Ecology and Environment ›› 2023, Vol. 32 ›› Issue (12): 2083-2093.DOI: 10.16258/j.cnki.1674-5906.2023.12.001
• Papers on “New Pollutants” • Next Articles
HU Xibang(), GUAN Xiaotong, XIE Zixia, ZHANG Xiuyu*(
)
Received:
2023-08-13
Online:
2023-12-18
Published:
2024-02-05
Contact:
ZHANG Xiuyu
通讯作者:
张修玉
作者简介:
胡习邦(1981年生),男,高级工程师,博士,主要从事生态风险研究。E-mail: hooyan@126.com
基金资助:
CLC Number:
HU Xibang, GUAN Xiaotong, XIE Zixia, ZHANG Xiuyu. Pollution Status and Ecological Risk Assessment of Diethylhexyl Phthalate in Agricultural Soil[J]. Ecology and Environment, 2023, 32(12): 2083-2093.
胡习邦, 关晓彤, 谢紫霞, 张修玉. 农用地土壤中邻苯二甲酸二乙基已基酯的污染现状及生态风险评估[J]. 生态环境学报, 2023, 32(12): 2083-2093.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.12.001
数据类别 | 暴露终点 | 暴露时间 | 单位 | 浓度类型 | 介质 |
---|---|---|---|---|---|
慢性 | EC10/NOEC/NOEL (所有物种) | ≤7周 | mg∙kg−1 | 总浓度 或溶解态 | 土壤 |
Table 1 Criteria for selecting toxicity data
数据类别 | 暴露终点 | 暴露时间 | 单位 | 浓度类型 | 介质 |
---|---|---|---|---|---|
慢性 | EC10/NOEC/NOEL (所有物种) | ≤7周 | mg∙kg−1 | 总浓度 或溶解态 | 土壤 |
序号 | 中文名 | 学名 | 分类 | 效应浓度/(mg∙kg−1) | 毒理效应 | 数据来源 |
---|---|---|---|---|---|---|
1 | 土壤脱氢酶 | Dehydrogenation | 微生物酶 | 100 | 显著抑制土壤脱氢酶活性 | 秦华等, |
2 | 小白菜 | Brassica chinensis | 被子植物 | 0.432 | 影响叶片叶绿素的生物化学作用、植株的生长和形态 | Yuan et al., |
3 | 黄瓜 | Cucumis sativus | 被子植物 | 5.00 | 影响根、茎的生化反应 | Ma et al., |
4 | 黑麦草 | Lolium perenne | 被子植物 | 5.00 | 影响高度生长 | Ma et al., |
5 | 萝卜 | Raphanus sativus | 被子植物 | 5.00 | 影响根茎的丙二醛代谢, 叶绿素生化反应 | Ma et al., |
6 | 小麦 | Triticum aestivum | 被子植物 | 8.12 | 影响叶绿素A、光合作用、超氧化物歧化酶活性 | Gao et al., |
7 | 花生 | Peanut | 被子植物 | 12.50 | 生物累积作用 | Wang et al., |
8 | 洋葱 | Allium cepa | 被子植物 | 500 | 影响生长代谢 | Ma et al., |
9 | 燕麦 | Avena sativa | 被子植物 | 500 | 影响根茎的丙二醛代谢 | Ma et al., |
10 | 紫苜蓿 | Medicago sativa | 被子植物 | 500 | 影响发芽、生长 | Ma et al., |
11 | 水稻 | Oryza sativa | 被子植物 | 1.00×103 | 影响根茎生长、叶绿素A的浓度 | Kim et al., |
12 | 绿豆 | Vigna radiata | 被子植物 | 1.00×103 | 影响气孔孔径等生理机能 | Kim et al., |
13 | 跳虫 | Folsomia candida | 节肢动物 | 500 | 危害基因, 可能致死 | Kim et al., |
14 | 赤子爱胜蚓 | Eisenia fetida | 环节动物 | 0.709 | 影响溶酶体细胞膜的完整性 | Ma et al., |
15 | 大鼠 | Laboratory Rat | 脊索动物 | 158 | 肝组织肝细胞水样变性, 细胞内水分增多, 胞体肿大, 胞浆比较清亮 | 胡帅尔等, |
Table 2 Chronic toxicological data for DEHP
序号 | 中文名 | 学名 | 分类 | 效应浓度/(mg∙kg−1) | 毒理效应 | 数据来源 |
---|---|---|---|---|---|---|
1 | 土壤脱氢酶 | Dehydrogenation | 微生物酶 | 100 | 显著抑制土壤脱氢酶活性 | 秦华等, |
2 | 小白菜 | Brassica chinensis | 被子植物 | 0.432 | 影响叶片叶绿素的生物化学作用、植株的生长和形态 | Yuan et al., |
3 | 黄瓜 | Cucumis sativus | 被子植物 | 5.00 | 影响根、茎的生化反应 | Ma et al., |
4 | 黑麦草 | Lolium perenne | 被子植物 | 5.00 | 影响高度生长 | Ma et al., |
5 | 萝卜 | Raphanus sativus | 被子植物 | 5.00 | 影响根茎的丙二醛代谢, 叶绿素生化反应 | Ma et al., |
6 | 小麦 | Triticum aestivum | 被子植物 | 8.12 | 影响叶绿素A、光合作用、超氧化物歧化酶活性 | Gao et al., |
7 | 花生 | Peanut | 被子植物 | 12.50 | 生物累积作用 | Wang et al., |
8 | 洋葱 | Allium cepa | 被子植物 | 500 | 影响生长代谢 | Ma et al., |
9 | 燕麦 | Avena sativa | 被子植物 | 500 | 影响根茎的丙二醛代谢 | Ma et al., |
10 | 紫苜蓿 | Medicago sativa | 被子植物 | 500 | 影响发芽、生长 | Ma et al., |
11 | 水稻 | Oryza sativa | 被子植物 | 1.00×103 | 影响根茎生长、叶绿素A的浓度 | Kim et al., |
12 | 绿豆 | Vigna radiata | 被子植物 | 1.00×103 | 影响气孔孔径等生理机能 | Kim et al., |
13 | 跳虫 | Folsomia candida | 节肢动物 | 500 | 危害基因, 可能致死 | Kim et al., |
14 | 赤子爱胜蚓 | Eisenia fetida | 环节动物 | 0.709 | 影响溶酶体细胞膜的完整性 | Ma et al., |
15 | 大鼠 | Laboratory Rat | 脊索动物 | 158 | 肝组织肝细胞水样变性, 细胞内水分增多, 胞体肿大, 胞浆比较清亮 | 胡帅尔等, |
序号 | 地点 | 采样时间 | 土壤状况 | 样品量 | 最小值 | 最大值 | 中位数 | 平均值 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
1 | 全国a | 2019年 | 覆膜农用地 | 59 | 9.40×10−2 | 0.388 | ‒ | 0.160 | 靳拓等, |
2 | 22个省 | 2018年 | 农田 | 69 | 1.70×10−2 | 1.03 | ‒ | 0.110 | 胡艾伦, |
3 | 全国b | ‒ 1) | 农用地 | ‒ | nd 2) | 6.22 | 0.560 | 0.820 | Niu et al., |
4 | 北京a | 2014年 | 菜地 | 10 | 1.10×10−2 | 1.22 | 0.310 | 0.370 | 陈佳祎等, |
5 | 北京b | ‒ | 菜地 | 12 | ‒ | ‒ | 0.170 | 0.450 | Chen et al., |
6 | 北京c | ‒ | 菜地 | 60 | nd | 1.22 | 0.340 | 0.380 | Li et al., |
7 | 天津a | ‒ | 农田 | 12 | 9.7×10−2 | 1.88 | ‒ | 0.820 | 任超等, |
8 | 天津b | ‒ | 菜地 | ‒ | ‒ | ‒ | ‒ | 0.580 | Zhou et al., |
9 | 天津c | ‒ | 作物种植 | ‒ | ‒ | ‒ | ‒ | 0.410 | |
10 | 重庆 | ‒ | 大棚 | 春季 | ‒ | ‒ | ‒ | 1.04 | Li et al., |
11 | 河北a | ‒ | 菜地 | ‒ | ‒ | ‒ | ‒ | 0.360 | Zhou et al., |
12 | 河北b | ‒ | 作物种植 | ‒ | ‒ | ‒ | ‒ | 0.340 | |
13 | 沈阳 | 2017年 | 大棚 | 16 | ‒ | ‒ | 9.00×10−2 | 0.410 | Chen et al., |
14 | 大连 | 2021年 | 菜地 | 22 | ‒ | ‒ | ‒ | 2.84 | Wang et al., |
15 | 黄淮海 | ‒ | 农用地 | 136 | nd | 2.13 | 0.370 | 0.410 | Zhou et al., |
16 | 黄淮 | ‒ | 农田土壤 | 207 | nd | 2.31 | 0.190 | 0.300 | 周斌, |
17 | 河南a | ‒ | 植烟土壤 | 203 | nd | 0.652 | 0.130 | 0.130 | 戴华鑫, |
18 | 河南b | ‒ | 菜地 | ‒ | ‒ | ‒ | ‒ | 0.320 | Zhou et al., |
19 | 河南c | ‒ | 作物种植 | ‒ | ‒ | ‒ | ‒ | 0.350 | |
20 | 山东a | ‒ | 菜地 | 100 | 0.433 | 11.49 | 2.07 | 2.78 | Sun et al., |
21 | 山东b | ‒ | 菜地 | 15 | ‒ | ‒ | ‒ | 0.430 | Zhou et al., |
22 | 山东c | ‒ | 作物 | 30 | ‒ | ‒ | ‒ | 0.240 | |
23 | 山东半岛 | ‒ | 地膜农用地 | 108 | 0 | 2.94 | ‒ | 0.290 | Li et al., |
24 | 寿光a | ‒ | 菜地 | 32 | 7.80×10−2 | 1.004 | ‒ | 0.190 | Li et al., |
25 | 寿光b | ‒ | 菜地 | 31 | 7.60×10−2 | 0.972 | 0.110 | 0.180 | Zhou et al., |
26 | 寿光c | ‒ | 大棚 | 12 | ‒ | ‒ | 0.220 | 0.490 | |
27 | 青岛 | 2013年 | 花生、棉花种植土壤 | ‒ | 12.5 | 35.8 | - | 18.3 | 张海光等, |
28 | 阿克苏 | ‒ | 棉花土壤 | 94 | nd | 1.50 | 7.00×10−3 | 0.100 | 彭祎等, |
29 | 吐鲁番 | ‒ | 葡萄基地 | 18 | 0.382 | 0.798 | ‒ | 0.630 | 李海峰等, |
30 | 陕西a | ‒ | 菜地 | 23 | 2.10×10−2 | 0.600 | ‒ | 8.00×10−2 | 冯艳红等, |
31 | 陕西b | ‒ | 农用地 | ‒ | 0.460 | 2.30 | ‒ | - | Shi et al., |
32 | 西安 | ‒ | 农用地 | 62 | 4.10×10−2 | 1.72 | ‒ | 0.760 | Wang et al., |
33 | 咸阳 | ‒ | 大棚 | 6 | ‒ | ‒ | 0.100 | 0.380 | Chen et al., |
34 | 长三角a | 2018年 | 农田 | 228 | 4.00×10−3 | 1.51 | 0.120 | 0.180 | Wei et al., |
35 | 长三角b | ‒ | 农田 | 241 | nd | 9.10 | 0.350 | 0.550 | Sun et al., |
36 | 南京a | ‒ | 大棚 | 44 | 0.120 | 5.82 | 1.09 | 1.37 | Wang et al., |
37 | 南京b | 2017年 | 胡椒地大棚 | 7 | ‒ | ‒ | ‒ | 0.270 | Li et al., |
38 | 南京c | ‒ | 大棚 | 13 | ‒ | ‒ | 0.180 | 0.390 | Chen et al., |
39 | 常熟 | ‒ | 大棚 | 5 | ‒ | ‒ | 0.050 | 0.360 | |
40 | 海门 | ‒ | 大棚 | 12 | ‒ | ‒ | 0.160 | 0.340 | |
41 | 杭州 | ‒ | 农用地 | 10 | 0.810 | 2.20 | ‒ | 1.48 | 陈永山等, |
42 | 广东 | 2000‒2005年 | 菜地 | 444 | nd | 6.48 | ‒ | 0.150 | 杨国义等, |
43 | 广州深圳 | 2002年 | 菜地 | 27 | 2.82 | 25.1 | ‒ | 10.9 | 蔡全英等, |
44 | 汕头 | 2015年 | 菜地 | 63 | 1.00×10−3 | 4.20 | ‒ | 0.160 | 吴山等, |
45 | 高州 | ‒ | 农田 | 15 | 6.90×10−2 | 0.242 | 0.130 | 0.140 | 李霞等, |
46 | 福州 | ‒ | 大棚 | 12 | ‒ | ‒ | 0.160 | 0.450 | Chen et al., |
47 | 昆明 | ‒ | 大棚 | 12 | ‒ | ‒ | 0.100 | 0.310 | |
48 | 海南 | ‒ | 大棚 | ‒ | ‒ | ‒ | ‒ | 0.170 | 郇志博等, |
49 | 贵州东部 | 2020年 | 烟叶种植 | 40 | 0.110 | 5.59 | 4.50 | 14.3 | 马军等, |
50 | 宁夏 | 2018年 | 不同土地利用 | 87 | 3.54×10−2 | 7.80 | 0.420 | 1.02 | 张小红等, |
Table 3 Concentration of DEHP in agriculture soil mg?kg?1
序号 | 地点 | 采样时间 | 土壤状况 | 样品量 | 最小值 | 最大值 | 中位数 | 平均值 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
1 | 全国a | 2019年 | 覆膜农用地 | 59 | 9.40×10−2 | 0.388 | ‒ | 0.160 | 靳拓等, |
2 | 22个省 | 2018年 | 农田 | 69 | 1.70×10−2 | 1.03 | ‒ | 0.110 | 胡艾伦, |
3 | 全国b | ‒ 1) | 农用地 | ‒ | nd 2) | 6.22 | 0.560 | 0.820 | Niu et al., |
4 | 北京a | 2014年 | 菜地 | 10 | 1.10×10−2 | 1.22 | 0.310 | 0.370 | 陈佳祎等, |
5 | 北京b | ‒ | 菜地 | 12 | ‒ | ‒ | 0.170 | 0.450 | Chen et al., |
6 | 北京c | ‒ | 菜地 | 60 | nd | 1.22 | 0.340 | 0.380 | Li et al., |
7 | 天津a | ‒ | 农田 | 12 | 9.7×10−2 | 1.88 | ‒ | 0.820 | 任超等, |
8 | 天津b | ‒ | 菜地 | ‒ | ‒ | ‒ | ‒ | 0.580 | Zhou et al., |
9 | 天津c | ‒ | 作物种植 | ‒ | ‒ | ‒ | ‒ | 0.410 | |
10 | 重庆 | ‒ | 大棚 | 春季 | ‒ | ‒ | ‒ | 1.04 | Li et al., |
11 | 河北a | ‒ | 菜地 | ‒ | ‒ | ‒ | ‒ | 0.360 | Zhou et al., |
12 | 河北b | ‒ | 作物种植 | ‒ | ‒ | ‒ | ‒ | 0.340 | |
13 | 沈阳 | 2017年 | 大棚 | 16 | ‒ | ‒ | 9.00×10−2 | 0.410 | Chen et al., |
14 | 大连 | 2021年 | 菜地 | 22 | ‒ | ‒ | ‒ | 2.84 | Wang et al., |
15 | 黄淮海 | ‒ | 农用地 | 136 | nd | 2.13 | 0.370 | 0.410 | Zhou et al., |
16 | 黄淮 | ‒ | 农田土壤 | 207 | nd | 2.31 | 0.190 | 0.300 | 周斌, |
17 | 河南a | ‒ | 植烟土壤 | 203 | nd | 0.652 | 0.130 | 0.130 | 戴华鑫, |
18 | 河南b | ‒ | 菜地 | ‒ | ‒ | ‒ | ‒ | 0.320 | Zhou et al., |
19 | 河南c | ‒ | 作物种植 | ‒ | ‒ | ‒ | ‒ | 0.350 | |
20 | 山东a | ‒ | 菜地 | 100 | 0.433 | 11.49 | 2.07 | 2.78 | Sun et al., |
21 | 山东b | ‒ | 菜地 | 15 | ‒ | ‒ | ‒ | 0.430 | Zhou et al., |
22 | 山东c | ‒ | 作物 | 30 | ‒ | ‒ | ‒ | 0.240 | |
23 | 山东半岛 | ‒ | 地膜农用地 | 108 | 0 | 2.94 | ‒ | 0.290 | Li et al., |
24 | 寿光a | ‒ | 菜地 | 32 | 7.80×10−2 | 1.004 | ‒ | 0.190 | Li et al., |
25 | 寿光b | ‒ | 菜地 | 31 | 7.60×10−2 | 0.972 | 0.110 | 0.180 | Zhou et al., |
26 | 寿光c | ‒ | 大棚 | 12 | ‒ | ‒ | 0.220 | 0.490 | |
27 | 青岛 | 2013年 | 花生、棉花种植土壤 | ‒ | 12.5 | 35.8 | - | 18.3 | 张海光等, |
28 | 阿克苏 | ‒ | 棉花土壤 | 94 | nd | 1.50 | 7.00×10−3 | 0.100 | 彭祎等, |
29 | 吐鲁番 | ‒ | 葡萄基地 | 18 | 0.382 | 0.798 | ‒ | 0.630 | 李海峰等, |
30 | 陕西a | ‒ | 菜地 | 23 | 2.10×10−2 | 0.600 | ‒ | 8.00×10−2 | 冯艳红等, |
31 | 陕西b | ‒ | 农用地 | ‒ | 0.460 | 2.30 | ‒ | - | Shi et al., |
32 | 西安 | ‒ | 农用地 | 62 | 4.10×10−2 | 1.72 | ‒ | 0.760 | Wang et al., |
33 | 咸阳 | ‒ | 大棚 | 6 | ‒ | ‒ | 0.100 | 0.380 | Chen et al., |
34 | 长三角a | 2018年 | 农田 | 228 | 4.00×10−3 | 1.51 | 0.120 | 0.180 | Wei et al., |
35 | 长三角b | ‒ | 农田 | 241 | nd | 9.10 | 0.350 | 0.550 | Sun et al., |
36 | 南京a | ‒ | 大棚 | 44 | 0.120 | 5.82 | 1.09 | 1.37 | Wang et al., |
37 | 南京b | 2017年 | 胡椒地大棚 | 7 | ‒ | ‒ | ‒ | 0.270 | Li et al., |
38 | 南京c | ‒ | 大棚 | 13 | ‒ | ‒ | 0.180 | 0.390 | Chen et al., |
39 | 常熟 | ‒ | 大棚 | 5 | ‒ | ‒ | 0.050 | 0.360 | |
40 | 海门 | ‒ | 大棚 | 12 | ‒ | ‒ | 0.160 | 0.340 | |
41 | 杭州 | ‒ | 农用地 | 10 | 0.810 | 2.20 | ‒ | 1.48 | 陈永山等, |
42 | 广东 | 2000‒2005年 | 菜地 | 444 | nd | 6.48 | ‒ | 0.150 | 杨国义等, |
43 | 广州深圳 | 2002年 | 菜地 | 27 | 2.82 | 25.1 | ‒ | 10.9 | 蔡全英等, |
44 | 汕头 | 2015年 | 菜地 | 63 | 1.00×10−3 | 4.20 | ‒ | 0.160 | 吴山等, |
45 | 高州 | ‒ | 农田 | 15 | 6.90×10−2 | 0.242 | 0.130 | 0.140 | 李霞等, |
46 | 福州 | ‒ | 大棚 | 12 | ‒ | ‒ | 0.160 | 0.450 | Chen et al., |
47 | 昆明 | ‒ | 大棚 | 12 | ‒ | ‒ | 0.100 | 0.310 | |
48 | 海南 | ‒ | 大棚 | ‒ | ‒ | ‒ | ‒ | 0.170 | 郇志博等, |
49 | 贵州东部 | 2020年 | 烟叶种植 | 40 | 0.110 | 5.59 | 4.50 | 14.3 | 马军等, |
50 | 宁夏 | 2018年 | 不同土地利用 | 87 | 3.54×10−2 | 7.80 | 0.420 | 1.02 | 张小红等, |
样本数 | 均方根误差 (RMSE) | R2 | 拟合系数 (b) | 拟合系数 (c) | 拟合系数 (k) | 5%危害浓度 (HC5) | 预测无效应浓度 (PNEC) |
---|---|---|---|---|---|---|---|
15 | 0.089 | 0.866 | 4.94×104 | 0.391 | 0.919 | 1.24 mg∙kg−1 | 1.24 mg∙kg−1 |
Table 4 The related parameters of SSD curve for DEHP by using chronic toxicity testing endpoints data
样本数 | 均方根误差 (RMSE) | R2 | 拟合系数 (b) | 拟合系数 (c) | 拟合系数 (k) | 5%危害浓度 (HC5) | 预测无效应浓度 (PNEC) |
---|---|---|---|---|---|---|---|
15 | 0.089 | 0.866 | 4.94×104 | 0.391 | 0.919 | 1.24 mg∙kg−1 | 1.24 mg∙kg−1 |
[1] |
AVILES A, BOULOGNE I, DURAND N, et al., 2019. Effects of DEHP on post-embryonic development, nuclear receptor expression, metabolite and ecdysteroid concentrations of the moth Spodoptera littoralis[J]. Chemosphere, 215: 725-738.
DOI PMID |
[2] |
AXELSSON J, RYLANDER L, RINGENLL-HYDBOM A, et al., 2015. Phthalate exposure and reproductive parameter in young men from the general Swedish population[J]. Environment International, 85: 54-60.
DOI URL |
[3] |
CHEN N, SHUAI W J, HAO X M, et al., 2017. Contamination of phthalate esters in vegetable agriculture and human cumulative risk assessment[J]. Pedosphere, 27(3): 439-451.
DOI URL |
[4] | European Commission, 2003. Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances. Part I[R]. Brussels: Joint Research Centre, European Commission. |
[5] |
FROMME H, KUCHLER T, OTTO T, MULLER T, 2002. Occurrence of phthalates and bisphenol A and F in the environment[J]. Water Research, 36(6): 1429-1438.
PMID |
[6] |
FU X W, DU Q Z, 2011. Uptake of di-(2-ethylhexyl) phthalate of vegetables from plastic film greenhouses[J]. Journal of Agricultural and Food Chemistry, 59(21): 11585-11588.
DOI PMID |
[7] |
GAO M Y, LIU Y, DONG Y M, 2019. Physiological responses of wheat planted in fluvo-aquic soils to di (2-ethylhexyl) and di-n-butyl phthalates[J]. Environmental Pollution, 244: 774-782.
DOI PMID |
[8] |
GOUDARZI M, HAGHI K M, MALAYERI A, et al., 2020. Protective effect of alphalipoic acid on di-(2-ethylhexyl) phthalate induced testicular toxicity in mice[J]. Environmental Science and Pollution Research International, 27(12): 13670-13678.
DOI |
[9] | Health and Ecological Criteria Division, 2016. Health effects support document for perfluorooctane sulfonate[R]. Washington: EPA. |
[10] |
HOSE G C, VAN DEN BRINK P J, 2014. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm and field data[J]. Archives of Environmental Contamination and Toxicology, 47(4): 511-520.
DOI URL |
[11] |
JIN X W, WANG Y Y, WANG Z J, et al., 2014. Ecological risk of nonylphenol in China surface waters based on reproductive fitness[J]. Environmental Science & Technology, 48(2): 1256-1262.
DOI URL |
[12] |
KIM D R, CUII J, MOON J I, et al., 2019. Soil Ecotoxicity study of DEHP with respect to multiple soil species[J]. Chemosphere, 216: 387-395.
DOI PMID |
[13] |
LI C, CHEN J Y, WANG J H, et al., 2016. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment[J]. Science of The Total Environment, 568: 1037-1043.
DOI URL |
[14] |
LI K K, MA D, WU J, et al., 2016. Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China[J]. Chemosphere, 164: 314-321.
DOI PMID |
[15] |
LI X X, LI M A, JIANG N, et al., 2023. Evaluation of soil ecological health after exposure to environmentally relevant doses of Di (2-ethylhexyl) phthalate: Insights from toxicological studies of earthworms at different ecological niches[J]. Environmental Pollution, 322: 121204.
DOI URL |
[16] |
LI X X, LIU W J, ZHANG C, et al., 2020. Fate of phthalic acid esters (PAEs) in typical greenhouse soils of different cultivation ages[J]. Bulletin of Environmental Contamination and Toxicology, 104(2): 301-306.
DOI PMID |
[17] |
LI X X, WANG Q, WANG C, et al., 2022. Ecotoxicological response of zebrafish liver (Danio rerio) induced by Di-(2-ethylhexyl) phthalate[J]. Ecological Indicators, 143: 109388.
DOI URL |
[18] |
LI Y, YAN H Q, LI X Q, et al., 2020. Presence, distribution and risk assessment of phthalic acid esters (PAEs) in suburban plastic film pepper-growing greenhouses with different service life[J]. Ecotoxicology and Environmental Safety, 196: 110551.
DOI URL |
[19] |
LI Y T, WANG J, YANG S, et al., 2021. Occurrence, health risks and soil-air exchange of phthalate acid esters: A case study in plastic film greenhouses of Chongqing, China[J]. Chemosphere, 268(3): 128821.
DOI URL |
[20] |
MA T T, FAN W Y, PAN X, et al., 2021. Estimating the risks from phthalate esters and metal(loid)s in cultivatededible fungi from Jingmen, Central China[J]. Food Chemistry, 348: 129065.
DOI URL |
[21] | MA T T, TENG Y, CHRISTIE P, et al., 2015. Phytotoxicity in seven higher plant species exposed to di-n-butyl phthalate or bis (2-ethylhexyl) phthalate[J]. Frontiers of Environmental Science & Engineering, 9(2): 259-268. |
[22] | MA T W, ZHOU L, CHEN L, et al., 2017. Toxicity effects of di-(2-ethylhexyl) phthalate to eisenia fetida at enzyme, cellular and genetic levels[J]. PLoS One, 12(3): 1-12. |
[23] | New York State Department of Environmental Conservation of USA, 1994. TAGM 4046 Determination of soil cleanup objectives and cleanup levels [S]. New York. |
[24] |
NIU L L, XU Y, XU C, et al., 2014. Status of phthalate esters contamination in agricultural soils across China and associated health risks[J]. Environmental Pollution, 195: 16-23.
DOI PMID |
[25] |
SHI M, SUN Y Y, WANG Z H, et al., 2019. Plastic film mulching increased the accumulation and human health risks of phthalate esters in wheat grains[J]. Environmental Pollution, 250: 1-7.
DOI PMID |
[26] |
SINGH S, LI S S, 2012. Bisphenol A and phthalates exhibit similar toxicogenomics and health effects[J]. Gene, 494(1): 85-91.
DOI PMID |
[27] |
SUN S, WANG M C, YANG X, et al., 2023. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil of the Yellow River Delta, China[J]. Environmental Science and Pollution Research, 30: 53370-53380.
DOI |
[28] |
SUN J T, PAN L L, ZHAN Y, et al., 2016. Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China[J]. Science of the Total Environment, 544: 670-676.
DOI URL |
[29] | U.S. EPA, 2003. Guidance for Developing Ecological Soil Screening Levels[R]. Washington D C: U.S. Environmental Protection Agency. |
[30] |
WANG H, LIANG H, GAO D W, 2017. Occurrence and risk assessment of phthalate esters (PAEs) in agricultural soils of the Sanjiang Plain, northeast China[J]. Environmental Science and Pollution Research, 24(24): 19723-19732.
DOI URL |
[31] |
WANG J, CHEN G C, CHRISTIE P, et al., 2015. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses[J]. Science of the Total Environment, 523: 129-137.
DOI URL |
[32] | WANG K N, SONG M C, et al., 2017. Phthalate esters migration from two kinds of plastic films and the enrichment in peanut plant[J]. Fresenius Environmental Bulletin, 26(7): 4409-4415. |
[33] |
WANG L J, LIU M M, TAO W D, et al., 2018. Pollution characteristics and health risk assessment of phthalate esters in urban soil in the typical semi-arid city of Xi’an, Northwest China[J]. Chemosphere, 191: 467-476.
DOI URL |
[34] |
WANG Y, ZHANG Z H, BAO M J, et al., 2021. Characteristics and risk assessment of organophosphate esters and phthalates in soils and vegetation from Dalian, Northeast China[J]. Environmental Pollution, 284: 117532.
DOI URL |
[35] |
WEI L Y, LI Z H, SUN J T, et al., 2020. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China[J]. Science of the Total Environment, 726: 137978.
DOI URL |
[36] |
WEZEL P, VLAARDINGEN P, POSTHUMUS R, et al., 2000. Environmental risk limits for two phthalates with special emphasis on endocrine disruptive properties[J]. Ecotoxicology and Environmental Safety, 46(3): 305-321.
DOI URL |
[37] |
WHEELER J R, GRIST E P M, LEUNG K M Y, et al., 2002. Species sensitivity distributions: data and model choice[J]. Marine Pollution Bulletin, 45(1-12): 192-202.
PMID |
[38] |
YANG H Y, LI M S, ZHANG C, et al., 2023. Ecotoxicological and biochemical effects of di(2-ethylhexyl) phthalate on wheat (Jimai 22, Triticum aestivum L.)[J]. Journal of Hazardous Materials, 447: 130816.
DOI URL |
[39] |
YAO X F, ZHANG J W, WANG C, et al., 2022. Toxicity of dibutyl phthalate to pakchoi (Brassica campestris L.): Evaluation through different levels of biological organization[J]. Science of the Total Environment, 849: 157943.
DOI URL |
[40] |
YUAN L, CHENG J J, WANG Y, et al., 2020. Uptake and Toxicity of Di-(2-Ethylhexyl) Phthalate in Brassica chinensis L[J]. Chemosphere, 252: 126640.
DOI URL |
[41] |
ZHANG Q Q, MA Z R, CHAI Y Y, et al., 2021. Agricultural plastic pollution in China: Generation of plastic debris and emission of paes from agricultural films[J]. Environmental Science & Technology, 55(18): 12459-12470.
DOI URL |
[42] |
ZHOU B, ZHAO L X, SUN Y, et al., 2021. Contamination and human health risks of phthalate esters in vegetable and crop soils from the Huang-Huai-Hai region of China[J]. Science of the Total Environment, 778: 146281.
DOI URL |
[43] |
ZHU F X, ZHU C Y, ZHOU D M, et al., 2019. Fate of di(2-ethylhexyl) phthalate and its impact on soil bacterial community under aerobic and anaerobic conditions[J]. Chemosphere, 216: 84-93.
DOI URL |
[44] | 蔡全英, 莫测辉, 李云辉, 等, 2005. 广州、深圳地区蔬菜生产基地土壤中邻苯二甲酸酯 (PAEs) 研究[J]. 生态学报, 25(2): 283-288. |
CAI Q Y, MO C H, LI Y H, et al., 2005. The study of PAEs in soils from typical vegetable fields in areas of Guangzhou and Shenzhen, South China[J]. Acta Ecologica Sinica, 25(2): 283-288. | |
[45] | 陈佳祎, 李成, 栾云霞, 等, 2016. 北京设施蔬菜基地土壤中邻苯二甲酸酯的污染水平及污染特征研究[J]. 食品安全质量检测学报, 7(2): 472-477. |
CHEN J Y, LI C, LUAN Y X, et al., 2016. Pollution characteristics and pollution level of phthalic acid ester in soils of facility vegetable bases of Beijing[J]. Journal of Food Safety and Quality, 7(2): 472-477. | |
[46] | 陈璇, 章家恩, 危晖, 2021. 环境微塑料的迁移转化及生态毒理学研究进展[J]. 生态毒理学报, 16(6): 70-86. |
CHEN X, ZHANG J E, WEI H, 2021. Research progress and prospect on transportation, transformation and ecotoxicology of microplastics in environment[J]. Asian Journal of Ecotoxicology, 16(6): 70-86. | |
[47] | 陈永山, 骆永明, 章海波, 等, 2011. 设施菜地土壤酞酸酯污染的初步研究[J]. 土壤学报, 48(3): 516-523. |
CHEN Y S, LUO Y M, ZHANG H B, et al., 2011. Preliminary study on PAEs pollution of greenhouse soils[J]. Acta Pedologica Sinica, 48(3): 516-523. | |
[48] | 戴华鑫, 张艳玲, 李亮, 等, 2021. 河南植烟土壤6种邻苯二甲酸酯污染特征分析[J]. 中国烟草学报, 27(3): 56-64. |
DAI H X, ZHANG Y L, LI L,et a1., 2021. Analysis of pollution characteristics of six phthalate esters (PAEs) in tobacco field soil in Henan Province[J]. Acta Tabacaria Sinica, 27(3): 56-64. | |
[49] | 邓继宝, 项大洲, 林伯正, 等, 2023. 基于文献数据的PAHs生态安全土壤环境基准研究[J/OL]. 土壤学报, [2023-12-04]. https://kns.cnki.net/kcms/detail/32.1119.P.20230331.1607.002.html. |
DENG J B, XIANG D Z, LIN B Z, et al., 2023. Soil environmental criteria of polycyclic aromatic hydrocarbons for ecological security based on literature data[J/OL]. Acta Pedologica Sinica, [2023-08-04]. https://kns.cnki.net/kcms/detail/32.1119.P.20230331.1607.002.html. | |
[50] | 冯艳红, 应蓉蓉, 王国庆, 等, 2022. 中国中西部地区土壤和农产品中邻苯二甲酸酯污染特征及评价[J]. 环境化学, 41(5): 1591-1603. |
FENG Y H, YING R R, WANG G Q, et al., 2022. Pollution characteristics and risk of phthalic acid esters in soils and agro-products in the Midwest areas of China[J]. Environmental Chemistry, 41(5): 1591-1603. | |
[51] | 葛峰, 徐坷坷, 刘爱萍, 等, 2021. 国外土壤环境基准研究进展及对中国的启示[J]. 土壤学报, 58(2): 331-343. |
GE F, XU K K, LIU A P, et al., 2021. Progress of the research on soil environmental criteria in other countries and its enlightenment to China[J]. Acta Pedologica Sinica, 58(2): 331-343. | |
[52] | 国家统计局农村社会经济调查司, 2022. 中国农村统计年鉴[M]. 北京: 中国统计出版社有限公司:46. |
Department of Rural Socio-Economic Investigation, National Bureau of Statistics, 2022. China Rural Statistical Yearbook[M]. Beijing: China Statistical Publishing House Co., Ltd: 46. | |
[53] | 胡艾伦, 2021. 土壤中邻苯二甲酸酯与微塑料的分析与污染特征[D]. 杭州: 浙江大学: 54-58. |
HU A L, 2021. Analysis and pollution characteristics of phthalates and microplastics in soils[D]. Hangzhou: Zhejiang University: 54-58. | |
[54] | 胡帅尔, 张紫虹, 王凤岩, 等, 2015. 邻苯二甲酸二 (2-乙基) 己酯对大鼠的亚慢性毒性研究[J]. 环境与健康杂志, 32(7): 632-635. |
HU S E, ZHANG Z H, WANG F Y, et al., 2015. Subchronic toxicity of di (2-ethylhexyl) phthalate in rats[J]. Journal of Environment and Health, 32(7): 632-635. | |
[55] | 郇志博, 王晓燕, 田海, 等, 2021. 海南省11个市县设施农业土壤邻苯二甲酸酯类塑化剂污染状况及健康风险[J]. 热带作物学报, 42(3): 806-815. |
HUAN Z B, WANG X Y, TIAN H, et al., 2021. Contamination status and health risk of phthalate esters in facility agricultural soil of 11 cities of Hainan, China[J]. Chinese Journal of Tropical Crops, 42(3): 806-815. | |
[56] | 靳拓, 许丹丹, 薛颖昊, 等, 2022. 我国59个长期覆膜样地的表层土壤中邻苯二甲酸酯污染状况分析[J]. 生态毒理学报, 17(6): 462-471. |
JIN T, XU D D, XUE Y H, et al., 2022. Analysis of phthalate esters pollution in 59 topsoils of long-term film mulching plots in China[J]. Asian Journal of Ecotoxicology, 17(6): 462-47 | |
[57] | 李霞, 邹建运, 吴文成, 等, 2015. 高州农田土壤中邻苯二甲酸酯污染特征与形态分析[J]. 土壤通报, 46(4): 991-996. |
LI X, ZOU J Y, WU W C, et al., 2015. Evaluation of PAEs pollution of farmland soil in Gaozhou[J]. Chinese Journal of Soil Science, 46(4): 991-996. | |
[58] | 李洋, 张乃明, 魏复盛, 等, 2020. 滇东镉高背景区菜地土壤健康风险评价与基准[J]. 中国环境科学, 40(10): 4522-4530. |
LI Y, ZHANG N M, WEI F S, et al., 2020. A benchmark study on soil health risks of vegetable fields in a high-cadmium background area in eastern Yunnan[J]. China Environmental Science, 40(10): 4522-4530. | |
[59] |
李海峰, 任红松, 刘志刚, 等, 2018. 设施葡萄基地土壤-葡萄体系邻苯二甲酸酯 (PAEs) 污染及分布特征[J]. 新疆农业科学, 55(5): 919-927.
DOI |
LI H F, REN H S, LIU Z G, et al., 2018. The pollution and distribution characteristics of phthalic acid esters in soil-grape system of facility grape bases[J]. Xinjiang Agricultural Sciences, 55(5): 919-927. | |
[60] | 李瑾, 周涛, 张扬, 等, 2020. 地膜对农田土壤及玉米籽粒邻苯二甲酸酯累积状况的影响[J]. 农业环境科学学报, 39(8): 1767-1773. |
LI J, ZHOU T, ZHANG Y, et al., 2020. Effects of plastic film mulching on phthalate esters accumulation in farmland soil and maize grain[J]. Journal of Agro-Environment Science, 39(8): 1767-1773. | |
[61] | 李勖之, 孙丽, 杜俊洋, 等, 2022. 农用地土壤重金属锌的生态安全阈值研究[J]. 环境科学学报, 42(7): 1-13. |
LI X Z, SUN L, DU J Y, et al., 2022. Soil ecological safety thresholds for zinc in agricultural land[J]. Acta Scientiae Circumstantiae, 42(7): 408-420. | |
[62] | 马军, 滕应, 曹雪莹, 等, 2022. 贵州省东部典型烟区土壤和烟叶中邻苯二甲酸酯的残留及源解析[J]. 环境污染与防治, 44(9): 1182-1188. |
MA J, TENG Y, CAO X Y, et al., 2022. PAEs residues and source analysis in soil and tobacco of typical tobacco-producing areas in eastern Guizhou Province[J]. Environmental Pollution & Control, 44(9): 1182-1188. | |
[63] | 彭祎, 赵玉杰, 王璐, 等, 2018. 南疆棉花转产区土壤和农产品中邻苯二甲酸酯 (PAEs) 污染分析和评价[J]. 农业环境科学学报, 37(12): 2678-2686. |
PENG Y, ZHAO Y J, WANG L, et al., 2018. Contamination and risk assessment of phthalates in soils and agricultural products after cotton cultivation in Southern Xinjiang, Northwest China[J]. Journal of Agro-Environment Science, 37(12): 2678-2686. | |
[64] | 秦华, 林先贵, 陈瑞蕊, 等, 2005. DEHP对土壤脱氢酶活性及微生物功能多样性的影响[J]. 土壤学报, 42(5): 829-834. |
QIN H, LIN X G, CHEN R R, et al., 2015. Effects of DEHP on dehydrogenase activity and microbial functional diversity in soil[J]. Acta Pedologica Sinica, 42(5): 829-834. | |
[65] | 任超, 赵祯, 柳金明, 等, 2018. 典型废物回收园区土壤中邻苯二甲酸酯分布与风险评价[J]. 环境化学, 37(8): 1691-1698. |
REN C, ZHAO Z, LIU J M, et al., 2018. Distribution and risk assessment of phthalic acid ester (PAEs) in soil from a multi-waste recycling area[J]. Environmental Chemistry, 37(8): 1691-1698. | |
[66] | 王小庆, 韦东普, 黄占斌, 等, 2013. 物种敏感性分布法在土壤中铜生态阈值建立中的应用研究[J]. 环境科学学报, 33(6): 1787-1794. |
WANG X Q, WEI D P, HUANG Z B, et al., 2013. Application of species sensitivity distribution in deriving of ecological thresholds for copper in soils[J]. Acta Scientiae Circumstantiae, 33(6): 1787-179. | |
[67] | 王昱文, 柴淼, 曾甯, 等, 2016. 典型废旧塑料处置地土壤中邻苯二甲酸酯污染特征及健康风险[J]. 环境化学, 35(2): 364-372. |
WANG Y W, CHAI M, ZENG N, et al., 2016. Contamination and health risk of phthalate esters in soils from a typical waste plastic recycling area[J]. Environmental Chemistry, 35(2): 364-372. | |
[68] | 吴山, 李彬, 梁金明, 等, 2015. 汕头市蔬菜产区土壤-蔬菜中邻苯二甲酸酯 (PAEs) 污染分布特征研究[J]. 农业环境科学学报, 34(10): 1889-1896. |
WU S, LI B, LIANG J M, et al., 2015. Distribution characteristics of phthalic acid esters in soils and vegetables in vegetable producing areas of Shantou City, China[J]. Journal of Agro-Environment Science, 34(10): 1889-1896. | |
[69] | 杨国义, 张天彬, 高淑涛, 等, 2007. 广东省典型区域农业土壤中邻苯二甲酸酯含量的分布特征[J]. 应用生态学报, 18(10): 2308-2312. |
YANG G Y, ZHANG T B, GAO S T, et al., 2007. Distribution of phthalic acid esters in agricultural soil in typical regions of Guandong Province[J]. Chinese Journal of Applied Ecology, 18(10): 2308-2312. | |
[70] | 张海光, 孙国帅, 孙磊, 等, 2013. 典型覆膜作物土壤中邻苯二甲酸酯污染的初步研究[J]. 中国环境监测, 29(4): 60-63. |
ZHANG H G, SUN G S, SUN L, et al., 2013. Preliminary study on phthalic acid esters pollution of typical plastic mulched crops soils[J]. Environmental Monitoring in China, 29(4): 60-63. | |
[71] | 张小红, 王亚娟, 陶红, 等, 2020. 宁夏土壤中PAEs污染特征及健康风险评价[J]. 中国环境科学, 40(9): 3930-3941. |
ZHANG X H, WANG Y J, TAO H, et al., 2020. Study on pollution characteristics and health risk assessment of phthalates in soil of Ningxia[J]. China Environmental Science, 40(9): 3930-3941. | |
[72] | 张云慧, 杜平, 何赢, 等, 2019. 基于农产品安全的土壤重金属有效态含量限值推定方法[J]. 环境科学, 40(9): 4262-4269. |
ZHANG Y H, DU P, HE Y, et al., 2019. Derivation of the thresholds of available concentrations of heavy metals in soil based on agricultural product safety[J]. Environmental Science, 40(9): 4262-4269. | |
[73] | 郑丽萍, 王国庆, 龙涛, 等, 2018. 不同国家基于生态风险的土壤筛选值研究及启示[J]. 生态毒理学报, 13(6): 39-49. |
ZHENG L P, WANG G Q, LONG T, et al., 2018. A study of risk-based ecological soil screening levels among different countries and its implication for China[J]. Asian Journal of Ecotoxicology, 13(6): 39-49. | |
[74] | 中华人民共和国生态环境部,2018. 土壤环境质量建设用地土壤污染风险管控标准 (试行): GB 36600—2018[S]. 北京: 中国环境出版社: 4. |
Ministry of Ecology and Environment of The People’s Republic of China,2018. Soil environmental quality Risk control standard for soil contamination of development land: GB 36600—2018[S]. Beijing: China Environmental Science Press: 4. | |
[75] | 中华人民共和国住房和城乡建设部, 2011. 城市用地分类与规划建设用地标准: GB50137—2011 [S]. 北京:中国建筑工业出版: 4-9. |
Ministry of Housing and Urban-Rural Development of The People’s Republic of China, 2011. Code for classification of urban land use and planning standards of development land: GB 50137—2011[S]. Beijing: China Architecture & Building Press: 4-9. | |
[76] |
朱立安, 张会化, 程炯, 等, 2022. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 31(6): 1253-1262.
DOI |
ZHU L A, ZHANG H H, CHENG J, et al., 2022. Potential ecological risk pattern analysis of heavy metals in soil of forestry land in The Pearl River Delta[J]. Ecology and Environmental Sciences, 31(6): 1253-1262. | |
[77] | 周斌, 2020. 黄淮海地区农田土壤领苯二甲酸酯污染特征与成因研究[D]. 北京: 中国农业科学院: 21-23. |
ZHOU B, 2020. Research on characteristics and mechanism of phthalate acid esters pollution in farmland of the Huang-Huai-Hai Region of China[D]. Beijing: Chinese Academy of Agricultural Sciences: 21-23. |
[1] | WU Weilong, CHEN Yijie, WEI Ting, YANG Guiqiong, YANG Changhong, ZHEN Zhen, LIN Zhong. Mechanisms of Earthworm-driven Biodegradation of Polycyclic Aromatic Hydrocarbons in Coastal Saline Agricultural Soils [J]. Ecology and Environment, 2023, 32(11): 1996-2006. |
[2] | LIU An, WU Hao, HE Beibei. Toxic Effects of Nanoplastics on Terrestrial Environment: A Review [J]. Ecology and Environment, 2023, 32(11): 2030-2040. |
[3] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[4] | CHEN Bishan, ZHENG Kanghui, WANG Jing, YE Linhai, SONG Junxia. Content Characteristics and Health Risk Analysis of Mercury in Soil-crop System in Leizhou Peninsula [J]. Ecology and Environment, 2022, 31(3): 572-582. |
[5] | LIU Zhijian, DONG Yuanhua, ZHANG Xiu, QING Chengshi. Contamination and Ecological Risk Assessment of Heavy Metals in the Soil of Agricultural Land in Weining Plain, Northwest China [J]. Ecology and Environment, 2022, 31(11): 2216-2224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn