Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (8): 1192-1202.DOI: 10.16258/j.cnki.1674-5906.2025.08.004

• Papers on “Nuclear Contamination and Ecosystem Security” • Previous Articles     Next Articles

Development and Prospects of Photochemical Detection Methods for Elements of Nuclear Pollution

Jia Qiqi(), Du Xinfeng*(), Yuan Yihui*(), Wang Ning*()   

  1. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, P. R. China
  • Received:2024-08-27 Online:2025-08-18 Published:2025-08-01

核污染元素光化学检测方法的发展与前景

贾琪琪(), 都新丰*(), 袁益辉*(), 王宁*()   

  1. 海南大学/南海海洋资源利用国家重点实验室,海南 海口 570228
  • 通讯作者: *E-mail: duxf@hainau.edu.cnyuanyh@hainanu.edu.cnwangn02@foxmail.com
  • 作者简介:贾琪琪(1999年生),女,硕士研究生,主要从事生态环境安全监测。E-mail: 794826445@qq.com
  • 基金资助:
    国家自然科学基金地区项目(22466016);国家自然科学基金联合基金项目(U2167220);国家自然科学基金重点项目参与(U23A20104)

Abstract:

Nuclear energy occupies an important position in the global energy system as a clean and efficient energy source. Nuclear energy is of great significance for promoting the optimization and sustainable development of energy structures. However, the release of radioactive substances that may be caused by nuclear accidents and nuclear waste disposal poses a serious threat to human health and the environment. The effective detection and supervision of nuclear pollution elements can provide timely warnings of nuclear accidents to ensure the sustainable development of the nuclear industry. This study systematically provides the common nuclide types in nuclear pollution, including radioactive elements such as uranium, strontium, cesium, and iodine, as well as their hazards to humans and the natural ecological environment, thus providing a scientific basis for understanding the risks of nuclear pollution. In the process of exploring nuclear pollution detection technologies, this article comprehensively introduces a variety of advanced methods including radioactive detection, atomic spectroscopy, mass spectrometry, and chemical probes. Special emphasis has been placed on recent developments in photochemical probe detection methods. Photochemical probe techniques offer distinct advantages in terms of sensitivity, selectivity, real-time monitoring capability, and portability. These features make it a powerful tool for rapid and accurate identification of nuclear contamination. With the rapid advancement of materials technology, the integration of organic small molecules, metal nanoparticles, carbon-based nanomaterials, metal-organic framework materials, covalent organic framework materials, and biological materials with photochemical probe technology has significantly enhanced the performance of sensors in detecting uranyl, strontium, iodide, iodine vapor, and cesium ions. Among these developments, the detection limits for uranyl, strontium, cesium, and iodide ions can be as low as 0.024 nmol∙L−1, 0.500 nmol∙L−1, 0.096 µM, and 0.176 nmol∙L−1, respectively. The high sensitivity at such low concentrations provides valuable insights into research directions focused on the real-time monitoring and rapid on-site assessment of nuclear contamination. In the future, photochemical detection methods for nuclear pollution will increasingly focus on environmental adaptability, operational simplicity, and cost-effectiveness. These enhancements aim to address actual needs across various scenarios, while providing robust technical support for global nuclear safety and environmental protection.

Key words: nuclear pollution, radioactive nuclide, photochemical probe, ion detection, radiometric measurement, on-site detection

摘要:

核能作为一种清洁、高效的能源在全球能源结构中占据重要地位,发展核能对推动能源结构优化以及经济、社会的可持续发展具有重要意义。然而,核事故和核废料处理可能释放的放射性物质对人类健康和生态环境构成严重威胁。对核污染元素进行有效的检测和监管,能够及时预警核事故,确保核工业安全及可持续发展。该文综述了常见的核污染元素,包括铀、锶、铯、碘等,分析了它们对人体生理机能及自然生态环境的危害,为理解核污染风险提供了科学依据。围绕核污染元素检测的研究现状,全面介绍了包括放射性检测、原子光谱分析、质谱法以及化学探针在内的多种先进检测手段,重点阐述了近年来光化学探针检测方法的发展。光化学探针检测方法在灵敏度、选择性、实时监测能力和便携性方面具有独特优势,为核污染的快速准确检测提供了有力工具。随着材料技术的迅猛发展,有机小分子、金属纳米粒子、碳基纳米材料、金属有机框架材料、共价有机框架材料以及生物材料等与光化学探针技术深度融合,使得光化学探针在检测铀酰离子、锶离子、碘离子、碘蒸汽、铯离子等性能上大幅度提升,其中,对铀酰离子的检测限可低至0.024 nmol∙L−1,对锶离子的检测限最低可达0.500 nmol∙L−1,对铯离子的检测限可低至0.096 µmol∙L−1,对碘离子的检测限可低至0.176 nmol∙L−1,低浓度下高灵敏性为核污染的实时监测与现场快速评估技术研究方向提供了有价值的参考。在今后的发展中,核污染光化学检测方法将更加注重环境适应性、操作简便性和成本效益,以满足不同场景下的实际需求,为全球核安全和环境保护提供坚实的技术支撑。

关键词: 核污染, 放射性核素, 光化学探针, 离子检测, 放射性测量, 现场检测

CLC Number: