Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (8): 1192-1202.DOI: 10.16258/j.cnki.1674-5906.2025.08.004
• Papers on “Nuclear Contamination and Ecosystem Security” • Previous Articles Next Articles
Jia Qiqi(), Du Xinfeng*(
), Yuan Yihui*(
), Wang Ning*(
)
Received:
2024-08-27
Online:
2025-08-18
Published:
2025-08-01
通讯作者:
*E-mail: 作者简介:
贾琪琪(1999年生),女,硕士研究生,主要从事生态环境安全监测。E-mail: 794826445@qq.com
基金资助:
CLC Number:
Jia Qiqi, Du Xinfeng, Yuan Yihui, Wang Ning. Development and Prospects of Photochemical Detection Methods for Elements of Nuclear Pollution[J]. Ecology and Environmental Sciences, 2025, 34(8): 1192-1202.
贾琪琪, 都新丰, 袁益辉, 王宁. 核污染元素光化学检测方法的发展与前景[J]. 生态环境学报, 2025, 34(8): 1192-1202.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.08.004
方法 | 检测限/(nmol∙L−1) | 检测范围/(nmol∙L−1) | 实际应用 | 参考文献 |
---|---|---|---|---|
深共熔溶剂修饰的CdSe量子点探针 | 5.7 | 5.7-500 | 海水/自来水 | Sadeghi et al., |
荧光分子标记牛血清蛋白 | 0.024 | 0.024-1×103 | 海水/盐湖卤水 | Feng et al., |
荧光标记DNA酶 | 1×10−4 | 1×10−4-1 | 河水 | Yun et al., |
氧化ABTS进行比色检测 | 10 | 10-105 | 河水/湖水 | Zhao et al., |
CdTe量子点 | 7.88 | 7.88-400 | 去离子水/湖水/自来水 | Hua et al., |
具偕胺肟基的荧光聚合物 | 10 | 10-150 | 去离子水/湖水/自来水 | Ma et al., |
磷酸阴离子修饰磁性介孔二氧化硅纳米粒子 | 4.5 | - | - | Zhang et al., |
sp2碳共轭荧光共价有机骨架 | 6.7 | 6.7-6×104 | - | Cui et al., |
三维发光共价有机框架 | 4.08 | 4.08-2×104 | - | Cui et al., |
sp2碳共轭共价有机骨架 | 6.5 | 6.5-2×104 | - | Li et al., |
Table 1 Detection performance and practical applications of optical sensors for uranyl ions
方法 | 检测限/(nmol∙L−1) | 检测范围/(nmol∙L−1) | 实际应用 | 参考文献 |
---|---|---|---|---|
深共熔溶剂修饰的CdSe量子点探针 | 5.7 | 5.7-500 | 海水/自来水 | Sadeghi et al., |
荧光分子标记牛血清蛋白 | 0.024 | 0.024-1×103 | 海水/盐湖卤水 | Feng et al., |
荧光标记DNA酶 | 1×10−4 | 1×10−4-1 | 河水 | Yun et al., |
氧化ABTS进行比色检测 | 10 | 10-105 | 河水/湖水 | Zhao et al., |
CdTe量子点 | 7.88 | 7.88-400 | 去离子水/湖水/自来水 | Hua et al., |
具偕胺肟基的荧光聚合物 | 10 | 10-150 | 去离子水/湖水/自来水 | Ma et al., |
磷酸阴离子修饰磁性介孔二氧化硅纳米粒子 | 4.5 | - | - | Zhang et al., |
sp2碳共轭荧光共价有机骨架 | 6.7 | 6.7-6×104 | - | Cui et al., |
三维发光共价有机框架 | 4.08 | 4.08-2×104 | - | Cui et al., |
sp2碳共轭共价有机骨架 | 6.5 | 6.5-2×104 | - | Li et al., |
方法 | 检测限/(nmol∙L−1) | 检测范围/(nmol∙L−1) | 实际应用 | 参考文献 |
---|---|---|---|---|
锶离子载体纳米光极 | 0.5 | 0.5-108 | 矿泉水/模拟核废水 | Du et al., |
荧光分子诱导g−四联体DNA | 2.11 | 2.11-100 | 饮用矿泉水/海水 | Feng et al., |
基于g−四联体DNA发光探针 | 13 | 13-103 | 海水 | Leung et al., |
多胺荧光化学传感器 | 9 | 9-1.5×103 | 自来水 | Kaur et al., |
化学纸传感器 | 2.283×103 | 2.283×103-5.7×106 | 溪流 | Kang et al., |
基于G−四链体荧光探针 | 10 | 10-105 | 饮用水 | Qu et al., |
金纳米颗粒 | 7×103 | 7×103-2×104 | 饮用水/湖水/自来水 | Zhang et al., |
MnO2纳米棒比色测定 | 2.8 | 2.8-2×105 | 饮用水 | Chen et al., |
Table 2 Detection performance and practical applications of optical sensors for strontium ions
方法 | 检测限/(nmol∙L−1) | 检测范围/(nmol∙L−1) | 实际应用 | 参考文献 |
---|---|---|---|---|
锶离子载体纳米光极 | 0.5 | 0.5-108 | 矿泉水/模拟核废水 | Du et al., |
荧光分子诱导g−四联体DNA | 2.11 | 2.11-100 | 饮用矿泉水/海水 | Feng et al., |
基于g−四联体DNA发光探针 | 13 | 13-103 | 海水 | Leung et al., |
多胺荧光化学传感器 | 9 | 9-1.5×103 | 自来水 | Kaur et al., |
化学纸传感器 | 2.283×103 | 2.283×103-5.7×106 | 溪流 | Kang et al., |
基于G−四链体荧光探针 | 10 | 10-105 | 饮用水 | Qu et al., |
金纳米颗粒 | 7×103 | 7×103-2×104 | 饮用水/湖水/自来水 | Zhang et al., |
MnO2纳米棒比色测定 | 2.8 | 2.8-2×105 | 饮用水 | Chen et al., |
方法 | 检测限/ (nmol∙L−1) | 检测范围/ (nmol∙L−1) | 实际 应用 | 参考 文献 |
---|---|---|---|---|
基于杯芳烃化合物的 荧光传感器 | 153 | - | - | Depauw et al., |
钙钛矿杂化离子液体膜 荧光检测 | 1.4×103 | - | 海水 | Fu et al., |
杯[4]芳烃双 (冠-6) 香豆素荧光分子传感器 | 770 | - | - | Pham et al., |
2,4−双[4−(N,N−二羟乙基氨基)苯基]方碱荧光猝灭法 | 96 | - | - | Radaram et al., |
Table 3 Detection performance and practical applications of optical sensors for cesium ions
方法 | 检测限/ (nmol∙L−1) | 检测范围/ (nmol∙L−1) | 实际 应用 | 参考 文献 |
---|---|---|---|---|
基于杯芳烃化合物的 荧光传感器 | 153 | - | - | Depauw et al., |
钙钛矿杂化离子液体膜 荧光检测 | 1.4×103 | - | 海水 | Fu et al., |
杯[4]芳烃双 (冠-6) 香豆素荧光分子传感器 | 770 | - | - | Pham et al., |
2,4−双[4−(N,N−二羟乙基氨基)苯基]方碱荧光猝灭法 | 96 | - | - | Radaram et al., |
方法 | 检测限/(nmol∙L−1) | 检测范围/(nmol∙L−1) | 实际应用 | 参考文献 |
---|---|---|---|---|
基于聚合物固有微孔性 (PIM-1) 的荧光薄膜传感器 | 1.24 | - | - | Wang et al., |
以金纳米星为探针的比色法 | 5×103 | 5×103-1.6×106 | 河水/食盐/海藻/复合维生素片 | Zhou et al., |
银纳米棱柱 | 360 | 360-105 | 自来水中的真实食物 | Shim et al., |
碳掺杂荧光碳点 | 69.4 | 69.4-1.5×104 | 湖水/自来水/尿液 | Tang et al., |
银纳米团簇 | 60 | 60-6×104 | 牛奶/药品样本 | Ren et al., |
荧光水溶性聚吡咯 | 9 | 9-200 | - | Alizadeh et al., |
氮掺杂碳量子点 | 4.8×104 | 4.8×104-2.5×1010 | 自来水/纯净水/海水 | Zor et al., |
基于萘甘氨酸生物偶联物的荧光和比色传感器分子 | 30 | 30-3.12×104 | - | Thakur et al., |
微波辅助掺杂碳点 | 62 | 62-104 | 自来水/河水/矿泉水 | Tabaraki et al., |
聚吡咯琥珀酸 | 9 | 9-8.825×106 | - | Alizadeh et al., |
2−巯基苯并咪唑铜(I) 配合物 | 141.5 | 141.5-2×104 | 自来水/尿液 | Singh et al., |
Table 4 Detection performance and practical applications of iodine photochemical probe
方法 | 检测限/(nmol∙L−1) | 检测范围/(nmol∙L−1) | 实际应用 | 参考文献 |
---|---|---|---|---|
基于聚合物固有微孔性 (PIM-1) 的荧光薄膜传感器 | 1.24 | - | - | Wang et al., |
以金纳米星为探针的比色法 | 5×103 | 5×103-1.6×106 | 河水/食盐/海藻/复合维生素片 | Zhou et al., |
银纳米棱柱 | 360 | 360-105 | 自来水中的真实食物 | Shim et al., |
碳掺杂荧光碳点 | 69.4 | 69.4-1.5×104 | 湖水/自来水/尿液 | Tang et al., |
银纳米团簇 | 60 | 60-6×104 | 牛奶/药品样本 | Ren et al., |
荧光水溶性聚吡咯 | 9 | 9-200 | - | Alizadeh et al., |
氮掺杂碳量子点 | 4.8×104 | 4.8×104-2.5×1010 | 自来水/纯净水/海水 | Zor et al., |
基于萘甘氨酸生物偶联物的荧光和比色传感器分子 | 30 | 30-3.12×104 | - | Thakur et al., |
微波辅助掺杂碳点 | 62 | 62-104 | 自来水/河水/矿泉水 | Tabaraki et al., |
聚吡咯琥珀酸 | 9 | 9-8.825×106 | - | Alizadeh et al., |
2−巯基苯并咪唑铜(I) 配合物 | 141.5 | 141.5-2×104 | 自来水/尿液 | Singh et al., |
[1] |
ALIZADEH N, AKBARINEJAD A, HOSSEINKHANI S, et al., 2019. Synthesis of highly fluorescent water-soluble polypyrrole for cell imaging and iodide ion sensing[J]. Analytica Chimica Acta, 1084: 99-105.
DOI PMID |
[2] | AMMAR A, NOUIRA A, MOURIDI Z E, et al., 2024. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review[J]. Chemosphere, 359: 142273. |
[3] | AMR M A, ABDEL-LATEEF A M, 2011. Comparing the capability of collision/reaction cell quadrupole and sector field inductively coupled plasma mass spectrometers for interference removal from 90Sr, 137Cs, and 226Ra[J]. International Journal of Mass Spectrometry, 299(2-3): 184-190. |
[4] |
BUESSELER K O, 2020. Opening the floodgates at Fukushima[J]. Science, 369(6504): 621-622.
DOI PMID |
[5] | BUTCHER D J, 2013. Review: Recent Advances in Optical Analytical Atomic Spectrometry[J]. Applied Spectroscopy Reviews, 48(4): 261-328. |
[6] | BUTLER O T, COOK J M, HARRINGTON C F, et al., 2006. Atomic spectrometry update. Environmental analysis[J]. Journal of Analytical Atomic Spectrometry, 21(2): 217-243. |
[7] | BU W T, NI Y Y, STEINHAUSER G, et al., 2018. The role of mass spectrometry in radioactive contamination assessment after the Fukushima nuclear accident[J]. Journal of Analytical Atomic Spectrometry, 33(4): 519-546. |
[8] | CHEN X F, MEI Q S, YU L, et al., 2018. Rapid and On-Site Detection of Uranyl Ions via Ratiometric Fluorescence Signals Based on a Smartphone Platform[J]. ACS Applied Materials & Interfaces, 10(49): 42225-42232. |
[9] | CHEN Y T, GONG C H, CHEN K W, et al., 2024. G-quadruplex DNA-based colorimetric biosensor for the ultrasensitive visual detection of strontium ions using MnO2 nanorods as oxidase mimetics[J]. Microchimica Acta, 191(4): 213. |
[10] | CUI W R, CHEN Y R, XU W, et al., 2023a. A three-dimensional luminescent covalent organic framework for rapid, selective, and reversible uranium detection and extraction[J]. Separation and Purification Technology, 306(Part B): 122726. |
[11] | CUI W R, XU W, QIU W B, 2023b. Constructing an ultrastable imidazole covalent organic framework for concurrent uranium detection and recovery[J]. Ecotoxicology and Environmental Safety, 252: 114639. |
[12] | CUI W R, ZHANG C R, JIANG W, et al., 2020. Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium[J]. Nature Communications, 11(1): 436. |
[13] | DEPAUW A, JONUSAUSKAITE L, GHASEMI R, et al., 2023. A Highly Sensitive and Selective Optical Sensor for the On-Line Detection of Cesium in Water[J]. Sensors, 23(18): 7826. |
[14] |
DU X F, XIE H, QIN T Y, et al., 2024. Ultrasensitive optical detection of strontium ions by specific nanosensor with ultrahigh binding affinity[J]. Nature Communications, 15(1): 6530.
DOI PMID |
[15] | FENG L J, WANG H, LIU T, et al., 2023. Ultrasensitive and highly selective detection of strontium ions[J]. Nature Sustainability, 6(7): 789-796. |
[16] | FENG T T, YUAN Y H, CHEN X R, et al., 2022a. Ultrasensitive and highly specific detection of iodine ions using zirconium (IV)-enhanced oxidation[J]. Cell Reports Physical Science, 3(11): 102238. |
[17] | FENG T T, YUAN Y H, ZHAO S L, et al., 2022b. Ultrasensitive Detection of Aqueous Uranyl Based on Uranyl-Triggered Protein Photocleavage[J]. Angewandte Chemie, 61(10): e202115886. |
[18] | FU J, ZHANG L, WANG S L, et al., 2022. Ultralow-cost portable device for cesium detection via perovskite fluorescence[J]. Journal of Hazardous Materials, 425: 127981. |
[19] | GRALLA F, ABSON D J, MØLLER A P, et al., 2017. Energy transitions and national development indicators: A global review of nuclear energy production[J]. Renewable and Sustainable Energy Reviews, 70: 1251-1265. |
[20] | HEO S, CHOI H, PARK J S, et al., 2018. A simple naphthamido‐based fluorescent chemoprobe for the detection of uranyl ions[J]. Bulletin of the Korean Chemical Society, 39(5): 671-674. |
[21] |
HUA M X, YANG S, MA J Q, et al., 2018. Highly selective and sensitive determination of uranyl ion by the probe of CdTe quantum dot with a specific size[J]. Talanta, 190: 278-283.
DOI PMID |
[22] | IGHALO J O, CHEN Z, OHORO C R, et al., 2024. A review of remediation technologies for uranium-contaminated water[J]. Chemosphere, 352: 141322. |
[23] | JUN B M, LEE H K, PARK S, et al., 2021. Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials[J]. Separation and Purification Technology, 278: 119675. |
[24] |
JU Y, LI Z J, QIU J, et al., 2023. Adsorption and Detection of Iodine Species by a Thorium-Based Metal-Organic Framework[J]. Inorganic Chemistry, 62(21): 8158-8165.
DOI PMID |
[25] | KANG S M, JANG S C, HUH Y S, et al., 2016. A highly facile and selective Chemo-Paper-Sensor (CPS) for detection of strontium[J]. Chemosphere, 152: 39-46. |
[26] | KAUR A, KAUR G, SINGH A, et al., 2015. Polyamine based ratiometric fluorescent chemosensor for strontium metal ion in aqueous medium: Application in tap water, river water, and in oral care[J]. ACS Sustainable Chemistry & Engineering, 4(1): 94-101. |
[27] | KUMAR N, LERAY I, DEPAUW A, 2016. Chemically derived optical sensors for the detection of cesium ions[J]. Coordination Chemistry Reviews, 310: 1-15. |
[28] | LEUNG K H, MA V P Y, HE H Z, et al., 2012. A highly selective G-quadruplex-based luminescent switch-on probe for the detection of nanomolar strontium(II) ions in sea water[J]. RSC Advances, 2(22): 8273-8276. |
[29] | LI F F, CUI W R, JIANG W, et al., 2020. Stable sp2 carbon-conjugated covalent organic framework for detection and efficient adsorption of uranium from radioactive wastewater[J]. Journal of Hazardous Materials, 392: 122333. |
[30] | LI G, LIANG J L, LIN J, et al., 2023. Boron nitride aerogels incorporated with metal nanoparticles: Multifunctional platforms for iodine capture and detection[J]. Journal of Hazardous Materials, 460: 132481. |
[31] | LIU Y L, ZHOU P H, WU Y L, et al., 2022a. Fast and efficient “on-off-on” fluorescent sensor from N-doped carbon dots for detection of mercury and iodine ions in environmental water[J]. Science of the Total Environment, 827: 154357. |
[32] | LIU Y Q, JU X J, ZHOU X L, et al., 2022b. A novel chemosensor for sensitive and facile detection of strontium ions based on ion-imprinted hydrogels modified with guanosine derivatives[J]. Journal of Hazardous Materials, 421: 126801. |
[33] |
MA J Q, HE W W, HAN X L, et al., 2017. Amidoximated fluorescent polymer based sensor for detection of trace uranyl ion in aqueous solution[J]. Talanta, 168: 10-15.
DOI PMID |
[34] |
MALOV A I, SIDKINA E S, ERSHOVA D D, et al., 2023. Time regularities of strontium concentration in drinking groundwater distant from the sea coast[J]. Environmental Geochemistry and Health, 45(11): 8097-8118.
DOI PMID |
[35] | NANDANWAR S U, COLDSNOW K, UTGIKAR V, et al., 2016. Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment: A review[J]. Chemical Engineering Journal, 306: 369-381. |
[36] | NRIAGU J, NAM D H, AYANWOLA T A, et al., 2012. High levels of uranium in groundwater of Ulaanbaatar, Mongolia[J]. Science of the Total Environment, 414: 722-726. |
[37] | PHAM X Q, JONUSAUSKAITE L, DEPAUW A, et al., 2018. New water-soluble fluorescent sensors based on calix[4]arene biscrown-6 for selective detection of cesium[J]. Journal of Photochemistry and Photobiology A: Chemistry, 364: 355-362. |
[38] | PLAUSINAITIS D, NAUIALIS E, PROKOPCHIK A, et al., 2014. Method for detection of Cs and Sr isotopes avoiding interferences of Ba and Rb in radioactive samples using ion chromatography coupled with ICP-MS[J]. Current Analytical Chemistry, 10(1): 140-148. |
[39] |
QU K, ZHAO C Q, REN J S, et al., 2012. Human telomeric G-quadruplex formation and highly selective fluorescence detection of toxic strontium ions[J]. Molecular BioSystems, 8(3): 779-782.
DOI PMID |
[40] |
RADARAM B, MAKO T, LEVINE M, 2013. Sensitive and selective detection of cesium via fluorescence quenching[J]. Dalton Trans, 42(46): 16276-16278.
DOI PMID |
[41] | REN S H, LIU S G, LING Y, et al., 2019. Facile method for iodide ion detection via the fluorescence decrease of dihydrolipoic acid/beta-cyclodextrin protected Ag nanoclusters[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 212: 199-205. |
[42] | RUSSELL B C, WARWICK P E, CROUDACE I W, 2014. Calixarene-based extraction chromatographic separation of 135Cs and 137Cs in environmental and waste samples prior to sector field ICP-MS analysis[J]. Analytical chemistry, 86(23): 11890-11896. |
[43] | SADEGHI S, DAVAMI A, 2020. Ternary deep eutectic solvent modified cadmium selenide quantum dots as a selective fluorescent probe for sensing of uranyl ions in water samples[J]. Journal of Molecular Liquids, 316: 113753. |
[44] | SINGH A, SINGH A, SINGH N, et al., 2017. A 2-mercaptobenzimidazole-based emissive Cu(I) complex for selective determination of iodide with large Stokes shift[J]. Sensors and Actuators B: Chemical, 243: 372-379. |
[45] | SHIM H, KIM M H, KIM Y S, 2022. Highly selective colorimetric sensing for iodide in water based on a novel surface passivation of Ag nanoprisms[J]. Dyes and Pigments, 200: 110177. |
[46] |
SHUCK S C, NGUYEN C, CHAN Y, et al., 2020. Metal-assisted protein quantitation (MAPq): Multiplex analysis of protein expression using lanthanide-modified antibodies with detection by inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 92(11): 7556-7564.
DOI PMID |
[47] | STONE R, 2005. Kyrgyzstan’s race to stabilize buried ponds of uranium waste[J]. Science, 307(5707): 198-200. |
[48] |
TABARAKI R, SADEGHINEJAD N, 2018. Microwave assisted synthesis of doped carbon dots and their application as green and simple turn off-on fluorescent sensor for mercury (II) and iodide in environmental samples[J]. Ecotoxicology and Environmental Safety, 153: 101-106.
DOI PMID |
[49] |
TANG X D, YU H M, BUI B, et al., 2021. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples[J]. Bioactive Materials, 6(6): 1541-1554.
DOI PMID |
[50] | THAKUR A, BHATTA S R, MONDAL B, et al., 2018. Naphthalene-glycine conjugate: An extremely selective colorimetric chemosensor for iodide ion in aqueous solution[J]. Sensors and Actuators B: Chemical, 267: 617-626. |
[51] | THAKUR A, KUMAR A, 2024. Emerging paradigms into bioremediation approaches for nuclear contaminant removal: From challenge to solution[J]. Chemosphere, 352: 141369. |
[52] | VONDERHEIDE A P, ZORIY M V, IZMER A V, et al., 2004. Determination of 90 Sr at ultratrace levels in urine by ICP-MS[J]. Journal of analytical atomic spectrometry, 19(5): 675-680. |
[53] | WANG J L, ZHUANG S T, 2019. Removal of cesium ions from aqueous solutions using various separation technologies[J]. Reviews in Environmental Science and Bio/Technology, 18(2): 231-269. |
[54] | WANG X B, YU C, GUO H, et al., 2022a. Robust fluorescent detection of iodine vapor by a film sensor based on a polymer of intrinsic microporosity[J]. Chemical Engineering Journal, 438: 135641. |
[55] | WANG Z, ZHANG L Y, ZHANG K J, et al., 2022b. Application of carbon dots and their composite materials for the detection and removal of radioactive ions: A review[J]. Chemosphere, 287(Part 3): 132313. |
[56] | WANI A A, SHAHADAT M, ALI S W, et al., 2022. Recent advances and future perspectives of polymer-based magnetic nanomaterials for detection and removal of radionuclides: A review[J]. Journal of Molecular Liquids, 365: 119976. |
[57] | WU X M, HUANG Q X, MAO Y, et al., 2019. Sensors for determination of uranium: A review[J]. TrAC Trends in Analytical Chemistry, 118: 89-111. |
[58] | XIAO S J, QIU A T, LI H H, et al., 2023. Simultaneous detection and separation of uranium based on a fluorescent amidoxime-functionalized covalent organic polymer[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 289: 122182. |
[59] | YUN W, WU H, LIU X Y, et al., 2018. Ultra-sensitive fluorescent and colorimetric detection of UO22+ based on dual enzyme-free amplification strategies[J]. Sensors and Actuators B: Chemical, 255(Part 2): 1920-1926. |
[60] | ZHANG J, WANG Y, XU X W, et al., 2011. Specifically colorimetric recognition of calcium, strontium, and barium ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles and its use in reliable detection of calcium ion in water[J]. The Analyst, 136(19): 3865-3868. |
[61] | ZHENG J, TAGAMI K, TAKEDA S H, et al., 2013. The key role of atomic spectrometry in radiation protection[J]. Journal of Analytical Atomic Spectrometry, 28(11): 1676-1699. |
[62] | ZHENG J, BU W T, TAGAMI K, et al., 2014. Determination of 135Cs and 135Cs/137Cs atom ratio in environmental samples by combining AMP selective Cs adsorption and ion-exchange chromatographic separation to triple quadrupole inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 86: 7103-7110. |
[63] | ZHAO M X, WANG J H, YU H L, et al., 2020. A highly selective and sensitive colorimetric assay for specific recognition element-free detection of uranyl ion[J]. Sensors and Actuators B: Chemical, 307: 127664. |
[64] | ZHANG J, GAO Y, HOU J J, et al., 2024a. One particle three targets: Phosphate anion-modified magnetic mesoporous silica with enhanced fluorescence for sensitive detection, efficient adsorption, and repeated removal of uranium (VI) ions[J]. Journal of Hazardous Materials, 465: 133286. |
[65] | ZHANG L, YANG G P, XIAO S J, et al., 2021. Facile construction of covalent organic framework nanozyme for colorimetric detection of uranium[J]. Small, 17(44): e2102944. |
[66] | ZHANG X L, CHEN L, FU L H, et al., 2024b. Dual-functional metal-organic frameworks-based hydrogel micromotor for uranium detection and removal[J]. Journal of Hazardous Materials, 467: 133654. |
[67] |
ZHOU R J, HUANG X H, AN Q X, et al., 2021. A convenient and sensitive colorimetric iodide assay based on directly inducing morphological transformation of gold nanostars[J]. Journal of Food and Drug Analysis, 29(1): 144-152.
DOI PMID |
[68] | ZHUANG S T, WANG J L, 2023. Cesium removal from radioactive wastewater by adsorption and membrane technology[J]. Frontiers of Environmental Science & Engineering, 18(3): 38. |
[69] | ZOR E, ALPAYDIN S, ARICI A, et al., 2018. Photoluminescent nanopaper-based microcuvette for iodide detection in seawater[J]. Sensors and Actuators B: Chemical, 254: 1216-1224. |
[70] | 李培华, 陈石华, 杨猛, 等, 2023. 基于X射线吸收谱的重金属电化学催化检测机制研究[J]. 中国科学: 化学, 53(11): 2250-2269. |
LI P H, CHEN S H, YANG M, et al., 2023. Study on the mechanism of heavy metal electrochemical catalytic detection based on X-ray absorption spectroscopy[J]. Chinese Science: Chemistry, 53(11): 2250-2269. | |
[71] | 刘西艳, 许璐, 张晓敏, 等, 2018. 一种偕胺肟基纤维材料对模拟盐湖水中铀的吸附研究[J]. 中国科学: 化学, 48(5): 518-526. |
LIU X Y, XU L, ZHANG X M, et al., 2018. Study on the adsorption of uranium in simulated salt lake water by an oxime based fiber material[J]. Chinese Science: Chemistry, 48(5): 518-526. | |
[72] | 罗曼, 2023. 全球核能发展动向及启示[EB/OL]. [2024-07-19]. http://www.heneng.net.cn/home/zc/infotwo/id/70529/sid/9/catId/163.html. |
LUO M, 2023. Global Nuclear energy development trends and implications[EB/OL]. [July-19-2024]. http://www.heneng.net.cn/home/zc/infotwo/id/70529/sid/9/catId/163.html. | |
[73] | 王新伟, 钟宁宁, 吕文海, 等, 2007. 荧光光谱法快速检测土壤中荧光烃类污染物[J]. 生态环境, 16(4): 1184-1188. |
WANG X W, ZHONG N N, LÜ W H, et al., 2007. Rapid detection of fluorescent hydrocarbon pollutants in soil by fluorescence spectroscopy[J]. Ecological Environment, 16(4): 1184-1188. | |
[74] | 王祥学, 王敏, 段恩喆, 等, 2023. 纳米零价铁材料对放射性核素铀的去除行为研究[J]. 中国科学: 化学, 53(6): 921-931. |
WANG X X, WANG M, DUAN E Z, et al., 2023. Study on the removal behavior of radioactive nuclide uranium by nano zero valent iron materials[J]. Chinese Science: Chemistry, 53(6): 921-931. | |
[75] |
姚志鹏, 王锦龙, 毕倩倩, 等, 2023. 福岛核事故后2011-2012年舟山渔场生物样品中-(137)Cs的分布及剂量评估[J]. 生态环境学报, 32(4): 715-721.
DOI |
YAO Z P, WANG J L, BI Q Q, et al., 2023. Distribution and dose assessment of-(137) Cs in biological samples from Zhoushan Fishing Ground in 2011-2012 after the Fukushima nuclear accident[J]. Journal of Ecological Environment, 32(4): 715-721. | |
[76] |
张彬, 冯志刚, 马强, 等, 2015. 广东某铀废石堆周边土壤中铀污染特征及其环境有效性[J]. 生态环境学报, 24(1): 156-162.
DOI |
ZHANG B, FENG Z G, MA Q, et al., 2015. Pollution characteristics and environmental availability of uranium in the soils around a uranium waste rock pile in Guangdong province, China[J]. Journal of Ecological Environment, 24(1): 156-162. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn