[1] |
BLÖTHE M, RODEN E E, 2009. Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture[J]. Applied and Environmental Microbiology, 75(21): 6937-6940.
DOI
PMID
|
[2] |
BRYCE C, BLACKWELL N, SCHMIDT C, et al., 2018. Microbial anaerobic Fe(II) oxidation-ecology, mechanisms and environmental implications[J]. Environmental Microbiology, 20(10): 3462-3483.
|
[3] |
CAMERON F J, JONES M V, EDWARDS C, 1984. Effects of salinity on bacterial iron oxidation[J]. Current Microbiology, 10: 353-356.
|
[4] |
CHEN D D, CHENG K, LIU T X, et al., 2023. Novel insight into microbially mediated nitrate-reducing Fe(II) oxidation by Acidovorax sp. strain BoFeN1 using dual N-O isotope fractionation [J]. Environmental Science & Technology 57(33): 12546-12555.
|
[5] |
CHEN D D, LIU T X, LI X M, et al., 2018. Biological and chemical processes of microbially mediated nitrate-reducing Fe(II) oxidation by pseudogulbenkiania sp. Strain 2002[J]. Chemical Geology, 476: 59-69.
|
[6] |
CHENG K, LI H, YUAN X, et al., 2022. Hematite-promoted nitrate-reducing Fe(II) oxidation by Acidovorax sp. Strain BoFeN1: Roles of mineral catalysis and cell encrustation[J]. Geobiology, 20(6): 810-822.
|
[7] |
HAFENBRADL D, KELLER M, DIRMEIER R. et al., 1996. Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions[J]. Archives of Microbiology, 166: 308-314.
|
[8] |
HOHMANN C, WINKLER E, MORIN G, KAPPLER A, 2010. Anaerobic Fe(II)-oxidizing bacteria show as resistance and immobilize as during Fe(III) mineral precipitation[J]. Environmental Science & Technology, 44(1): 94-101.
|
[9] |
HUANG G Y, WANG X N, PAN D D, et al., 2023. Cadmium immobilization during nitrate-reducing Fe(II) oxidation by Acidovorax sp. BoFeN1: Contribution of bacterial cells and secondary minerals[J]. Chemical Geology, 639: 121729.
|
[10] |
HUANG J R, HAN M X, YANG J, et al., 2022. Salinity impact on composition and activity of nitrate-reducing Fe(II)-oxidizing microorganisms in saline lakes[J]. Applied and Environmental Microbiology, 88(10): e0013222.
|
[11] |
JAKUS N, BLAVKWELL N, OSENBRÜCK K, et al., 2021. Nitrate removal by a novel lithoautotrophic nitrate-reducing, iron(II)-oxidizing culture enriched from a pyrite-rich limestone aquifer[J]. Applied and Environmental Microbiology, 87(16): e00460-00421.
|
[12] |
JAMIESON J, PROMMER H, KAKSONEN A H, et al., 2018. Identifying and quantifying the intermediate processes during nitrate-dependent iron(II) oxidation. Environmental Science & Technology, 52(10): 5771-5781.
|
[13] |
KAPPLER A, SCHINK B, NEWMAN D K, 2005. Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1[J]. Geobiology, 3(4): 235-245.
|
[14] |
LAROSA C, SALERNO M, DE LIMA J S, et al., 2018. Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses[J]. International Journal Biological Macromolecules, 115: 900-906.
|
[15] |
LAUFER K, RØY H, JØRGENSEN B B, KAPPLER A, 2016. Evidence for the existence of autotrophic nitrate-reducing Fe(II)-oxidizing bacteria in marine coastal sediment[J]. Applied and Environmental Microbiology, 82(20): 6120-6131.
PMID
|
[16] |
LI S, LI X M, LI F B, 2017a. Fe(II) oxidation and nitrate reduction by a denitrifying bacterium, Pseudomonas stutzeri LS-2, isolated from paddy soil[J]. Journal of Soils and Sediments, 18(4): 1668-1678.
|
[17] |
LI Y F, LONG X X, CHONG Y X, et al., 2017b. Characterization of the cell-Fe mineral aggregate from nitrogen removal employing ferrous and its adsorption features to heavy metal[J]. Journal of Cleaner Production, 156: 538-548.
|
[18] |
LIU T X, CHEN D D, LUO X B, et al., 2019. Microbially mediated nitrate-reducing Fe(II) oxidation: Quantification of chemodenitrification and biological reactions[J]. Geochimica et Cosmochimica Acta, 256: 97-115.
|
[19] |
NITZSCHE K S, WEIGOLD P, LÖSEKANN-BEHRENS T, et al., 2015. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam[J]. Chemosphere, 138: 47-59.
DOI
PMID
|
[20] |
PAN Y, FU Y Y, ZHOU K, et al., 2023. Microbial mixotrophic denitrification using iron(II) as an assisted electron donor[J]. Water Research X, 19: 100176.
|
[21] |
PANG Y M, WANG J L, LI S J, et al., 2021. Activity of autotrophic Fe(II)-oxidizing denitrifiers in freshwater lake sediments[J]. ACS ES & T Water, 1(7): 1566-1576.
|
[22] |
PANTKE C, OBST M, BENZERARA K, et al., 2012. Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. Strain BoFeN1[J]. Environmental Science & Technology, 46(3): 1439-1446.
|
[23] |
RATERING S, SCHNELL S, 2001. Nitrate-dependent iron(II) oxidation in paddy soil[J]. Environmental Microbiology, 3(2): 100-109.
PMID
|
[24] |
SCHAEDLER F, LOCKWOOD C, LUEDER U, et al., 2017. Microbially mediated coupling of Fe and N cycles by nitrate-reducing Fe(II)-oxidizing bacteria in littoral freshwater sediments[J]. Applied and Environmental Microbiology, 84: e02013-17.
|
[25] |
STRAUB K L, BENZ M, SCHINK B, et al., 1996. Anaerobic, Nitrate-dependent Microbial Oxidation of Ferrous Iron[J]. Applied and Environmental Microbiology, 62(4): 1458-1460.
DOI
PMID
|
[26] |
STRAUB K L, BUCHHOLZ-CLEVEN B E E, 1998. Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments[J]. Applied and environmental microbiology, 64(12): 4846-4856.
PMID
|
[27] |
STRAUB K L, SCHÖNHUBER W A, BUCHHOLZ-CLEVEN B E E, et al., 2004. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling[J]. Geomicrobiology Journal, 21(6): 371-378.
|
[28] |
SU J F, SHAO S C, HUANG T L, et al., 2015. Anaerobic nitrate-dependent iron(II) oxidation by a novel autotrophic bacterium, Pseudomonas sp. SZF15[J]. Journal of Environmental Chemical Engineering, 3(3): 2187-2193.
|
[29] |
WANG X Q, LIU T X, LI F B, et al., 2017. Effects of simultaneous application of ferrous iron and nitrate on arsenic accumulation in rice grown in contaminated paddy soil[J]. ACS Earth and Space Chemistry, 2(2): 103-111.
|
[30] |
WEBER K A, ACHENBACH L A, COATES J D, 2006. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 4(10): 752-764.
PMID
|
[31] |
WEBER K A, HEDRICK D B, PEACOCK A D, et al., 2009. Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. Strain 2002[J]. Applied Microbiology Biotechnology, 83(3): 555-565.
|
[32] |
WECKLER B, LUTZ H D, 1998. Lattice vibration spectra. Part xcv. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akaganéite (β), lepidocrocite (γ), and feroxyhite (δ)[J]. European Journal of Solid State and Inorganic Chemistry, 35(8): 531-544.
|
[33] |
XIAO W, JONES A M, COLLINS R N, et al., 2017. Use of fourier transform infrared spectroscopy to examine the Fe(II)-catalyzed transformation of ferrihydrite[J]. Talanta, 175: 30-37.
DOI
PMID
|
[34] |
XIU W, GUO H M, SHEN J X, et al., 2016. Stimulation of Fe(II) oxidation, biogenic lepidocrocite formation, and arsenic immobilization by Pseudogulbenkiania sp. Strain 2002[J]. Environmental Science & Technology, 50(12): 6449-6458.
|
[35] |
ZHANG H N, WANG H Y, YANG K. et al., 2015. Nitrate removal by a novel autotrophic denitrifier (Microbacterium sp.) using Fe(II) as electron donor[J]. Annals Microbiology, 65: 1069-1078.
|