Ecology and Environment ›› 2024, Vol. 33 ›› Issue (5): 689-698.DOI: 10.16258/j.cnki.1674-5906.2024.05.003
• Research Article [Ecology] • Previous Articles Next Articles
XIA Fan(), HAN Yimeng, ZHOU Jianxing, XIE Danni*(
)
Received:
2023-11-09
Online:
2024-05-18
Published:
2024-06-27
通讯作者:
* 谢丹妮。E-mail: 作者简介:
夏凡(1999年生),男,硕士研究生,主要研究方向为氮的生物地球化学循环。E-mail: 2022135020@chd.edu.cn
基金资助:
CLC Number:
XIA Fan, HAN Yimeng, ZHOU Jianxing, XIE Danni. The Distribution Characteristics of Nitrogen and Sulfur in the Artificially Disturbed Tibetan Plateau Alpine Forests[J]. Ecology and Environment, 2024, 33(5): 689-698.
夏凡, 韩怡蒙, 周剑兴, 谢丹妮. 氮和硫在人为扰动的青藏高原高寒森林中的分布特征[J]. 生态环境学报, 2024, 33(5): 689-698.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.05.003
水样 | 采样地 | 盐基阳离子通量/(keq∙hm−2∙a−1) | |||
---|---|---|---|---|---|
K | Ca | Na | Mg | ||
穿透水 | 大通 | 0.24 | 0.44 | 0.07 | 0.09 |
湟源 | 0.26 | 0.46 | 0.07 | 0.08 | |
表层土壤水 | 大通 | 0.15 | 0.3 | 0.03 | 0.05 |
湟源 | 0.41 | 0.39 | 0.06 | 0.09 | |
地表水 | 大通 | 0 | 0.1 | 0.02 | 0.02 |
湟源 | 0.01 | 0.12 | 0.02 | 0.01 |
Table 1 The salt-based cations flux in throughfall, surface soil water and surface water in alpine forests in Datong and Huangyuan
水样 | 采样地 | 盐基阳离子通量/(keq∙hm−2∙a−1) | |||
---|---|---|---|---|---|
K | Ca | Na | Mg | ||
穿透水 | 大通 | 0.24 | 0.44 | 0.07 | 0.09 |
湟源 | 0.26 | 0.46 | 0.07 | 0.08 | |
表层土壤水 | 大通 | 0.15 | 0.3 | 0.03 | 0.05 |
湟源 | 0.41 | 0.39 | 0.06 | 0.09 | |
地表水 | 大通 | 0 | 0.1 | 0.02 | 0.02 |
湟源 | 0.01 | 0.12 | 0.02 | 0.01 |
类型 | 采样地 | 各离子的汇/(keq∙hm−2∙a−1) | ||||
---|---|---|---|---|---|---|
S | N | Ca | Mg | K | ||
高寒森林小流域a | 大通 | 0.07 | 0.21 | 0.34 | 0.07 | 0.24 |
湟源 | 0.34 | 0.29 | 0.34 | 0.07 | −0.01 | |
其中,枯落物层b | 大通 | 0.06 | 0.11 | 0.14 | 0.04 | 0.08 |
湟源 | 0.17 | 0.08 | 0.07 | −0.01 | −0.15 |
Table 2 The sinks of sulfur, nitrogen, calcium, potassium and magnesium in small watershed of alpine forests(negative values indicate the source)
类型 | 采样地 | 各离子的汇/(keq∙hm−2∙a−1) | ||||
---|---|---|---|---|---|---|
S | N | Ca | Mg | K | ||
高寒森林小流域a | 大通 | 0.07 | 0.21 | 0.34 | 0.07 | 0.24 |
湟源 | 0.34 | 0.29 | 0.34 | 0.07 | −0.01 | |
其中,枯落物层b | 大通 | 0.06 | 0.11 | 0.14 | 0.04 | 0.08 |
湟源 | 0.17 | 0.08 | 0.07 | −0.01 | −0.15 |
[1] | ABER J D, GOODLE C L, OLLINGER S V, et al., 2003. Is nitrogen deposition altering the nitrogen status of northeastern forests[J]. BioScience, 53(4): 375-390. |
[2] | AKSELSSON C, HULTBERG H, KARLSSON P E, et al., 2013. Acidification trends in south Swedish forest soils 1986-2008-Slow recovery and high sensitivity to sea-salt episodes[J]. Science of the Total Environment, 444: 271-287. |
[3] | BINKLEY D, HÖGBERG P, 2016. Tamm Review: Revisiting the influence of nitrogen deposition on Swedish forests[J]. Forest Ecology and Management, 368: 222-239. |
[4] | DONG I Q, QIN T L, WANG Y, 2021. Spatiotemporal variation of nitrogen and phosphorus and its main influencing factors in Huangshui River basin[J]. Environmental Monitoring Assessment, 193(5): 292. |
[5] | DU E Z, VRIESC W, MCNULTY S, 2018. Bulk deposition of base cationic nutrients in China's forests: Annual rates and spatial characteristics[J]. Atmospheric Environment, 184: 121-128. |
[6] | ENGARDT M, SIMPSON D, SCHWIKOWSKI M, et al., 2017. Deposition of sulphur and nitrogen in Europe 1900-2050. Model calculations and comparison to historical observations[J]. Tellus Series B, Chemical and Physical Meteorology, 69(1): 1328945. |
[7] | GAUTHIER S, BERNIER P, KUULUVAINEN T, et al., 2015. Boreal forest health and global change[J]. Science, 349(6520): 819-822. |
[8] | HOULE D, MARTY C, DUCHESNE L, et al., 2014a. Humus layer is the main locus of secondary SO42- production in boreal forests[J]. Geochimica Et Cosmochimica Acta, 126: 18-29. |
[9] | HOULE D, MARTY C, DUCHESNE L, et al., 2014b. Response of canopy nitrogen uptake to a rapid decrease in bulk nitrate deposition in two eastern Canadian boreal forests[J]. Oecologia, 177(1): 29-37. |
[10] | HUANG Y M, KANG R H, MULDER J, et al., 2015. Nitrogen saturation, soil acidification, and ecological effects in a subtropical pine forest on acid soil in southwest China[J]. Journal of Geophysical Research-Biogeosciences, 120(11): 2457-2472. |
[11] | ISHIDA T, TAKENAKA C, 2014. Degree of sulfate saturation in forest soils affected by past heavy anthropogenic deposition[J]. Water, Air, and Soil Pollution, 225: 2061. |
[12] | JUNG K H, CHANG S X, 2012. Four years of simulated N and S depositions did not cause N saturation in a mixedwood boreal forest ecosystem in the oil sands region in northern Alberta, Canada[J]. Forest Ecology and Management, 280: 62-70. |
[13] | KORHONEN J F J, PIHLATIE M, PUMPANEN J, AALTONEN H, et al., 2013. Nitrogen balance of a boreal Scots pine forest[J]. Biogeosciences, 10(2): 1083-1095. |
[14] | KRUPOVÁ D, FADRHONSOVÁ V, PAVLENDOVÁ H, et al., 2018. Atmospheric deposition of sulphur and nitrogen in forests of the Czech and Slovak Republic[J]. Central European Forestry Journal, 64(3-4): 249-256. |
[15] | LI H, SONG W, 2021. Spatiotemporal distribution and influencing factors of ecosystem vulnerability on Qinghai-Tibet Plateau[J]. International Journal of Environmental Research and Public Health, 18(12): 6508. |
[16] | LIKENS G E, DRISCOLL C T, BUSO D C, 1996. Long-term effects of acid rain: Response and recovery of a forest ecosystem[J]. Science, 272(5259): 244-246. |
[17] | MAAROUFI N I, NORDIN A, PALMVIST K, et al., 2016. Chronic nitrogen deposition has a minor effect on the quantity and quality of aboveground litter in a boreal Forest[J]. Plos One, 11(8): e0162086. |
[18] | MANFRED K, WOLFGANG F, HORST R, et al., 2014. Nitrogen deposition along differently exposed slopes in the Bavarian Alps[J]. Science of the Total Environment, 470-471: 895-906. |
[19] | MCDONNELL T C, PHELAN J, TALHELM A F, 2023. Protection of forest ecosystems in the eastern United States from elevated atmospheric deposition of sulfur and nitrogen: A comparison of steady-state and dynamic model results[J]. Environmental Pollution, 318: 120887. |
[20] | MORSE J L, DURAN J, GROFFMAN P M, 2015. Soil denitrification fluxes in a northern hardwood forest: The importance of snowmelt and implications for ecosystem N budgets[J]. Ecosystems, 18: 520-532. |
[21] | MURRAY C A, WHITFIELD C J, WATMOUGH S A, 2017. Uncertainty-based terrestrial critical loads of nutrient nitrogen in northern Saskatchewan, Canada[J]. Boreal Environmental Research, 22: 231-244. |
[22] | NOVAK M, BUZEK F, HARRISON A F, et al., 2003. Similarity between C, N and S stable isotope profiles in European spruce forest soils: Implications for the use of delta S-34 as a tracer[J]. Applied Geochemistry, 18(5): 765-779. |
[23] | PEI Q M, ERI S, SUSAN K, et al., 2021. Sulfur aerosols in the Arctic, Antarctic, and Tibetan Plateau: Current knowledge and future perspectives[J]. Earth-Science Reviews, 220: 103753. |
[24] | QIAO X, SHU X, TANG Y, et al., 2021. Atmospheric deposition of sulfur and nitrogen in the West China rain zone: Fluxes, concentrations, ecological risks, and source apportionment[J]. Atmospheric Research, 256: 105569. |
[25] | RAFFAELLA B, CARLO A D, ANDREA, et al., 2019. Dynamic of nitrogen and dissolved organic carbon in an alpine forested catchment: Atmospheric deposition and soil solution trends[J]. Nature Conservation, 34: 41-66. |
[26] | ROGORA M, MOSELLO R, ARISCI S, et al., 2006. An overview of atmospheric deposition chemistry over the Alps: Present status and long-term trends[J]. Hydrobiologia, 562(1): 17-40. |
[27] | SARRKOLA S, NIEMINEN M, KOIVUSALO, et al., 2012. Trends in concentrations and export of nitrogen in boreal forest streams[J]. Boreal Environment Research, 17(2): 85-101. |
[28] | SAVVA Y, BERNINGER F, 2010. Sulphur deposition causes a large-scale growth decline in boreal forests in Eurasia[J]. Global Biogeochemical Cycles, 24(3): GB3002-1-GB3002-14. |
[29] | SHI F F, ZHOU B R, ZHOU H K, 2022. Spatial autocorrelation analysis of land use and ecosystem service value in the Huangshui River Basin at the Grid Scale[J]. Plants, 11(17): 2294. |
[30] | SOLBERG S, ANDREASSEN K, CLARKE N, et al., 2004. The possible influence of nitrogen and acid deposition on forest growth in Norway[J]. Forest Ecology and Management, 192(2-3): 241-249. |
[31] | SPONSELLER R A, GUNDALE M J, FUTTER M, et al., 2016. Nitrogen dynamics in managed boreal forests: Recent advances and future research directions[J]. Ambio, 45(2): s175-s187. |
[32] | WANG W, GUAN L X, WEN Z, et al., 2020. Atmospheric nitrogen deposition to a Southeast Tibetan forest ecosystem[J]. Atmosphere, 11: 1331. |
[33] | WANG Y Y, ZHU F F, KANG R H, 2022. Chemical composition and deposition characteristics of precipitation into a typical temperate forest in Northeastern China[J]. Forests, 13(12): 2024. |
[34] | WATMOUGH S A, DILLON P J, 2003. Base cation and nitrogen budgets for a mixed hardwood catchment in South-central Ontario[J]. Ecosystems, 6(7): 675-693. |
[35] | WHITFIELD C J, WATMOUGH S A, 2012. A regional approach for mineral soil weathering estimation and critical load assessment in boreal Saskatchewan, Canada[J]. Science of the Total Environment, 437: 165-172. |
[36] | WU J H, WANG G Z, CHEN W X, et al., 2022. Terrain gradient variations in the ecosystem services value of the Qinghai-Tibet Plateau, China[J]. Global Ecology and Conservation, 34: e02008. |
[37] | XIE D N, ZHAO B, KANG R H, et al., 2024. Delayed recovery of surface water chemistry from acidification in subtropical forest region of China[J]. Science of the Total Environment, 912: 169126. |
[38] | YAO Z S, MA L, ZHANG H, et al., 2019. Characteristics of annual greenhouse gas flux and NO release from alpine meadow and forest on the eastern Tibetan Plateau[J]. Agricultural and Forest Meteorology, 272-273: 166-175. |
[39] | YU Q, ZHANG T, MA X X, 2017a. Monitoring effect of SO2 emission abatement on recovery of acidified soil and streamwater in Southwest China[J]. Environmental Science & Technology, 51(17): 9498-9506. |
[40] | YU Q, ZHANG T, CHENG Z L, et al., 2017b. Is surface water acidification a serious regional issue in China[J]. Science of the Total Environment, 584-585: 783-790. |
[41] |
ZHANG W, LIU C Q, WANG Z L, et al., 2014. Speciation and isotopic composition of sulfur in limestone soil and yellow soil in Karst Areas of Southwest China: Implications of different responses to acid deposition[J]. Journal of Environmental Quality, 43(3): 809-819
DOI PMID |
[42] | ZHAO P, CHI J S, NILSSON M B, 2022. Long-term nitrogen addition raises the annual carbon sink of a boreal forest to a new steady-state[J]. Agricultural and Forest Meteorology, 324(1): 109112. |
[43] | ZHAO W Z, XIAO C W, LI M X, et al., 2023. Biogeographic patterns of sulfur in the vegetation of the Tibetan Plateau[J]. Journal of Geophysical Research: Biogeosciences, 128(3): e2022JG007051. |
[44] | ZHU J, MULDER J, WU L P, et al., 2013. Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China[J]. Biogeosciences, 10(3): 1309-1321. |
[45] | ZHUOMA W, HOU G, CHEN H, 2023. Dynamic changes in forest cover and human activities during the Holocene on the northeast Tibetan plateau[J]. Frontiers in Earth Science, 11: 1128824. |
[46] | 湟源县人民政府, 2023. 湟源概括[EB/OL]. (2023-05-10) [2024-03-28]. http://www.huangyuan.gov.cn. |
Huangyuan County People’s Government, 2023. Introduction to Huangyuan[EB/OL]. (2023-05-10) [2024-03-28]. http://www.huangyuan.gov.cn. | |
[47] | 李好好, 黄懿梅, 郭威, 等, 2022. 河湟谷地不同时空尺度下土地利用及空间格局对水质的影响[J]. 环境科学, 43(8): 4042-4053. |
LI H H, HUANG Y M, GUO W, et al., 2022. Influence of land use and land cover patterns on water quality at difference spatio-temporal scales in Hehuang Valley[J]. Environment Science, 43(8): 4042-4053. | |
[48] | 谢丹妮, 张婷, 余倩, 等, 2017. 重庆市十二五期间SO2和NOx总量控制对降低酸沉降的效果评估[J]. 中国环境科学, 37(11): 4072-4077. |
XIE D N, ZHANG T, YU Q, et al., 2017. Evaluating effects of total emission control for sulfur dioxide and nitrogen oxides in Chongqing during the Twelfth Five-Year-Plan: Trend in acid deposition at Tieshanping During 2011-2016[J]. China Environmental Science, 37(11): 4072-4077. | |
[49] | 西宁市生态环境局, 2021. 西宁市2021度环境统计年综报表[R/OL]. (2022-12-22) [2024-03-28]. https://shj.xining.gov.cn/zwgk/xxgknb/202212/t20221222/120268.html. |
Xining Municipal Bureau of Ecological Environment, 2021. Xining City 2021 degree environmental statistics annual comprehensive report[R/OL]. (2022-12-22) [2024-03-28]. https://shj.xining.gov.cn/zwgk/xxgknb/202212/t20221222/120268.html. | |
[50] | 余倩, 2019. 大气沉降的硫和氮在我国典型亚热带森林中的去向[D]. 北京: 清华大学. |
YU Q, 2019. Fate of deposited sulfur and nitrogen in typical subtropical forest ecosystems, Southern China[D]. Beijing: Tsinghua University. | |
[51] | 郅惠, 王琪, 黄彦丽, 等, 2017. 基于Landsat-8影像的大通县土地覆盖分类方法对比研究[J]. 青海大学学报, 35(6): 83-88. |
ZHI H, WANG Q, HUANG Y L, et al., 2017. Comparison of methodologies of land cover of Datong county based on Landsat-8 images[J]. Journal of Qinghai University, 35(6): 83-88. | |
[52] | 中华人民共和国生态环境部, 2021. 2021年中国生态环境统计年报[R/OL]. (2023-01-08) [2024-03-28]. https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202301/t20230118_1013682.shtml. |
The Ministry of Ecology and Environment, PRC, 2021. China 2021 Ecological Environment Statistical Annual Report[R/OL]. (2023-01-08) [2024-03-28]. https://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202301/t20230118_1013682.html. | |
[53] | 朱求安, 金嘉鑫, 2020. 中国0.08333°分辨率径流模拟数据集 (1960-2012年)[EB/OL]. (2023-07-31) [2024-03-28]. http://www.geodata.cn. |
ZHU Q A, JIN J X, 2020. China 0.08333 Resolution Runoff simulation Data set (1960-2012)[EB/OL]. (2023-07-31) [2024-03-28]. http://www.geodata.cn. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn