生态环境学报 ›› 2023, Vol. 32 ›› Issue (2): 361-371.DOI: 10.16258/j.cnki.1674-5906.2023.02.016
杨秋1(), 曹英杰2,3,*(
), 张宇1, 陈建耀1, 王诗忠2, 田帝1
收稿日期:
2022-11-24
出版日期:
2023-02-18
发布日期:
2023-05-11
通讯作者:
*曹英杰,E-mail: caoyingj@mail.sysu.edu.cn作者简介:
杨秋(1997年生),女,硕士研究生,主要研究方向为矿区水循环和水化学。E-mail: yangq235@mail2.sysu.edu.cn
基金资助:
YANG Qiu1(), CAO Yingjie2,3,*(
), ZHANG Yu1, CHEN Jianyao1, WANG Shizhong2, TIAN Di1
Received:
2022-11-24
Online:
2023-02-18
Published:
2023-05-11
摘要:
矿山关闭后,水位迅速回弹升高,区域水动力场发生改变进而影响到水化学场的演变,并伴随着严重的区域水环境问题。为研究闭坑矿区水体水化学特征和成因,系统采集丰水期、枯水期背景点、地下水和矿井水样测定现场参数、δ18O和δD值、主量离子等,综合利用多元统计分析、同位素示踪和水化学计量分析等分析方法开展不同水体的水化学特征及成因分析。结果表明,(1)δ18O和δD组成说明研究区地下水和矿井水主要来源为大气降水,且受到了不同程度的蒸发影响;同一季节内背景点、地下水、矿井水同位素组成具有分区聚集性,丰水期同位素相对亏损,枯水期相对富集,表明不同水体水力联系密切;分层聚类分析和水化学同样揭示了不同含水层之间存在密切的水力联系。(2)研究区水化学具有较大差异。背景点、地下水、矿井水TDS取值范围分别为44.18-138.86、43.39-6917.6、3329.22-4174.20 mg·L-1,从淡水到咸水均有分布;pH取值范围分别为4.39-8.2、2.75-7.9、2.87-2.92,呈酸性、弱酸性、中性、弱碱性。水化学类型沿补-径-排路径发生系统性演化,背景点、地下水、矿井水水型依次为Ca-Mg-HCO3型、Ca-SO4型、Ca-SO4型。(3)水岩作用是控制研究区水化学演化的主要因素。背景区地下水受制于硅酸盐的溶解,水岩作用较弱;矿区地下水水岩作用增强,受硫化物氧化和硅酸盐、碳酸盐岩的溶解的共同影响,形成中性或偏碱性地下水;矿井水主控水岩反应为硫化矿物的氧化溶解,形成典型低pH、高SO42-的酸性矿山排水。矿山闭坑后水文地球化学特征及主控因素的研究对区域水环境重金属污染防控具有重要意义。
中图分类号:
杨秋, 曹英杰, 张宇, 陈建耀, 王诗忠, 田帝. 闭坑铅锌矿区地下水-矿坑水水化学特征及成因分析[J]. 生态环境学报, 2023, 32(2): 361-371.
YANG Qiu, CAO Yingjie, ZHANG Yu, CHEN Jianyao, WANG Shizhong, TIAN Di. Hydrochemical Characteristics and Its Cause Analysis of Groundwater and Mine Water in Closed Lead Zinc Mining Area[J]. Ecology and Environment, 2023, 32(2): 361-371.
季节 | 类型 | 参数 | TDS | pH | DO | EC | ORP | Na+ | K+ | Mg2+ | Ca2+ | Cl- | NO3- | SO42- | HCO3- | δ18O | δD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
丰水期 | 背景点 (n=3) | 平均值 | 77.78 | 7.44 | 1.72 | 125.71 | 80.97 | 3.86 | 0.92 | 2.23 | 11.31 | 1.23 | 1.40 | 35.30 | 21.53 | -6.39 | -33.85 |
最小值 | 46.18 | 6.95 | 1.51 | 0.03 | -27.10 | 1.02 | 0.53 | 1.79 | 4.51 | 1.11 | 0.70 | 32.26 | 0.00 | -6.59 | -34.94 | ||
最大值 | 136.86 | 8.20 | 1.94 | 203.50 | 170.30 | 9.32 | 1.42 | 2.90 | 23.21 | 1.32 | 2.20 | 40.16 | 58.34 | -6.22 | -32.35 | ||
地下水 (n=13) | 平均值 | 1117.79 | 6.30 | 2.08 | 1187.46 | 143.13 | 6.73 | 2.73 | 23.61 | 163.05 | 2.43 | 5.55 | 866.22 | 59.86 | -6.38 | -34.61 | |
最小值 | 49.39 | 2.75 | 0.11 | 371.00 | -45.50 | 0.92 | 1.10 | 1.08 | 10.87 | 1.00 | 0.78 | 30.59 | 0.00 | -6.66 | -36.88 | ||
最大值 | 6917.60 | 7.90 | 3.72 | 3760.00 | 328.70 | 18.75 | 8.60 | 166.96 | 593.25 | 4.68 | 15.93 | 6122.50 | 205.24 | -6.14 | -32.29 | ||
矿坑水 (n=1) | 平均值 | 3329.22 | 2.87 | 6.40 | 2890.00 | 293.00 | 8.86 | 1.47 | 104.77 | 347.12 | 2.47 | 9.73 | 2854.80 | 0.00 | -6.55 | -36.97 | |
最小值 | 3329.22 | 2.87 | 6.40 | 2890.00 | 293.00 | 8.86 | 1.47 | 104.77 | 347.12 | 2.47 | 9.73 | 2854.80 | 0.00 | -6.55 | -36.97 | ||
最大值 | 3329.22 | 2.87 | 6.40 | 2890.00 | 293.00 | 8.86 | 1.47 | 104.77 | 347.12 | 2.47 | 9.73 | 2854.80 | 0.00 | -6.55 | -36.97 | ||
枯水期 | 背景点 (n=3) | 平均值 | 79.07 | 5.76 | 5.08 | 129.33 | 106.37 | 3.46 | 0.90 | 1.98 | 10.19 | 1.26 | 0.51 | 33.34 | 27.44 | -5.59 | -32.99 |
最小值 | 50.69 | 4.39 | 4.14 | 90.40 | 38.40 | 0.60 | 0.58 | 1.20 | 3.40 | 0.66 | 0.04 | 25.30 | 0.00 | -5.66 | -33.75 | ||
最大值 | 110.31 | 6.52 | 5.97 | 173.10 | 177.90 | 8.68 | 1.11 | 2.59 | 20.28 | 1.95 | 1.42 | 39.62 | 53.14 | -5.48 | -32.06 | ||
地下水 (n=13) | 平均值 | 783.18 | 5.97 | 5.41 | 701.08 | 115.12 | 9.47 | 13.98 | 8.86 | 141.60 | 2.24 | 0.17 | 525.91 | 80.95 | -5.63 | -33.97 | |
最小值 | 193.54 | 3.68 | 2.79 | 285.00 | -40.80 | 1.39 | 1.33 | 0.07 | 33.83 | 0.68 | 0.01 | 121.79 | 0.00 | -6.02 | -36.66 | ||
最大值 | 2302.17 | 7.35 | 7.46 | 1894.00 | 327.40 | 31.77 | 86.12 | 30.89 | 400.98 | 4.89 | 0.72 | 1732.63 | 272.99 | -5.39 | -31.93 | ||
矿坑水 (n=1) | 平均值 | 4174.20 | 2.92 | 7.45 | 2490.00 | 523.90 | 13.73 | 2.17 | 115.09 | 495.70 | 2.57 | 1.05 | 3543.90 | 0.00 | -4.89 | -28.57 | |
最小值 | 4174.20 | 2.92 | 7.45 | 2490.00 | 523.90 | 13.73 | 2.17 | 115.09 | 495.70 | 2.57 | 1.05 | 3543.90 | 0.00 | -4.89 | -28.57 | ||
最大值 | 4174.20 | 2.92 | 7.45 | 2490.00 | 523.90 | 13.73 | 2.17 | 115.09 | 495.70 | 2.57 | 1.05 | 3543.90 | 0.00 | -4.89 | -28.57 |
表1 研究区丰、枯水期水化学指标统计表
Table 1 Statistics of chemical indexes in the study areas
季节 | 类型 | 参数 | TDS | pH | DO | EC | ORP | Na+ | K+ | Mg2+ | Ca2+ | Cl- | NO3- | SO42- | HCO3- | δ18O | δD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
丰水期 | 背景点 (n=3) | 平均值 | 77.78 | 7.44 | 1.72 | 125.71 | 80.97 | 3.86 | 0.92 | 2.23 | 11.31 | 1.23 | 1.40 | 35.30 | 21.53 | -6.39 | -33.85 |
最小值 | 46.18 | 6.95 | 1.51 | 0.03 | -27.10 | 1.02 | 0.53 | 1.79 | 4.51 | 1.11 | 0.70 | 32.26 | 0.00 | -6.59 | -34.94 | ||
最大值 | 136.86 | 8.20 | 1.94 | 203.50 | 170.30 | 9.32 | 1.42 | 2.90 | 23.21 | 1.32 | 2.20 | 40.16 | 58.34 | -6.22 | -32.35 | ||
地下水 (n=13) | 平均值 | 1117.79 | 6.30 | 2.08 | 1187.46 | 143.13 | 6.73 | 2.73 | 23.61 | 163.05 | 2.43 | 5.55 | 866.22 | 59.86 | -6.38 | -34.61 | |
最小值 | 49.39 | 2.75 | 0.11 | 371.00 | -45.50 | 0.92 | 1.10 | 1.08 | 10.87 | 1.00 | 0.78 | 30.59 | 0.00 | -6.66 | -36.88 | ||
最大值 | 6917.60 | 7.90 | 3.72 | 3760.00 | 328.70 | 18.75 | 8.60 | 166.96 | 593.25 | 4.68 | 15.93 | 6122.50 | 205.24 | -6.14 | -32.29 | ||
矿坑水 (n=1) | 平均值 | 3329.22 | 2.87 | 6.40 | 2890.00 | 293.00 | 8.86 | 1.47 | 104.77 | 347.12 | 2.47 | 9.73 | 2854.80 | 0.00 | -6.55 | -36.97 | |
最小值 | 3329.22 | 2.87 | 6.40 | 2890.00 | 293.00 | 8.86 | 1.47 | 104.77 | 347.12 | 2.47 | 9.73 | 2854.80 | 0.00 | -6.55 | -36.97 | ||
最大值 | 3329.22 | 2.87 | 6.40 | 2890.00 | 293.00 | 8.86 | 1.47 | 104.77 | 347.12 | 2.47 | 9.73 | 2854.80 | 0.00 | -6.55 | -36.97 | ||
枯水期 | 背景点 (n=3) | 平均值 | 79.07 | 5.76 | 5.08 | 129.33 | 106.37 | 3.46 | 0.90 | 1.98 | 10.19 | 1.26 | 0.51 | 33.34 | 27.44 | -5.59 | -32.99 |
最小值 | 50.69 | 4.39 | 4.14 | 90.40 | 38.40 | 0.60 | 0.58 | 1.20 | 3.40 | 0.66 | 0.04 | 25.30 | 0.00 | -5.66 | -33.75 | ||
最大值 | 110.31 | 6.52 | 5.97 | 173.10 | 177.90 | 8.68 | 1.11 | 2.59 | 20.28 | 1.95 | 1.42 | 39.62 | 53.14 | -5.48 | -32.06 | ||
地下水 (n=13) | 平均值 | 783.18 | 5.97 | 5.41 | 701.08 | 115.12 | 9.47 | 13.98 | 8.86 | 141.60 | 2.24 | 0.17 | 525.91 | 80.95 | -5.63 | -33.97 | |
最小值 | 193.54 | 3.68 | 2.79 | 285.00 | -40.80 | 1.39 | 1.33 | 0.07 | 33.83 | 0.68 | 0.01 | 121.79 | 0.00 | -6.02 | -36.66 | ||
最大值 | 2302.17 | 7.35 | 7.46 | 1894.00 | 327.40 | 31.77 | 86.12 | 30.89 | 400.98 | 4.89 | 0.72 | 1732.63 | 272.99 | -5.39 | -31.93 | ||
矿坑水 (n=1) | 平均值 | 4174.20 | 2.92 | 7.45 | 2490.00 | 523.90 | 13.73 | 2.17 | 115.09 | 495.70 | 2.57 | 1.05 | 3543.90 | 0.00 | -4.89 | -28.57 | |
最小值 | 4174.20 | 2.92 | 7.45 | 2490.00 | 523.90 | 13.73 | 2.17 | 115.09 | 495.70 | 2.57 | 1.05 | 3543.90 | 0.00 | -4.89 | -28.57 | ||
最大值 | 4174.20 | 2.92 | 7.45 | 2490.00 | 523.90 | 13.73 | 2.17 | 115.09 | 495.70 | 2.57 | 1.05 | 3543.90 | 0.00 | -4.89 | -28.57 |
[1] |
BHATIA M P, DAS S B, KUJAWINSKI E B, et al., 2011. Seasonal evolution of water contributions to discharge from a Greenland outlet glacier: Insight from a new isotope-mixing model[J]. Journal of Glaciology, 57(205): 929-941.
DOI URL |
[2] |
CAO Y J, XUAN Y X, TANG C Y, et al., 2020. Temporary and net sinks of atmospheric CO2 due to chemical weathering in subtropical catchment with mixing carbonate and silicate lithology[J]. Biogeosciences, 17(14): 3875-3890.
DOI URL |
[3] |
CHEN X, JIANG C L, ZHENG L G, et al., 2021. Evaluating the genesis and dominant processes of groundwater salinization by using hydrochemistry and multiple isotopes in a mining city[J]. Environmental Pollution, 283: 117381.
DOI URL |
[4] | CLARK, 1997. Environmental isotopes in hydrogeology[M]. Boca Raton FL: CRC Press/Lewis Publishers: 4-5. |
[5] |
DAS B, KAUR P, 2001. Major ion chemistry of Renuka Lake and weathering processes, Sirmaur District, Himachal Pradesh, India[J]. Environmental Geology, 40(7): 908-917.
DOI URL |
[6] |
DHAOUI O, ANTUNES I M H R, BOENTE C, et al., 2023. Hydrogeochemical processes on inland aquifer systems: A combined multivariate statistical technique and isotopic approach[J]. Groundwater for Sustainable Development, 20: 100887.
DOI URL |
[7] |
DONG F Y, YIN H Y, CHENG W J, et al., 2022. Study on water inrush pattern of Ordovician limestone in North China Coalfield based on hydrochemical characteristics and evolution processes: A case study in Binhu and Wangchao Coal Mine of Shandong Province, China[J]. Journal of Cleaner Production, 380(Part 2): 134954.
DOI URL |
[8] |
ESKANDARI E, MOHAMMADZADEH H, NASSERY H, et al., 2022. Delineation of isotopic and hydrochemical evolution of karstic aquifers with different cluster-based (HCA, KM, FCM and GKM) methods[J]. Journal of Hydrology, 609: 127706.
DOI URL |
[9] |
GAILLARDET J D B L, 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 159(1-4): 3-30.
DOI URL |
[10] |
GEE D, BATESON L, GREBBY S, et al., 2020. Modelling groundwater rebound in recently abandoned coalfields using DInSAR[J]. Remote Sensing of Environment, 249: 112021.
DOI URL |
[11] |
GIBBS R, 1971. Mechanisms controlling world water chemistry[J]. Science, 170: 1088-1090.
DOI URL |
[12] |
JIANG C L, CHENG L L, LI C, et al., 2022. A hydrochemical and multi-isotopic study of groundwater sulfate origin and contribution in the coal mining area[J]. Ecotoxicology and Environmental Safety, 248: 114286.
DOI URL |
[13] |
JU Q D, HU Y B, LIU Q M, et al., 2022. Key hydrological process of a multiple aquifer flow system in the mining area of Huaibei plain, Eastern China[J]. Applied Geochemistry, 140: 105270.
DOI URL |
[14] |
KHETTOUCH A, HSSAISOUNE M, MAAZIZ M, et al., 2022. Characterization of groundwater in the arid Zenaga plain: Hydrochemical and environmental isotopes approaches[J]. Groundwater for Sustainable Development, 19: 100816.
DOI URL |
[15] |
LIU F, SONG X, YANG L, et al., 2015. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, Northwestern China[J]. Hydrology and Earth System Sciences, 19(1): 551-565.
DOI URL |
[16] |
NOGUEIRA G, STIGTER T Y, ZHOU Y, et al., 2019. Understanding groundwater salinization mechanisms to secure freshwater resources in the water-scarce city of Maputo, Mozambique[J]. Science of the Total Environment, 661: 723-736.
DOI URL |
[17] |
PENG H, YANG W, NADINE FERRER A S, et al., 2022. Hydrochemical characteristics and health risk assessment of groundwater in karst areas of southwest China: A case study of Bama, Guangxi[J]. Journal of Cleaner Production, 341: 130872.
DOI URL |
[18] | PRICE P, WRIGHT I A, 2016. Water Quality Impact from the Discharge of Coal Mine Wastes to Receiving Streams: Comparison of Impacts from an Active Mine with a Closed Mine[J]. Water Air & Soil Pollution, 227(5): 155-171. |
[19] |
QIN W J, HAN D M, SONG X F, et al., 2021. Environmental isotopes (δ18O, δ2H, 222Rn) and hydrochemical evidence for understanding rainfall-surface water-groundwater transformations in a polluted karst area[J]. Journal of Hydrology, 592: 125748.
DOI URL |
[20] |
SONG K, WANG F, PENG Y, et al., 2022. Construction of a hydrogeochemical conceptual model and identification of the groundwater pollution contribution rate in a pyrite mining area[J]. Environmental Pollution, 305: 119327.
DOI URL |
[21] |
SUN J, TANG C, PAN W, et al., 2013. Hydrogeochemical characteristics of streams with and without acid mine drainage impacts; a paired catchment study in karst geology, SW China[J]. Journal of hydrology (Amsterdam), 504: 115-124.
DOI URL |
[22] |
TANG Y, SONG X, ZHANG Y, et al., 2017. Using stable isotopes to understand seasonal and interannual dynamics in moisture sources and atmospheric circulation in precipitation[J]. Hydrological Processes, 31(26):4682-4692.
DOI URL |
[23] |
TARASENKO I, KHOLODOV A, ZIN'KOV A, et al., 2022. Chemical composition of groundwater in abandoned coal mines; evidence of hydrogeochemical evolution[J]. Applied Geochemistry, 137: 105210.
DOI URL |
[24] |
TOMIYAMA S, IGARASHI T, TABELIN C B, et al., 2020. Modeling of the groundwater flow system in excavated areas of an abandoned mine[J]. Journal of Contaminant Hydrology, 230: 103617.
DOI URL |
[25] |
ZHANG H T, XU G Q, ZHAN H B, et al., 2020. Identification of hydrogeochemical processes and transport paths of a multi-aquifer system in closed mining regions[J]. Journal of hydrology (Amsterdam), 589: 125344.
DOI URL |
[26] |
ZHANG J, CHEN L W, HOU X W, et al., 2022. Effects of multi-factors on the spatiotemporal variations of deep confined groundwater in coal mining regions, North China[J]. Science of the Total Environment, 823: 153741.
DOI URL |
[27] |
ZHAO X, PENG W H, CHEN K, et al., 2022. Potential hydraulic connectivity of coal mine aquifers based on statistical analysis of hydrogeochemistry[J]. Water Science and Engineering, 15(4): 285-293.
DOI URL |
[28] | ZHOU J W, ZHANG Q X, KANG F X, et al., 2018. Using multi-isotopes (34S, 18O, 2H) to track local contamination of the groundwater from Hongshan-Zhaili abandoned coal mine, Zibo city, Shandong province[J]. International Biodeterioration & Biodegradation, 128: 48-55. |
[29] |
ZHU M T, LI B, LIU G, 2022. Groundwater risk assessment of abandoned mines based on pressure-state-response: The example of an abandoned mine in southwest China[J]. Energy Reports, 8: 10728-10740.
DOI URL |
[30] | 曹志国, 张建民, 王皓, 等, 2021. 西部矿区煤水协调开采物理与情景模拟实验研究[J]. 煤炭学报, 46(2): 638-651. |
CAO Z G, ZHANG J M, WANG H, et al., 2021. Physical modelling and scenario simulation of coal & water co-mining in coal mining areas in western China[J]. Journal of China Coal Society, 46(2): 638-651. | |
[31] | 韩瑞刚, 2021. 闭坑矿井水文地质效应研究[D]. 廊坊: 华北科技学院:125. |
HAN R G, 2021. Study on hydrogeological effect of closed pit mine: Taking Zhaogezhuang Mine as an example[D]. Langfang: North China Institute of Science and Technology:125. | |
[32] |
郝艳茹, 王鹏, 张明珠, 等, 2020. 广花盆地地下水化学特征及其演化分析[J]. 生态环境学报, 29(2): 337-344.
DOI |
HAO Y R, WANG P, ZHANG M Z, et al., 2020. Hydrochemical characteristic and its driving force of groundwater in the covered karst in Pearl River Basin[J]. Ecology and Environmental Sciences, 29(2): 337-344. | |
[33] | 黄平华, 陈建生, 宁超, 2012. 焦作矿区地下水中氢氧同位素分析[J]. 煤炭学报, 37(5): 770-775. |
HUANG P H, CHEN J S, NING C, 2012. The analysis of hydrogen and oxygen isotopes in the ground water of Jiaozuo Mine Area[J]. Journal of China Coal Society, 37(5): 770-775. | |
[34] | 钱建平, 李伟, 张力, 等, 2018. 地下水中重金属污染来源及研究方法综析[J]. 地球与环境, 46(6): 613-620. |
QIAN J P, LI W, ZHANG L, et al., 2018. Source and research status of heavy metal pollution in groundwater: A review[J]. Earth and Environment, 46(6): 613-620. | |
[35] | 宋献方, 刘相超, 夏军, 等, 2007. 基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J]. 中国科学D辑, 37(1): 102-110. |
SONG X F, LIU X C, XIA J, et al., 2007. Study on transformation relationship between surface water and groundwater in huaisha river basin based on environmental isotope technology[J]. Science in China (Series D) 37(1): 102-110. | |
[36] | 孙龙, 刘廷玺, 段利民, 等, 2022. 矿区流域不同水体同位素时空特征及水循环指示意义[J]. 水科学进展, 33(5): 805-815. |
SUN L, LIU T X, DUAN L M, et al., 2022. Spatial and temporal characteristics of isotopes of different water sources and implications for water circulation in mining areas[J]. Advances in Water Science, 33(5): 805-815. | |
[37] | 孙亚军, 张莉, 徐智敏, 等, 2022. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J]. 煤炭学报, 47(1): 423-437. |
SUN Y J, ZHANG L, XU Z M, et al., 2022. Multi-field action mechanism and research progress of coal mine water quality formation and evolution[J]. Journal of China Coal Society, 47(1): 423-437. | |
[38] | 汪子涛, 刘启蒙, 刘瑜, 2019. 淮南煤田地下水水化学空间分布及其形成作用[J]. 煤田地质与勘探, 47(5): 40-47. |
WANG Z T, LIU Q M, LIU Y, 2019. Spatial distribution and formation of groundwater hydrochemistry in Huainan coalfield[J]. Coal Geology & Exploration, 47(5): 40-47. | |
[39] | 王剑, 罗朝晖, 陈植华, 等, 2018. 滇东北毛坪铅锌矿区水化学特征及成因[J]. 环境化学, 37(6): 1421-1431. |
WANG J, LUO C H, CHEN Z H, et al., 2018. Characteristics and controlling factors of water chemistry in maoping lead-zinc mine area, northeastern Yunnan, China[J]. Environmental Chemistry, 376): 1421-1431. | |
[40] | 吴嘉铃, 王莹, 胡倩, 等, 2022. 雷州半岛地下水水化学特征及成因分析[J]. 安全与环境工程, 29(1): 145-153. |
WU J L, WANG Y, HU Q, et al., 2022. Hyhrochemical characteristcs and genetic analysis of groundwater in Leizhou Peninsula[J]. Safety and Environmental Engineering, 29(1): 145-153. | |
[41] | 吴玉川, 2020. 受闭坑影响的矿井水流场演变及水害防治研究[D]. 焦作: 河南理工大学:95. |
WU Y C, 2020. Study on Evolution of Mine Water Flow Field and Water Hazards Prevention Affected by Abandoned Mines[D]. Jiaozuo: Henan Polytechnic University:95. | |
[42] | 禤映雪, 唐常源, 曹英杰, 等, 2018. 北江流域水化学时空变化及化学风化特征[J]. 环境科学研究, 31(6): 1078-1087. |
XUAN Y X, TANG C Y, CAO Y J, et al., 2018. Spatial and temporal variation of hydro-chemistry and chemical weathering characteristics in the Beijiang River Basin[J]. Research of Environmental Sciences, 31(6): 1078-1087. | |
[43] | 延子轩, 冯民权, 2022. 长河流域矿区地表水水化学特征及驱动因子分析[J]. 环境化学, 41(2): 1-11. |
YAN Z X, FENG M Q, 2022. Hydrochemical characteristics and driving factors of surface water in the mining area of Changhe River Basin[J]. Environmental Chemistry, 41(2): 1-11. | |
[44] | 杨守业, 王朔, 连尔刚, 等. 2021. 长江河水氢氧同位素组成示踪流域地表水循环[J]. 同济大学学报(自然科学版), 49(10):1353-1362. |
Yang S Y, Wang S, Lian E G, et al., 2021. Hydrogen and oxygen isotopes in Yangtze River water and its application in tracing basin-scale water cycle[J]. Journal of Tongji University (Natural Science), 49(10):1353-1362. | |
[45] | 曾妍妍, 周金龙, 乃尉华, 等, 2020. 新疆喀什噶尔河流域地下水形成的水文地球化学过程[J]. 干旱区研究, 37(3): 541-550. |
ZENG Y Y, ZHOU J L, NAI W H, et al., 2020. Hydrogeochemical processes of groundwater formation in the Kashgar River Basin, Xinjiang[J]. Arid zone research, 37(3): 541-550. | |
[46] | 詹泸成, 陈建生, 张时音, 2014. 洞庭湖湖区降水-地表水-地下水同位素特征[J]. 水科学进展, 25(3): 327-335. |
ZHAN L C, CHEN J S, ZHANG S Y, 2014. Characteristics of stable isotopes in precipitation, surface water and groundwater in the Dongting Lake Region[J]. Advances in Water Science, 25(3): 327-335. | |
[47] | 张进德, 郗富瑞, 2020. 我国废弃矿山生态修复研究[J]. 生态学报, 40(21): 7921-7930. |
ZHANG J D, XI F R, 2020. Study on ecological restoration of abandoned mines in China[J]. Acta Ecological Sinica, 40(21): 7921-7930. | |
[48] | 张人权, 梁杏, 靳孟贵, 等, 2011. 水文地质学基础[M]. 第6版. 北京: 地质出版社: 59-67. |
ZHANG R Q, LIANG X, JIN M G, et al., 2011. Fundamentals of hydrogeology contents[M]. 6th edition. Beijing: Geology Press: 59-67. | |
[49] | 张文章, 王锦国, 陈舟, 2015. 云南鹤庆西山岩溶地下水同位素及水化学分析[J]. 工程勘察, 43(3): 51-56. |
ZHANG W Z, WANG J G, CHEN Z, 2015. Isotope and hydrochemical analysis of karst groundwater in Xishan, Heqing, Yunnan province[J]. Geotechnical Investigation & Surveying, 43(3): 51-56. | |
[50] | 赵涵, 2020. 废弃矿井地下水回升渗流规律模型试验研究[D]. 青岛: 山东科技大学:99. |
ZHAO H, 2020. Study on the model test of groundwater recovery and seepage law in abandoned mine[D]. Qingdao: Shandong University of Science and Technology:99. | |
[51] | 中国国家标准化管理委员会, 2016. 化学试剂标准滴定溶液的制备: GB/T 601-2016[S]. 北京: 中国标准出版社: 3-4. |
Standardization Administration of China. 2016. Chemical reagent-preparations of reference titration solutions: GB/T 601-2016[S]. Beijing: Standards Press of China: 3-4. | |
[52] | 邹嘉文, 刘飞, 张靖坤, 2022. 南水北调典型受水区浅层地下水水化学特征及成因[J]. 中国环境科学, 42(5): 2260-2268. |
ZOU J W, LIU F, ZHANG J K, 2022. Hydrochemical characteristics and formation mechanism of shallow groundwater in typical water-receiving areas of thesouth-to-north water diversion project[J]. China Environmental Science, 42(5): 2260-2268. |
[1] | 徐敏, 许超, 余光辉, 尹力初, 张泉, 朱捍华, 朱奇宏, 张杨珠, 黄道友. 地下水位和长期秸秆还田对土壤镉有效性及稻米镉含量的影响[J]. 生态环境学报, 2023, 32(1): 150-157. |
[2] | 张丽聪, 肖凯, 张鹏, 李海龙, 王俊坚, 李镇扬, 王芬芳, 徐华林, 郭跃华. 淤泥质潮滩重金属和溶解性有机质的潮汐变化特征及其环境影响评价[J]. 生态环境学报, 2022, 31(11): 2169-2179. |
[3] | 刘畅, 罗艳丽, 刘晨通, 郑玉红, 晁博, 董乐乐. 奎屯河下游区域地下水和农田土壤砷的空间分布特征[J]. 生态环境学报, 2022, 31(10): 2070-2078. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||