Ecology and Environment ›› 2023, Vol. 32 ›› Issue (7): 1207-1217.DOI: 10.16258/j.cnki.1674-5906.2023.07.004
• Research Articles • Previous Articles Next Articles
CHEN Dongdong1(), HUO Lili2, ZHAO Liang1, CHEN Xin3, SHU Min1,4, HE Fuquan1, ZHANG Yukun1, ZHANG Li1, LI Qi1,*(
)
Received:
2023-03-28
Online:
2023-07-18
Published:
2023-09-27
Contact:
LI Qi
陈懂懂1(), 霍莉莉2, 赵亮1, 陈昕3, 舒敏1,4, 贺福全1, 张煜坤1, 张莉1, 李奇1,*(
)
通讯作者:
李奇
作者简介:
陈懂懂(1982年生),女,高级工程师,博士,研究方向为草地生态学,土壤生态学。E-mail:chendd@nwipb.cas.cn
基金资助:
CLC Number:
CHEN Dongdong, HUO Lili, ZHAO Liang, CHEN Xin, SHU Min, HE Fuquan, ZHANG Yukun, ZHANG Li, LI Qi. Contribution of Water and Heat Factors to Spatial Variability of Soil Microbial Biomass Carbon and Nitrogen in Qinghai Alpine Grassland: Based on Enhanced Regression Tree Model[J]. Ecology and Environment, 2023, 32(7): 1207-1217.
陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.07.004
地点 | 纬度(N)/(°) | 经度(E)/(°) | 海拔/ m | 草地 类型 | 优势物种 | 土壤pH | 土壤有机质质量分数/ (g·kg-1) | 土壤全氮质量分数/ (g·kg-1) | 土壤全磷质量分数/ (g·kg-1) | 土壤质地 |
---|---|---|---|---|---|---|---|---|---|---|
海晏 HY | 36.92 | 100.94 | 3150 | 高寒草甸草原 | 疏花针茅 (Stipa penicillata), 矮生嵩草 (Kobresia humilis), 星毛委陵菜 (Potentilla acaulis) | 7.74 | 45.49 | 3.17 | 0.58 | 粉壤土 |
同德 TD | 35.23 | 100.72 | 3544 | 温性 草原 | 疏花针茅, 无穗柄薹草 (Carex ivanoviae), 火绒草 (Leontopodium leontopodioides) | 7.77 | 37.77 | 2.51 | 0.62 | 粉壤土 |
玛多 MD | 35.02 | 97.32 | 4300 | 高寒 草原 | 紫花针茅 (Stipa purpurea Griseb), 冷地早熟禾 (Poa crymophila Keng), 多裂委陵菜 (Potentilla multifida) | 7.77 | 26.70 | 1.88 | 0.52 | 粉壤土 |
曲麻莱 QML | 34.99 | 94.49 | 4400 | 高寒 草甸 | 矮生嵩草, 高山嵩草 (Kobresia pygmaea), 蒙古穗三毛 (Trisetum spicatum) | 7.50 | 61.35 | 2.82 | 0.47 | 粉壤土 |
可可西里 KKXL | 35.46 | 93.48 | 4474 | 高寒 草原 | 紫花针茅, 青藏薹草 (Carex moorcroftii), 扇穗茅 (Littledalea racemosa) | 8.04 | 7.35 | 0.59 | 0.29 | 砂壤土 |
Table 1 Information of the observation stations
地点 | 纬度(N)/(°) | 经度(E)/(°) | 海拔/ m | 草地 类型 | 优势物种 | 土壤pH | 土壤有机质质量分数/ (g·kg-1) | 土壤全氮质量分数/ (g·kg-1) | 土壤全磷质量分数/ (g·kg-1) | 土壤质地 |
---|---|---|---|---|---|---|---|---|---|---|
海晏 HY | 36.92 | 100.94 | 3150 | 高寒草甸草原 | 疏花针茅 (Stipa penicillata), 矮生嵩草 (Kobresia humilis), 星毛委陵菜 (Potentilla acaulis) | 7.74 | 45.49 | 3.17 | 0.58 | 粉壤土 |
同德 TD | 35.23 | 100.72 | 3544 | 温性 草原 | 疏花针茅, 无穗柄薹草 (Carex ivanoviae), 火绒草 (Leontopodium leontopodioides) | 7.77 | 37.77 | 2.51 | 0.62 | 粉壤土 |
玛多 MD | 35.02 | 97.32 | 4300 | 高寒 草原 | 紫花针茅 (Stipa purpurea Griseb), 冷地早熟禾 (Poa crymophila Keng), 多裂委陵菜 (Potentilla multifida) | 7.77 | 26.70 | 1.88 | 0.52 | 粉壤土 |
曲麻莱 QML | 34.99 | 94.49 | 4400 | 高寒 草甸 | 矮生嵩草, 高山嵩草 (Kobresia pygmaea), 蒙古穗三毛 (Trisetum spicatum) | 7.50 | 61.35 | 2.82 | 0.47 | 粉壤土 |
可可西里 KKXL | 35.46 | 93.48 | 4474 | 高寒 草原 | 紫花针茅, 青藏薹草 (Carex moorcroftii), 扇穗茅 (Littledalea racemosa) | 8.04 | 7.35 | 0.59 | 0.29 | 砂壤土 |
土壤 深度/ cm | 研究区 | 土壤水分 含量/% | 土壤微生物生物量碳质量分数/ (g·kg-1) | 土壤微生物生物量氮质量分数/ (g·kg-1) |
---|---|---|---|---|
0-10 | HY | 18.84±1.03bc | 1.092±0.043a | 0.194±0.009a |
TD | 22.19±1.24b | 0.826±0.022b | 0.159±0.007b | |
QML | 42.07±4.18a | 0.785±0.058c | 0.160±0.011b | |
MD | 12.81±0.87cd | 0.528±0.031c | 0.105±0.005c | |
KKXL | 10.22±0.97d | 0.153±0.014d | 0.034±0.002d | |
Total | 21.23±5.63 | 0.677±0.158 | 0.131±0.028 | |
10-20 | HY | 20.14±1.01b | 0.694±0.040a | 0.124±0.007a |
TD | 18.99±0.63bc | 0.390±0.024c | 0.071±.004c | |
QML | 41.53±5.28a | 0.564±0.054b | 0.095±0.009b | |
MD | 12.00±0.63c | 0.390±0.021c | 0.071±0.005c | |
KKXL | 13.31±0.77bc | 0.087±0.010d | 0.022±0.002d | |
Total | 21.19±5.32 | 0.425±0.102 | 0.077±0.017 | |
20-30 | HY | 19.81±0.75b | 0.346±0.028a | 0.057±0.005a |
TD | 17.18±0.52bc | 0.233±0.018b | 0.037±0.002c | |
QML | 30.43±3.54a | 0.270±0.031b | 0.046±0.004bc | |
MD | 13.52±0.51c | 0.270±0.020b | 0.050±0.005ab | |
KKXL | 13.82±0.86c | 0.062±0.008c | 0.018±0.003d | |
Total | 18.95±3.09 | 0.236±0.047 | 0.042±0.007 | |
30-40 | HY | 18.84±0.67ab | 0.178±0.015ab | 0.033±0.003b |
TD | 17.30±0.38bc | 0.148±0.016bc | 0.028±0.002b | |
QML | 21.68±1.81a | 0.131±0.015c | 0.025±0.003b | |
MD | 13.02±0.65c | 0.242±0.046a | 0.047±0.009a | |
KKXL | - | - | - | |
Total | 17.71±1.81 | 0.175±0.025 | 0.033±0.005 |
Table 2 Characteristics of soil microbial biomass carbon and nitrogen
土壤 深度/ cm | 研究区 | 土壤水分 含量/% | 土壤微生物生物量碳质量分数/ (g·kg-1) | 土壤微生物生物量氮质量分数/ (g·kg-1) |
---|---|---|---|---|
0-10 | HY | 18.84±1.03bc | 1.092±0.043a | 0.194±0.009a |
TD | 22.19±1.24b | 0.826±0.022b | 0.159±0.007b | |
QML | 42.07±4.18a | 0.785±0.058c | 0.160±0.011b | |
MD | 12.81±0.87cd | 0.528±0.031c | 0.105±0.005c | |
KKXL | 10.22±0.97d | 0.153±0.014d | 0.034±0.002d | |
Total | 21.23±5.63 | 0.677±0.158 | 0.131±0.028 | |
10-20 | HY | 20.14±1.01b | 0.694±0.040a | 0.124±0.007a |
TD | 18.99±0.63bc | 0.390±0.024c | 0.071±.004c | |
QML | 41.53±5.28a | 0.564±0.054b | 0.095±0.009b | |
MD | 12.00±0.63c | 0.390±0.021c | 0.071±0.005c | |
KKXL | 13.31±0.77bc | 0.087±0.010d | 0.022±0.002d | |
Total | 21.19±5.32 | 0.425±0.102 | 0.077±0.017 | |
20-30 | HY | 19.81±0.75b | 0.346±0.028a | 0.057±0.005a |
TD | 17.18±0.52bc | 0.233±0.018b | 0.037±0.002c | |
QML | 30.43±3.54a | 0.270±0.031b | 0.046±0.004bc | |
MD | 13.52±0.51c | 0.270±0.020b | 0.050±0.005ab | |
KKXL | 13.82±0.86c | 0.062±0.008c | 0.018±0.003d | |
Total | 18.95±3.09 | 0.236±0.047 | 0.042±0.007 | |
30-40 | HY | 18.84±0.67ab | 0.178±0.015ab | 0.033±0.003b |
TD | 17.30±0.38bc | 0.148±0.016bc | 0.028±0.002b | |
QML | 21.68±1.81a | 0.131±0.015c | 0.025±0.003b | |
MD | 13.02±0.65c | 0.242±0.046a | 0.047±0.009a | |
KKXL | - | - | - | |
Total | 17.71±1.81 | 0.175±0.025 | 0.033±0.005 |
参数 | 线性模型 | r2 | P | F |
---|---|---|---|---|
Cmic | Cmic=0.650+0.055tS+0.897SWC-0.032t- 0.011RH-0.011Rn | 0.305 | <0.05 | 34.471 |
Nmic | Nmic=0.094+0.011tS-0.009t+0.156SWC- 0.002RH | 0.252 | <0.001 | 33.117 |
Table 3 Regression model between soil microbial biomass and hydrothermal factors
参数 | 线性模型 | r2 | P | F |
---|---|---|---|---|
Cmic | Cmic=0.650+0.055tS+0.897SWC-0.032t- 0.011RH-0.011Rn | 0.305 | <0.05 | 34.471 |
Nmic | Nmic=0.094+0.011tS-0.009t+0.156SWC- 0.002RH | 0.252 | <0.001 | 33.117 |
[1] |
ALVAREZ R, SANTANATOGLIA O J, GARCÎA R, 1995. Effect of temperature on soil microbial biomass and its metabolic quotient in situ under different tillage systems[J]. Biology and Fertility of Soils, 19: 227-230.
DOI URL |
[2] |
BARDGETT R D, LOVELL R D, HOBBS P J, et al., 1999. Seasonal changes in soil microbial communities along a fertility gradient of temperature grasslands[J]. Soil Biology and Biochemistry, 31: 1021-1030.
DOI URL |
[3] |
BROOKES P C, LANDAM A, PRUDEN G, et al., 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 17(6): 837-842.
DOI URL |
[4] |
CHEN D D, LI Q, LI C L, et al., 2022. Density and stoichiometric characteristics of carbon, nitrogen, and phosphorus in surface soil of alpine grassland in Sanjiangyuan[J]. Polish Journal of Environmental Studies, 31(4): 3531-3539.
DOI URL |
[5] |
ELITH J, LEATHWICK J R, HASTIE T, 2008. A working guide to boosted regression trees[J]. Journal of Animal Ecology, 77(4): 802-813.
DOI PMID |
[6] |
FAN J, LIU T, LIAO Y, et al., 2021. Distinguishing Stoichiometric Homeostasis of Soil Microbial Biomass in Alpine Grassland Ecosystems: Evidence From 5,000 km Belt Transect Across Qinghai-Tibet Plateau[J]. Frontiers in Plant Science, 12: 781695.
DOI URL |
[7] |
GARCÎA F O, CHARLES W R, 1994. Microbial biomass dynamics in tallgrass prairie[J]. Soil Science Society of America Journal, 58(3): 816-823.
DOI URL |
[8] |
HU J X, DU M L, CHEN J, et al., 2023. Microbial necromass under global change and implications for soil organic matter[J]. Global Change Biology, 29(12): 3503-3515.
DOI PMID |
[9] |
JILLING A, KEILUWEIT M, CONTOSTA A R, et al., 2018. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes[J]. Biogeochemistry, 139(2): 103-122.
DOI |
[10] |
JOERGENSEN R G, MEYER B, MUELLER T, 1994. Time-course of the soil microbial biomass under wheat: A one year field study[J]. Soil Biology and Biochemistry, 26: 987-994.
DOI URL |
[11] |
WANG H, LU Z X, RAGHAVAN A, 2018. Weak dynamical threshold for the “strict homeostasis” assumption in ecological stoichiometry[J]. Ecological Modelling, 384: 233-240.
DOI URL |
[12] |
XU Z Z, HOU Y H, ZHANG L H, et al., 2016. Ecosystem responses to warming and watering in typical and desert steppes[J]. Scientific Reports, 6: 34801.
DOI PMID |
[13] |
van GESTEL N C, DHUGANA N, TISSUE D T, et al., 2016. Seasonal microbial and nutrient responses during a 5-year reduction in the daily temperature range of soil in a Chihuahuan Desert ecosystem[J]. Oecologia, 180(1): 265-277.
DOI PMID |
[14] |
VANCE E D, BROOKES P C, JENKINSON D C, 1987. An extraction method for measuring soil microbial C[J]. Soil Biology and Biochemistry, 19(6): 703-707.
DOI URL |
[15] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 22-24. |
BAO S D, 2000. Soil agricultural chemistry analysis[M]. Third Edition. Beijing: China Agricultural Press: 22-24. | |
[16] | 蔡家艳, 2017. 鄱阳湖湿地土壤微生物碳氮特征及对温度水分变化的响应[D]. 南昌: 江西师范大学:30-31. |
CAI J Y, 2017. Characteristics of soil microbial carbon and nitrogen in Poyang lake wetland and their responses to soil temperature and water change[D]. Nanchang: Jiangxi Normal University:30-31. | |
[17] | 管海英, 赵鑫, 靳佳, 等, 2014. 荒漠生态系统土壤表层微生物量碳空间分布及其影响因子[J]. 干旱区研究, 31(6): 1125-1131. |
GUAN H Y, ZHAO X, JIN J, et al., 2014. Spatial Patterns of soil microbial biomass carbon and factors influencing the distribution in a typical desert ecosystem[J]. Arid Zone Research, 31(6): 1125-1131. | |
[18] | 管海英, 王权, 赵鑫, 等, 2015. 两种典型荒漠植被区土壤微生物量碳的季节变化及影响因素分析[J]. 干旱区地理, 38(1): 67-75. |
GUAN H Y, WANG Q, ZHAO X, et al., 2015. Seasonal patterns of soil microbial biomass C and impacting factors in two typical arid desert vegetation regions[J]. Arid Land Geography, 38(1): 67-75. | |
[19] | 何容, 王国兵, 汪家社, 等, 2009. 武夷山不同海拔植被土壤微生物量的季节动态及主要影响因子[J]. 生态学杂志, 28(3): 394-399. |
HE R, WANG G B, WANG J S, et al., 2009. Seasonal variation and its main affecting factors of soil microbial biomass under different vegetations along an elevation gradient in Wuyi Mountains of China[J]. Chinese Journal of Ecology, 28(3): 394-399. | |
[20] |
何亚婷, 董云社, 齐玉春, 等, 2010. 草地生态系统土壤微生物量及其影响因子研究进展[J]. 地理科学进展, 29(11): 1350-1359.
DOI |
HE Y T, DONG Y S, QI Y C, et al., 2010. Advances in researches on soil microbial biomass of grassland ecosystems and its influencing factors[J]. Progress in Geography, 29(11): 1350-1359.
DOI |
|
[21] |
霍莉莉, 陈懂懂, 李奇, 等, 2022. 三江源地区草地植物功能性状与蒸散发关系研究[J]. 草地学报, 30(8): 2182-2190.
DOI |
HUO L L, CHEN D D, LI Q, et al., 2022. Relationship between functional traits of grassland plants and evapotranspiration in the Sanjiangyuan[J]. Acta Agrestia Sinica, 30(8): 2182-2190. | |
[22] | 李红英, 张存桂, 汪生珍, 等, 2022. 近40年青藏高原植被动态变化对水热条件的响应[J]. 生态学报, 42(12): 4770-4783. |
LI H Y, ZHANG C G, WANG S Z, et al., 2022. Response of vegetation dynamics to hydrothermal conditions on the Qinghai-Tibet Plateau in the last 40 years[J]. Acta Ecologica Sinica, 42(12): 4770-4783. | |
[23] | 李世清, 任书杰, 李生秀, 2004. 土壤微生物体氮的季节性变化及其与土壤水分和温度的关系[J]. 植物营养与肥料学报, 10(1): 18-23. |
LI S Q, REN S J, LI S X, 2004. Seasonal change of soil microbial biomass and the relationship between soil microbial biomass and soil moisture and temperature[J]. Plant Nutrition and Fertilizer Science, 10(1): 18-23. | |
[24] |
李雪萍, 李建宏, 刘永刚, 等, 2020. 甘南草原不同退化草地植被和土壤微生物特性[J]. 草地学报, 28(5): 1252-1259.
DOI |
LI X P, LI J H, LIU Y G, et al., 2020. The vegetation and soil microorganism characteristics of different degraded grassland in Gannan steppe[J]. Acta Agrestia Sinica, 28(5): 1252-1259. | |
[25] | 刘放, 吴明辉, 魏培洁, 等, 2020. 疏勒河源高寒草甸土壤微生物生物量碳氮变化特征[J]. 生态学报, 40(18): 6416-6426. |
LIU F, WU M H, WEI P J, et al., 2020. Variations of soil microbial biomass carbon and nitrogen in alpine meadow of the Shule river headwater region[J]. Acta Ecologica Sinica, 40(18): 6416-6426. | |
[26] | 马昊翔, 陈长成, 宋英强, 等, 2018. 青海省近10年草地植被覆盖动态变化及其驱动因素分析[J]. 水土保持研究, 25(6):137-145. |
MA H X, CHEN C C, SONG Y Q, et al., 2018. Analysis of vegetation cover change and its driving factors over the past ten years in Qinghai Province[J]. Research of Soil and Water Conservation, 25(6): 137-145. | |
[27] | 覃乾, 朱世硕, 夏彬, 等, 2019. 黄土丘陵区侵蚀坡面土壤微生物量碳时空动态及影响因素[J]. 环境科学, 40(4): 1973-1980. |
QIN Q, ZHU S S, XIA B, et al., 2019. Temporal and spatial dynamics of soil microbial biomass carbon and its influencing factors on an eroded slope in the Hilly Loess Plateau region[J]. Environmental Science, 40(4): 1973-1980. | |
[28] |
王亚晖, 唐文家, 李森, 等, 2022. 青海省草地生产力变化及其驱动因素[J]. 草业学报, 31(2): 1-13.
DOI |
WANG Y H, TANG W J, LI S, et al., 2022. Change in grassland productivity in Qinghai Province and its driving factors[J]. Acta Prataculturae Sinica, 31(2): 1-13. | |
[29] | 王国兵, 王丰, 金裕华, 等, 2011. 武夷山不同海拔植被土壤微生物量N时空变异[J]. 生态学杂志, 30(4): 784-789. |
WANG G B, WANG F, JIN Y H, et al., 2011. Spatiotemporal variation of soil microbial biomass N under different vegetations along an altitude gradient in Wuyi Mountains of southeast China[J]. Chinese Journal of Ecology, 30(4): 784-789. | |
[30] |
邬嘉华, 王立新, 张景惠, 等, 2018. 温带典型草原土壤理化性质及微生物量对放牧强度的响应[J]. 草地学报, 26(4): 832-840.
DOI |
WU J H, WANG L X, ZHANG J H, et al., 2018. Response of soil properties and microbial biomass to different grazing intensities in temperate typical steppe[J]. Acta Agrestia Sinica, 26(4): 832-840. | |
[31] |
谢梅珍, 赵林, 吴晓东, 等, 2022. 青藏高原多年冻土区两种高寒草地生态系统土壤氮季节变化及其与环境因子的关系[J]. 冰川冻土, 44(5): 1631-1639.
DOI |
XIE M Z, ZHAO L, WU X D, et al., 2022. Seasonal variation of soil nitrogen and its relationship to environmental factors under two alpine grassland ecosystems in permafrost regions on the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 44(5): 1631-1639.
DOI |
|
[32] |
严登华, 王刚, 金鑫, 等, 2010. 滦河流域不同土地利用类型土壤微生物量C、TN、TP垂直分异规律及其影响因子研究[J]. 生态环境学报, 19(8): 1844-1849.
DOI |
YAN D H, WANG G, JIN X, et al., 2020. Study on vertical distribution regularity of soil microbial biomass C, TN, TP from different landuse patterns and their influencing factors in Luan River basin[J]. Ecology and Environmental Sciences, 19(8): 1844-1849. | |
[33] | 杨晓娟, 李春俭, 2008. 机械压实对土壤质量、作物生长、土壤生物及环境的影响[J]. 中国农业科学, 41(7): 2008-2015. |
YANG X J, LI C J, 2008. Impacts of mechanical compaction on soil properties, growth of crops, soil-borne organisms and environment[J]. Scientia Agricultura Sinica, 41(7): 2008-2015. | |
[34] | 尹才, 刘淼, 孙凤云, 等, 2016. 基于增强回归树的流域非点源污染影响因子分析[J]. 应用生态学报, 27(3): 911-919. |
YIN C, LIU M, SUN F Y, et al., 2016. Influencing factors of non-point source pollution of watershed based on boosted regression tree algorithm[J]. Chinese Journal of Applied Ecology, 27(3): 911-919. | |
[35] |
喻岚晖, 王杰, 廖李容, 等, 2020. 青藏高原退化草甸土壤微生物量、酶化学计量学特征及其影响因素[J]. 草地学报, 28(6): 1702-1710.
DOI |
YU L H, WANG J, LIAO L R, et al., 2020. Soil microbial biomass, enzyme activities and ecological stoichiometric characteristics and influencing factors along degraded meadows on the Qinghai-Tibet plateau[J]. Acta Agrestia Sinica, 28(6): 1702-1710. | |
[36] | 许华, 何明珠, 唐亮, 等, 2020. 荒漠土壤微生物量碳、氮变化对降水的响应[J]. 生态学报, 40(4): 1295-1304. |
XU H, HE M Z, TANG L, et al., 2020. Response of changes of microbial biomass and nitrogen to precipitation in desert soil[J]. Acta Ecologica Sinica, 40(4): 1295-1304. | |
[37] | 张稳, 2015. 泥炭沼泽微生物量碳和可溶性有机碳时空分布及影响因子探究[D]. 长春: 东北师范大学:27-43. |
ZHANG W, 2015. Dynamic and factors of microbial biomass carbon and dissolved organic carbon in Peatland [D]. Changchun: Northeast Normal University: 27-43. | |
[38] | 张崇邦, 刘士山, 1996. 东北羊草草原环境因素对微生物生物量影响的灰色分析[J]. 中国草地 (1): 10-14. |
ZHANG C B, LIU S S, 1996. Grey analysis about the effect of environment factors on microbial biomass on the Leymus chinesis grassland in northern China[J]. Grassland of China (1): 10-14. | |
[39] | 张法伟, 李红琴, 李文清, 等, 2022. 三江源国家公园表层土壤有机碳和全氮密度的特征评估和等级区划[J]. 生态学报, 42(14): 5593-5602. |
ZHANG F W, LI H Q, LI W Q, et al., 2022. The Spatial pattern and regional classifications of topsoil organic carbon and total nitrogen density based on boosted regression trees in the Sanjiangyuan National Park[J]. Acta Ecologica Sinica, 42(14): 5593-5602. | |
[40] | 仲波, 孙庚, 陈冬明, 等, 2017. 不同恢复措施对若尔盖沙化退化草地恢复过程中土壤微生物生物量碳氮及土壤酶的影响[J]. 生态环境学报, 26(3): 392-399. |
ZHONG B, SUN G, CHEN D M, et al., 2017. Effects of different restoration measures on soil microbial biomass carbon and nitrogen and soil enzymes in the process of restoration of the desertified grassland in Zoige[J]. Ecology and Environmental Sciences, 26(3): 392-399. |
[1] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[2] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environment, 2023, 32(4): 660-667. |
[3] | LI Weiwen, HUANG Jinquan, QI Yujie, LIU Xiaolan, LIU Jigen, MAO Zhichao, GAO Xiufang. Meta-analysis of Soil Microbial Biomass Carbon Content and Its Influencing Factors under Soil Erosion [J]. Ecology and Environment, 2023, 32(1): 47-55. |
[4] | SUN Jianbo, CHANG Wenjun, LI Wenbin, ZHANG Shiqing, LI Chunqiang, PENG Ming. Dynamics of Soil Microbial Biomass and Enzyme Activities in Rhizosphere Soil at Different Growing Stages of Banana [J]. Ecology and Environment, 2022, 31(6): 1169-1174. |
[5] | ZHANG Hengyu, SUN Shuchen, WU Yuanzhi, AN Juan, SONG Hongli. Distribution Characteristics of Soil Water, Carbon and Nitrogen under Different Vegetation Densities in Loess Plateau [J]. Ecology and Environment, 2022, 31(5): 875-884. |
[6] | YANG Chong, WANG Chunyan, WANG Wenying, MAO Xufeng, ZHOU Huakun, CHEN Zhe, SUONANJi , JIN Lei, MA Huaqing. Soil Nutrient Characteristics and Quality Evaluation of Alpine Grassland in the Source Area of the Yellow River on the Qinghai Tibet Plateau [J]. Ecology and Environment, 2022, 31(5): 896-908. |
[7] | CHEN Lijuan, ZHOU Wenjun, YI Yanyun, SONG Qinghai, ZHANG Yiping, LIANG Naishen, LU Zhiyun, WEN Handong, MOHD Zeeshan, SHA Liqing. Characteristics of Soil CH4 Flux in the Subtropical Evergreen Broad-leaved Forest in Ailao Mountain, Yunnan, Southwest China [J]. Ecology and Environment, 2022, 31(5): 949-960. |
[8] | SHENG Jifeng, LI Yao, YU MeiJia, HAN Yanying, YE Yanhui. Effects of Nitrogen and Phosphorus An Addition on Soil Nutrients and Activity of Related Enzymes in Alpine Grassland [J]. Ecology and Environment, 2022, 31(12): 2302-2309. |
[9] | ZONG Ning, SHI Peili, ZHU Juntao. Changes of Plant Community Composition and Niche Characteristics during Desertification Process in An Alpine Steppe [J]. Ecology and Environment, 2021, 30(8): 1561-1570. |
[10] | HU Rui, FANG Huanying, XIAO Shengsheng, DUAN Jian, ZHANG Jie, LIU Hongguang, TANG Chongjun. Soil Carbon Sink Effect of Main Management Models in Typical Granite Erosion Area of Red Soil in South China [J]. Ecology and Environment, 2021, 30(8): 1617-1626. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn