., 2018. Evaluation of eutrophication in Heihe River based on comprehensive trophic status index and BP neural network[J]. Bulletin of Soil and Water Conservation, 38(1): 264-269. | |
[19] | 闭文妮, 2013. 代海水富营养化评价方法在广西近岸海域的应用[D]. 南宁: 广西大学. |
BI W N, 2013. Application of seawater eutrophication evaluation method in coastal waters of Guangxi[D]. Nanning: Guangxi University. | |
[20] | 边佳胤, 袁林, 王琼, 等, 2013. 洋山深水港海域水质变化趋势分析及富营养化评价[J]. 海洋通报, 32(1): 107-112. |
BIAN J Y, YUAN L, WANG Q, et al., 2013. Analysis of water quality change trend and eutrophication evaluation in Yangshan deep water port[J]. Marine Bulletin, 32(1): 107-112. | |
[21] | 曹斌, 宋建社, 1991. 湖泊水质富营养化评价的模糊决策方法[J]. 北京环境科学, 12(5): 88-91. |
CAO B, SONG J S, 1991. Fuzzy decision-making method for lake water quality eutrophication assessment[J]. Beijing Environmental Science, 12(5): 88-91. | |
[22] | 陈金月, 陈水森, 付娆, 等, 2022. 广东省水质现状及驱动因素[J]. 生态学报, 42(19): 7921-7931. |
CHEN J Y, CHEN S S, FU R, et al., 2022. Current status and driving factors of water quality in Guangdong Province[J]. Acta Ecologica Sinica, 42(19): 7921-7931. | |
[23] | 陈鸣渊, 俞志明, 2007. 利用模糊综合方法评价长江口海水富营养化水平[J]. 青岛海洋科学, 31(11): 47-54. |
CHEN M Y, YU Z M, 2007. Evaluation of seawater eutrophication level in the Yangtze River estuary by fuzzy comprehensive method[J]. Qingdao Marine Sciences, 31(11): 47-54. | |
[24] | 陈芸, 赵骞, 徐广鹏, 2017. 基于人工神经网络的夏季辽东湾北部河口区富营养化评价[J]. 海洋湖沼通报, 158(5): 48-57. |
CHEN Y, ZHAO Q, XU G P, 2017. Evaluation of eutrophication in the estuarine area of northern Liaodong Bay in summer based on artificial neural network[J]. Bulletin of Ocean Limnology, 158(5): 48-57. | |
[25] | 陈宗汉, 李明, 徐永海, 等, 2023. 基于自学习权重-云模型的工业用户外界风险评估方法[J/OL]. 华北电力大学学报(自然科学版), 1-10 [2023-07-12]. |
CHWN Z H, LI M, XU Y H, et al., 2023. External risk assessment method for industrial users based on self-learning weight-cloud model[J/OL]. Journal of North China Electric Power University (Natural Science Edition), 1-10 [2023-07-12]. http://kns.cnki.net/kcms/detail/13.1212.tm.20230705.1316.002.html. | |
[26] | 国家环境保护总局, 国家质量监督检验检疫总局, 2002. 地表水环境质量标准: GB 3838—2002 [S]. 北京: 中国环境科学出版社. |
State Environmental Protection ADministration, General Administration of Quality Supervision, Inspection and Quarantine, 2002. Surface Water Environmental Quality Standard: GB 3838—2002 [S]. Beijing: China Environmental Science Press. | |
[27] | 黄楚珩, 蒋志云, 杨志广, 等, 2019. 基于熵值法和层次分析法的广东省水资源安全评价及影响因素分析[J]. 水资源与水工程学报, 30(5): 140-147. |
HUANG C H, JIANG Z Y, YANG Z G, et al., 2019. Water resources security assessment and influencing factors analysis in Guangdong Province based on entropy method and analytic hierarchy method[J]. Journal of Water Resources and Water Engineering, 30(5): 140-147. | |
[28] | 吉冬青, 文雅, 魏建兵, 等, 2015. 流溪河流域景观空间特征与河流水质的关联分析[J]. 生态学报, 35(2): 246-253. |
JI D J, WEN Y, WEI J B, et al., 2015. Correlation analysis between landscape spatial characteristics and river water quality in Liuxi River Basin[J]. Acta Ecological Sinica, 35(2): 246-253. | |
[29] | 蒋国昌, 王玉衡, 董恒霖, 等, 1987. 浙江沿海富营养化程度的初步探讨[J]. 海洋通报, 6(4): 38-46. |
JIANG G C, WANG Y H, DONG H L, et al., 1987. A preliminary discussion on the degree of eutrophication along the coast of Zhejiang[J]. Marine Bulletin, 6(4): 38-46. | |
[30] | 金相灿, 屠清瑛, 1990. 湖泊富营养化调查规范[M]. 第2版. 北京: 中国环境科学出版社. |
JIN X C, TU Q Y, 1990. Survey specification for lake eutrophication[M]. 2nd edition. Beijing: China Environmental Science Press. | |
[31] | 鞠伟轶, 吴洁, 周思, 等, 2022. 基于博弈论组合赋权的森林火灾风险评估[J]. 消防科学与技术, 41(2): 252-256. |
JU W Y, WU J, ZHOU S, et al., 2022. Risk assessment of forest fire based on gametheory combination empowerment[J]. Fire Science and Technology, 41(2): 252-256. | |
[32] | 孔宪喻, 苏荣国, 2016. 基于支持向量机的黄东海富营养化快速评价技术[J]. 中国环境科学, 36(1): 143-148. |
KONG X Y, SU R G, 2016. Rapid evaluation technology of eutrophication in Huangdonghai based on support vector machine[J]. China Environmental Science, 36(1): 143-148. | |
[33] | 李杰, 汪明武, 龙静云, 等, 2021. 基于博弈论的水体富营养化综合联系云评价模型[J]. 环境工程, 39(6): 192-197. |
LI J, WANG M W, LONG J Y, et al., 2021. Cloud evaluation model of water eutrophication comprehensive linkage based on game theory[J]. Environmental Engineering, 39(6): 192-197. | |
[34] | 李银久, 李秋华, 焦树林, 2022. 基于改进层次分析法、CRITIC法与复合模糊物元VIKOR模型的河流健康评价[J]. 生态学杂志, 41(4): 822-832. |
LI Y J, LI Q H, JIAO S L, 2022. River health evaluation based on improved analytic hierarchy method, CRITIC method and composite fuzzy matter element VIKOR model[J]. Chinese Journal of Ecology, 41(4): 822-832. | |
[35] | 廖东良, 路保平, 2018. 页岩气工程甜点评价方法——以四川盆地焦石坝页岩气田为例[J]. 天然气工业, 38(2): 43-50. |
LIAO D L, LU B P, 2018. Evaluation method of dessert in shale gas engineering: A case study of Jiaoshiba shale gas field in Sichuan Basin[J]. Natural Gas Industry, 38(2): 43-50. | |
[36] | 林同云, 袁兴中, 唐清华, 等, 2014. 熵权集对分析模型应用于湖泊富营养化评价[J]. 环境工程, 32(11): 141-145. |
LIN T Y, YUAN X Z, TANG Q H, et al., 2014. Application of entropy weight set pair analysis model to lake eutrophication evaluation[J]. Environmental Engineering, 32(11): 141-145. | |
[37] |
林晓娟, 高姗, 仉天宇, 等, 2018. 海水富营养化评价方法的研究进展与应用现状[J]. 地球科学进展, 33(4): 373-384.
DOI |
LIN X J, GAO S, ZHANG T Y, et al., 2018. Research progress and application status of seawater eutrophication evaluation methods[J]. Advances in Earth Science, 33(4): 373-384. | |
[38] | 龙苒, 陈海刚, 田斐, 等, 2023. 基于PSR模型的珠江口海域富营养化特征与评价[J]. 应用海洋学学报, 42(2): 317-328. |
LONG R, CHEN H G, TIAN F, et al., 2023. Characteristics and evaluation of eutrophication in the Pearl River Estuary based on PSR model[J]. Journal of Applied Oceanography, 42(2): 317-328. | |
[39] | 门业堃, 钱梦迪, 于钊, 等, 2020. 基于博弈论组合赋权的电力设备供应商模糊综合评价[J]. 电力系统保护与控制, 48(21): 179-186. |
MENG Y K, QIAN M D, YU Z, et al., 2020. Fuzzy comprehensive evaluation of power equipment suppliers based on game theory combination empowerment[J]. Power System Protection and Control, 48(21): 179-186. | |
[40] | 欧阳虹, 王世强, 邱小琮, 等, 2021. 富营养化评价方法在宁夏清水河流域的适用性研究[J]. 水文, 41(6): 53-59. |
OUYANG H, WANG S Q, QIU X Q, et al., 2021. Applicability of eutrophication evaluation methods in Qingshui River Basin in Ningxia[J]. Hydrology, 41(6): 53-59. | |
[41] | 庞文博, 张秋丰, 陈燕珍, 等, 2020. 基于PSR模型和层次分析法的渤海湾天津近岸海域富营养化评价[J]. 海洋湖沼通报, 41(6): 111-118. |
PANG W B, ZHANG Q F, CHEN Y Z, et al., 2020. Evaluation of eutrophication in Tianjin coastal waters of Bohai Bay based on PSR model and analytic hierarchy[J]. Bulletin of Oceano-Limnology, 41(6): 111-118. | |
[42] | 彭园睿, 何兴华, 杨春灿, 等, 2020. 大理西湖湿地景观中水体富营养化及截留功能的季节变化[J]. 生态学杂志, 39(12): 4078-4089. |
PENG Y R, HE X H, YANG C C, et al., 2020. Seasonal changes of water eutrophication and retention function in the West Lake wetland landscape in Dali, China[J]. Chinese Journal of Ecology, 39(12): 4078-4089. | |
[43] |
苏聪文, 邓宗兵, 李莉萍, 等, 2021. 中国水生态文明发展水平的空间格局及收敛性[J]. 自然资源学报, 36(5): 1282-1301.
DOI |
SU C W, DENG Z B, LI L P, et al., 2021. Spatial pattern and convergence of the development level of water ecological civilization in China[J]. Journal of Natural Resources, 36(5): 1282-1301.
DOI URL |
|
[44] | 苏广全, 吕海深, 朱永华, 等, 2022. 基于博弈论组合赋权的洪水风险评价——以武威地区为例[J]. 干旱区研究, 39(3): 801-809. |
SU G Q, LÜ H S, ZHU Y H, et al., 2022. Flood risk assessment based on game theory combination empowerment: A case study of Wuwei area[J/OL]. Arid Zone Research, 39(3): 801-809. | |
[45] | 谭豪, 脱云飞, 王倩, 等, 2023. 基于CRITIC-VIKOR法的云南省水资源承载力综合评价[J]. 水资源与水工程学报, 34(4): 119-125. |
TAN H, DUO Y F, WANG Q, et al., 2023. Comprehensive evaluation of carrying capacity of water resources in Yunnan Province based on CRITIC-VIKOR method[J]. Journal of Water Resources and Water Engineering, 34(4): 119-125. | |
[46] | 王焕松, 雷坤, 2010. 辽东湾海域水体富营养化的模糊综合评价[J]. 北京环境科学研究, 23(4): 413-419. |
WANG H S, LEI K, 2010. Fuzzy comprehensive evaluation of eutrophication in Liaodong Bay[J]. Beijing Environmental Sciences, 23(4): 413-419. | |
[47] | 王志强, 田娜, 缪建群, 等, 2017. 基于组合可拓综合分析法的鄱阳湖流域水质富营养化评价[J]. 生态学报, 37(12): 4227-4235. |
WANG Z Q, TIAN N, MIAO J Q, et al., 2017. Evaluation of eutrophication in Poyang Lake Basin based on combinatorial extension comprehensive analysis[J]. Acta Ecologica Sinica, 37(12): 4227-4235. | |
[48] | 徐冬梅, 邵莉, 徐梦臣, 等, 2019. 基于博弈论的可变模糊评价模型在水质评价中的应用[J]. 节水灌溉, 44(10): 60-63. |
XU D M, SHAO L, XU M C, et al., 2019. Application of variable fuzzy evaluation model based on game theory in water quality evaluation[J]. Water-saving Irrigation, 44(10): 60-63. | |
[49] |
徐国锋, 崔永平, 刘莲, 2018. 应用压力-状态-响应模型评价象山港富营养化水平[J]. 热带海洋学报, 37(4): 52-60.
DOI |
XU G F, CUI Y P, LIU L, 2018. Evaluation of eutrophication level in Xiangshan Port using pressure-state-response model[J]. Journal of Tropical Oceanography, 37(4): 52-60. | |
[50] |
杨朝霞, 李畅游, 史小红, 等, 2019. 呼伦湖水体营养状态特征及其主要影响因子研究[J]. 生态环境学报, 28(11): 2273-2280.
DOI |
YANG C X, LI C Y, SHI X H, et al., 2019. Study on the characteristics of water nutrition status and its main influencing factors in Hulun Lake[J]. Ecology and Environmental Sciences, 28(11): 2273-2280. | |
[51] | 杨文焕, 杜璇, 姚植, 等, 2021. 基于VAR模型的乌梁素海富营养化影响因子评价[J]. 环境科学与技术, 44(2): 25-32. |
YANG W H DU X, YAO Z, et al., 2021. Evaluation of eutrophication factors of Wuliangsuhai based on VAR model[J]. Environmental Science and Technology, 44(2): 25-32. | |
[52] | 于海峰, 史小红, 孙标, 等, 2021. 2011-2020年呼伦湖水质及富营养化变化分析[J]. 干旱区研究, 38(6): 1534-1545. |
YU H F, SHI X H, SUN B, et al., 2021. Analysis of water quality and eutrophication changes in Hulun Lake from 2011 to 2020[J]. Arid Zone Research, 38(6): 1534-1545. | |
[53] |
张德彬, 刘国东, 王亮, 等, 2018. 基于博弈论组合赋权的TOPSIS模型在地下水水质评价中的应用[J]. 长江科学院院报, 35(7): 46-50, 62.
DOI |
ZHANG D B, LIU G D, WANG L, et al., 2018. Application of TOPSIS model based on game theory combinatorial weighting in groundwater quality evaluation[J]. Journal of Yangtze River Scientific Research Institute, 35(7): 46-50, 62. | |
[54] | 郑恺原, 潘若云, 黄峰, 2020. 算子优化层次分析的TOPSIS模型评价大沽河流域地下水质研究[J]. 节水灌溉, 297(5): 88-92. |
ZHENG K Y, PAN R Y, HUANG F, 2020. Evaluation of groundwater quality in Dagu River Basin by TOPSIS model based on operator optimization hierarchy analysis[J]. Water-saving Irrigation, 297(5): 88-92. | |
[55] | 朱志雄, 骆丽珍, 陈石泉, 等, 2020. 海南小海海水富营养化和重金属特征分析与评价[J]. 海洋湖沼通报, 176(5): 131-138. |
ZHU Z X, LUO L Z, CHEN S Q, et al., 2020. Characterization and evaluation of seawater eutrophication and heavy metals in small sea of Hainan[J]. Bulletin of Oceanology and Limnology, 176(5): 131-138. |
[1] | 宁健, 程晓波, 苏超丽, 汤泽平, 余泽峰. 广东省伴生放射性矿周围土壤放射性水平分析[J]. 生态环境学报, 2023, 32(9): 1692-1699. |
[2] | 王晨茜, 张琼锐, 张若琪, 孙学超, 徐颂军. 广东省珠江流域景观格局对水质净化服务的影响[J]. 生态环境学报, 2022, 31(7): 1425-1433. |
[3] | 刘香华, 王秀明, 刘谞承, 张音波, 刘飘. 基于外溢生态系统服务价值的广东省生态补偿机制研究[J]. 生态环境学报, 2022, 31(5): 1024-1031. |
[4] | 黄巧义, 于俊红, 黄建凤, 黄旭, 李苹, 付弘婷, 唐拴虎, 刘一锋, 徐培智. 广东省主要农作物秸秆养分资源量及替代化肥潜力[J]. 生态环境学报, 2022, 31(2): 297-306. |
[5] | 陈瑶瑶, 廖彤, 汪宇, 沈劲, 翟宇虹, 叶斯琪, 陈多宏, 陈靖扬. 2016—2020年广东省臭氧污染特征[J]. 生态环境学报, 2022, 31(12): 2374-2381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||