Ecology and Environment ›› 2021, Vol. 30 ›› Issue (10): 1943-1951.DOI: 10.16258/j.cnki.1674-5906.2021.10.001
• Research Articles • Next Articles
LIU Minxia*(), YU Ruixin, MU Ruolan, XIA Sujuan
Received:
2020-10-20
Online:
2021-10-18
Published:
2021-12-21
Contact:
LIU Minxia
通讯作者:
刘旻霞
作者简介:
刘旻霞(1972年生),女,教授,博士,主要从事生态恢复方向的研究。E-mail: xiaminl@163.com
基金资助:
CLC Number:
LIU Minxia, YU Ruixin, MU Ruolan, XIA Sujuan. Photosynthetic Characteristics of Three Typical Tree Species at Different Altitudes in Beishan, Lanzhou[J]. Ecology and Environment, 2021, 30(10): 1943-1951.
刘旻霞, 于瑞新, 穆若兰, 夏素娟. 兰州北山不同海拔3种典型绿化树种光合特性研究[J]. 生态环境学报, 2021, 30(10): 1943-1951.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.10.001
样区 Plot | 海拔 Altitude/m | 经度Longitude | 纬度 Latitude | 胸径 Diameter at breast height/cm | 株高 Plant height/m | |||||
---|---|---|---|---|---|---|---|---|---|---|
侧柏 Platycladus orientalis | 山桃 Prunus davidiana | 甘蒙柽柳 Tamarix austromongolica | 侧柏 Platycladus orientalis | 山桃 Prunus davidiana | 甘蒙柽柳 Tamarix austromongolica | |||||
样区1 Plot1 | 1609±6 | 103°52′47″E | 36°10′20″N | 27.13±2.12 | 17.14±1.89 | 15.27±1.14 | 2.81±0.21 | 2.13±0.25 | 3.68±0.31 | |
样区2 Plot2 | 1802±4 | 103.47′73″E | 36°06′56″N | 31.58±2.53 | 16.54±2.17 | 17.34±1.77 | 3.12±0.29 | 2.06±0.17 | 3.56±0.25 | |
样区3 Plot3 | 2060±8 | 103°41′65″E | 35°58′54″N | 31.32±2.44 | 19.23±3.11 | 18.17±2.15 | 3.17±0.27 | 2.16±0.22 | 3.74±0.28 |
Table 1 Survey of Vegetation in Sample plot
样区 Plot | 海拔 Altitude/m | 经度Longitude | 纬度 Latitude | 胸径 Diameter at breast height/cm | 株高 Plant height/m | |||||
---|---|---|---|---|---|---|---|---|---|---|
侧柏 Platycladus orientalis | 山桃 Prunus davidiana | 甘蒙柽柳 Tamarix austromongolica | 侧柏 Platycladus orientalis | 山桃 Prunus davidiana | 甘蒙柽柳 Tamarix austromongolica | |||||
样区1 Plot1 | 1609±6 | 103°52′47″E | 36°10′20″N | 27.13±2.12 | 17.14±1.89 | 15.27±1.14 | 2.81±0.21 | 2.13±0.25 | 3.68±0.31 | |
样区2 Plot2 | 1802±4 | 103.47′73″E | 36°06′56″N | 31.58±2.53 | 16.54±2.17 | 17.34±1.77 | 3.12±0.29 | 2.06±0.17 | 3.56±0.25 | |
样区3 Plot3 | 2060±8 | 103°41′65″E | 35°58′54″N | 31.32±2.44 | 19.23±3.11 | 18.17±2.15 | 3.17±0.27 | 2.16±0.22 | 3.74±0.28 |
海拔 Altitude/m | 光合有效辐射PAR Photosynthetically active radiation/ (μmol·m-2·s-1) | 大气温度Ta Atmospheric temperature/ ℃ | 相对湿度RH Relative humidity/ % | 土壤温度Ts Soil temperature/ ℃ | 土壤含水量SMC Soil moisture content/ (g∙kg-1) | ||
---|---|---|---|---|---|---|---|
1600 | 1651.39±6.54b | 23.41±3.11a | 51.08±7.84 a | 16.15±2.67a | 0.085±0.013a | ||
1800 | 1754.53±6.85a | 22.51±1.53b | 45.33±5.56 b | 15.81±1.79a | 0.082±0.009a | ||
2000 | 1862.31±4.23a | 19.67±2.29c | 43.40±6.44 c | 15.64±2.33a | 0.067±0.016b |
Table 2 Environmental factors in the sample area
海拔 Altitude/m | 光合有效辐射PAR Photosynthetically active radiation/ (μmol·m-2·s-1) | 大气温度Ta Atmospheric temperature/ ℃ | 相对湿度RH Relative humidity/ % | 土壤温度Ts Soil temperature/ ℃ | 土壤含水量SMC Soil moisture content/ (g∙kg-1) | ||
---|---|---|---|---|---|---|---|
1600 | 1651.39±6.54b | 23.41±3.11a | 51.08±7.84 a | 16.15±2.67a | 0.085±0.013a | ||
1800 | 1754.53±6.85a | 22.51±1.53b | 45.33±5.56 b | 15.81±1.79a | 0.082±0.009a | ||
2000 | 1862.31±4.23a | 19.67±2.29c | 43.40±6.44 c | 15.64±2.33a | 0.067±0.016b |
树种 Trees | 海拔 Altitude/m | 最大净光合速率 Pnmax | 饱和光强 LSP | 光补偿点 LCP | 表观量子效率 AQE | 暗呼吸速率 Rd |
---|---|---|---|---|---|---|
侧柏 Platycladus orientalis | 1600 | 7.67±0.02b | 2190.12±13.08a | 9.39±0.57a | 0.069±0.07a | 0.507±0.14a |
1800 | 16.30±0.11a | 1962.02±9.25c | 8.20±0.64b | 0.062±0.04b | 0.48±0.02b | |
2000 | 15.91±0.08a | 2002.63±15.36b | 8.01±0.36b | 0.056±0.02c | 0.44±0.01b | |
山桃 Prunus davidiana | 1600 | 6.83±0.03b | 1731.13±0.08b | 16.94±1.27a | 0.044±0.03a | 1.86±0.26a |
1800 | 15.16±0.07a | 1788.52±8.76b | 14.40±1.49b | 0.042±0.02b | 1.69±0.32b | |
2000 | 14.21±0.18a | 2396.16±13.97a | 12.26±1.33c | 0.042±0.02b | 1.03±0.15c | |
甘蒙柽柳 Tamarix austromongolica | 1600 | 10.13±0.02b | 1808.31±12.17c | 25.66±3.85a | 0.055±0.05a | 1.2±0.22a |
1800 | 16.83±0.15a | 1996.09±11.98b | 22.69±2.98b | 0.048±0.03b | 1.04±0.02b | |
2000 | 16.64±0.12a | 2415.81±15.66a | 20.65±2.21c | 0.044±0.02b | 1.01±0.01b |
Table 3 Photosynthetic parameters of of P. orientalis, P. davidiana and T. austromongolica at different altitudes
树种 Trees | 海拔 Altitude/m | 最大净光合速率 Pnmax | 饱和光强 LSP | 光补偿点 LCP | 表观量子效率 AQE | 暗呼吸速率 Rd |
---|---|---|---|---|---|---|
侧柏 Platycladus orientalis | 1600 | 7.67±0.02b | 2190.12±13.08a | 9.39±0.57a | 0.069±0.07a | 0.507±0.14a |
1800 | 16.30±0.11a | 1962.02±9.25c | 8.20±0.64b | 0.062±0.04b | 0.48±0.02b | |
2000 | 15.91±0.08a | 2002.63±15.36b | 8.01±0.36b | 0.056±0.02c | 0.44±0.01b | |
山桃 Prunus davidiana | 1600 | 6.83±0.03b | 1731.13±0.08b | 16.94±1.27a | 0.044±0.03a | 1.86±0.26a |
1800 | 15.16±0.07a | 1788.52±8.76b | 14.40±1.49b | 0.042±0.02b | 1.69±0.32b | |
2000 | 14.21±0.18a | 2396.16±13.97a | 12.26±1.33c | 0.042±0.02b | 1.03±0.15c | |
甘蒙柽柳 Tamarix austromongolica | 1600 | 10.13±0.02b | 1808.31±12.17c | 25.66±3.85a | 0.055±0.05a | 1.2±0.22a |
1800 | 16.83±0.15a | 1996.09±11.98b | 22.69±2.98b | 0.048±0.03b | 1.04±0.02b | |
2000 | 16.64±0.12a | 2415.81±15.66a | 20.65±2.21c | 0.044±0.02b | 1.01±0.01b |
Fig. 2 Photosynthetic physiological indexes of P. orientalis, P. davidiana and T. austromongolica under different light intensity A, B and C respectively represent stomatal conductance of P. orientalis, P. davidiana and T. austromongolica; D, E and F respectively represent transpiration rates of P. orientalis, P. davidiana and T. austromongolica; G, H and I respectively represent intercellular CO2 concentration of P. orientalis, P. davidiana and T. austromongolica; J, K and L respectively represent stomatal limitation values of three kinds of plants
Fig. 3 Resource utilization efficiency of P. orientalis, P. davidiana and T. austromongolica under different light intensity A, B and C respectively represent light use efficiency of P. orientalis, P. davidiana and T. austromongolica; D, E and F respectively represent water use efficiency of P. orientalis, P. davidiana and T. austromongolica
树种 Trees | 参数Parameters | 光合有效辐射PAR | 大气相对湿度RH | 大气温度Ta | 土壤温度Ts | 土壤含水量SMC | 气孔导度Gs | 蒸腾速率Tr | 光能利用效率LUE | 水分利用效率WUE | 净光合速率Pn |
---|---|---|---|---|---|---|---|---|---|---|---|
侧柏 Platycladus orientalis | PAR | 1 | |||||||||
RH | -0.22 | 1 | |||||||||
Ta | 0.103 | -0.982** | 1 | ||||||||
Ts | 0.116 | -0.866** | 0.908** | 1 | |||||||
SMC | 0.25 | -0.741* | 0.751 | 0.749* | 1 | ||||||
Gs | -0.015 | 0.793* | -0.72 | -0.598 | -0.331 | 1 | |||||
Tr | 0.286 | 0.109 | -0.045 | -0.117 | 0.281 | 0.657* | 1 | ||||
LUE | -0.014 | -0.163 | 0.199 | -0.081 | -0.264 | -0.028 | 0.314 | 1 | |||
WUE | 0.352 | -0.308 | 0.22 | 0.115 | -0.346 | -0.55 | -0.454 | 0.486 | 1 | ||
Pn | 0.664* | -0.319 | 0.27 | 0.086 | -0.011 | -0.081 | 0.385 | 0.734* | 0.64* | 1 | |
山桃 Prunus davidiana | Gs | -0.248 | 0.831** | -0.756* | -0.526 | -0.471 | 1 | ||||
Tr | 0.146 | 0.352 | -0.256 | -0.125 | -0.376 | 0.752* | 1 | ||||
LUE | -0.575 | 0.55 | -0.449 | -0.203 | -0.66* | 0.734* | 0.716* | 1 | |||
WUE | -0.789* | 0.562 | -0.489 | -0.304 | -0.628* | 0.548 | 0.448 | 0.927** | 1 | ||
Pn | 0.713* | 0.556 | -0.452 | -0.246 | -0.588 | 0.824** | 0.894** | 0.95** | 0.793* | 1 | |
甘蒙柽柳 Tamarix austromongolica | Gs | 0.965** | -0.548 | 0.557 | 0.326 | -0.342 | 1 | ||||
Tr | 0.882** | -0.863** | 0.867** | 0.429 | 0.074 | 0.89** | 1 | ||||
LUE | -0.384 | -0.093 | 0.113 | 0.805** | 0.337 | -0.147 | -0.097 | 1 | |||
WUE | -0.257 | 0.214 | -0.215 | 0.567 | -0.121 | -0.046 | -0.214 | 0.784* | 1 | ||
Pn | 0.14 | -0.323 | 0.338 | 0.909** | 0.069 | 0.374 | 0.336 | 0.846** | 0.794* | 1 |
Table 4 Correlation analysis of physiological and ecological factors of P. orientalis, P. davidiana and T. austromongolica
树种 Trees | 参数Parameters | 光合有效辐射PAR | 大气相对湿度RH | 大气温度Ta | 土壤温度Ts | 土壤含水量SMC | 气孔导度Gs | 蒸腾速率Tr | 光能利用效率LUE | 水分利用效率WUE | 净光合速率Pn |
---|---|---|---|---|---|---|---|---|---|---|---|
侧柏 Platycladus orientalis | PAR | 1 | |||||||||
RH | -0.22 | 1 | |||||||||
Ta | 0.103 | -0.982** | 1 | ||||||||
Ts | 0.116 | -0.866** | 0.908** | 1 | |||||||
SMC | 0.25 | -0.741* | 0.751 | 0.749* | 1 | ||||||
Gs | -0.015 | 0.793* | -0.72 | -0.598 | -0.331 | 1 | |||||
Tr | 0.286 | 0.109 | -0.045 | -0.117 | 0.281 | 0.657* | 1 | ||||
LUE | -0.014 | -0.163 | 0.199 | -0.081 | -0.264 | -0.028 | 0.314 | 1 | |||
WUE | 0.352 | -0.308 | 0.22 | 0.115 | -0.346 | -0.55 | -0.454 | 0.486 | 1 | ||
Pn | 0.664* | -0.319 | 0.27 | 0.086 | -0.011 | -0.081 | 0.385 | 0.734* | 0.64* | 1 | |
山桃 Prunus davidiana | Gs | -0.248 | 0.831** | -0.756* | -0.526 | -0.471 | 1 | ||||
Tr | 0.146 | 0.352 | -0.256 | -0.125 | -0.376 | 0.752* | 1 | ||||
LUE | -0.575 | 0.55 | -0.449 | -0.203 | -0.66* | 0.734* | 0.716* | 1 | |||
WUE | -0.789* | 0.562 | -0.489 | -0.304 | -0.628* | 0.548 | 0.448 | 0.927** | 1 | ||
Pn | 0.713* | 0.556 | -0.452 | -0.246 | -0.588 | 0.824** | 0.894** | 0.95** | 0.793* | 1 | |
甘蒙柽柳 Tamarix austromongolica | Gs | 0.965** | -0.548 | 0.557 | 0.326 | -0.342 | 1 | ||||
Tr | 0.882** | -0.863** | 0.867** | 0.429 | 0.074 | 0.89** | 1 | ||||
LUE | -0.384 | -0.093 | 0.113 | 0.805** | 0.337 | -0.147 | -0.097 | 1 | |||
WUE | -0.257 | 0.214 | -0.215 | 0.567 | -0.121 | -0.046 | -0.214 | 0.784* | 1 | ||
Pn | 0.14 | -0.323 | 0.338 | 0.909** | 0.069 | 0.374 | 0.336 | 0.846** | 0.794* | 1 |
[1] | CHEN Z Y, PENG Z S, YANG J, et al., 2011. A mathematical model for describing light-response curves in Nicotiana tabacum L.[J]. Photosynthetica, 49(3):467-471. |
[2] | GARDNER W H, 1986. Water content in methods of soil analysis[J]. American Society of Agronomy (9):493-544. |
[3] |
JOSEPH M C, PETER B R, 2005. Leaf-level light compensation points in shade-tolerant woody seedlings[J]. New Phytologist, 166(3):710-713.
DOI URL |
[4] | LIU X J, AN B Y, GU N, et al., 2020. Response of leaf photosynthetic characteristics of Syringa oblata and Syringa reticulata var. mandshurica to chilling stress[J]. Journal of Forestry Research, 31(2):187-196. |
[5] |
MEDRANO H, TOMAS M, MARTORELL S, et al., 2015. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target[J]. The Crop Journal, 3(3):220-228.
DOI URL |
[6] | QUIMADO M O, TINIO C E, COMBALICER M S, et al., 2021. Morphological and leaf anatomical characteristics of different variants of Narra (Pterocarpus indicus willd.) seedlings[J]. Philippine Journal of Science, 150(1):277-289. |
[7] |
WANG Y, ZHONG Z, QIN S, et al., 2021. Effects of temperature and light on growth rate and photosynthetic characteristics of Sargassum horneri[J]. Journal of Ocean University of China, 20(1):101-110.
DOI URL |
[8] |
REN B Z, JUAN H U, ZHANG J W, et al., 2020. Effects of urea mixed with nitrapyrin on leaf photosynthetic and senescence characteristics of summer maize (Zea mays l.) waterlogged in the field[J]. Journal of Integrative Agriculture, 19(6):1586-1595.
DOI URL |
[9] | 陈晓英, 李翠, 郭晓云, 等, 2020. 3种紫堇属植物叶片光合特性研究[J]. 植物资源与环境学报, 29(1):1-7. |
CHEN X Y, LI C, GUO X Y, et al., 2020. Study on leaf photosynthetic characteristics of three species in Corydalis DC[J]. Journal of Plant Resources and Environment, 29(1):1-7. | |
[10] | 范爱武, 刘伟, 刘炳成, 2004. 土温对植物生长的影响及其机理分析[J]. 工程热物理学报, 25(1):124-126. |
FAN A W, LIU W, LIU B C, 2004. Effect of soil theperature on the growth of plant and an analysis of its mechanism[J]. Journal of Engineering Thermophysics, 25(1):124-126. | |
[11] | 范秀华, 卢文敏, 方晓雨, 等, 2012. 长白山不同海拔岳桦 (Betula ermanii) 的光合生理[J]. 应用与环境生物学报, 18(4):553-558. |
FAN X H, LU W M, FANG X Y, et al., 2012. Photosynthetic Physiology of Betula ermanii Along the Altitudes in Changbai Mountains, China[J]. Chinese Journal of Applied and Environmental Biology, 18(4):553-558. | |
[12] | 樊莹, 2019. 长白山主要树种幼树的生长与生理生态特征对海拔梯度的响应[D]. 北京: 北京林业大学 |
FAN Y, 2019. Response of growth and physiological and ecological characteristics of saplings of main tree species in Changbai Mountain to altitude gradient[D]. Beijing: Beijing Forestry University | |
[13] | 高成杰, 刘方炎, 杨文云, 等, 2015. 不同海拔下滇重楼叶片与花萼光合特性[J]. 生态学杂志, 34(1):70-78. |
GAO C J, LIU F Y, YANG W Y, et al., 2015. Photosynthetic characteristics of leaf and calyx of Pairs polyphylla var. yunnanensis at different attitudes[J]. Chinese Journal of Ecology, 34(1):70-78. | |
[14] | 郭春燕, 李晋川, 岳建英, 等, 2013. 两种高质牧草不同生育期光合生理日变化及光响应特征[J]. 生态学报, 33(6):1751-1761. |
GUO C Y, LI J C, YUE J Y, et al., 2013. Diurnal changes in the photosynthetic characteristics of two high yield and high quality grasses during different stages of growth and their response to changes in light intensity[J]. Acta Ecologica Sinica, 33(6):1751-1761. | |
[15] | 姬明飞, 丁东粮, 吴寿方, 等, 2013. 4种蒿属植物的光合光响应曲线及其拟合模型[J]. 草业科学, 30(5):716-722. |
JI M F, DING D L, WU S F, et al., 2013. Comparison of two photosynjournal-light response curve-fitting models of four Artemistia species[J]. Pratacultural Sciences, 30(5):716-722. | |
[16] | 荆天, 2015. 四种彩色植物光合生理生态特性的研究[D]. 合肥: 安徽农业大学. |
JING T, 2015. Study on Ecological Properties of photosynthesis of Four Colour Plants [D]. Hefei: Anhui Agricultural University. | |
[17] |
李鑫豪, 闫慧娟, 卫腾宙, 等, 2019. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 43(10):889-898.
DOI |
LI X H, YAN H J, WEI T Z, et al., 2019. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season[J]. Chinese Journal of Plant Ecology, 43(10):889-898. | |
[18] | 刘旻霞, 夏素娟, 穆若兰, 等, 2020. 黄土高原中部三种典型绿化植物光合特性的季节变化[J]. 生态学杂志, 39(12):4098-4109. |
LIU M X, XIA S J, MU R L, et al., 2020. Seasonal variation of photosynthetic characteristics of three typical green plant species in central Loess Plateau[J]. Chinese Journal of Ecology, 39(12):4098-4109. | |
[19] | 潘璐, 刘杰才, 李晓静, 等, 2014. 高温和加富CO2温室中黄瓜Rubisco活化酶与光合作用的关系[J]. 园艺学报, 41(8):1591-1600. |
PAN L, LIU J C, LI X J, et al., 2014. Correlation Between Rubisco Activase and Photosynjournal of Cucumber in Greenhouse Under High Temperature and Elevated CO2[J]. Acta Horticulturae Sinica, 41(8):1591-1600. | |
[20] |
孙小玲, 许岳飞, 马鲁沂, 等, 2010. 植株叶片的光合色素构成对遮阴的响应[J]. 植物生态学报, 34(8):989-999.
DOI |
SUN X L, XU Y F, MA L Y, et al., 2010. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment[J]. Chinese Journal of Plant Ecology, 34(8):989-999. | |
[21] | 韦玉, 李熙萌, 桑卫国, 等, 2014. 不同海拔高度矮嵩草的光合响应差异[J]. 生态科学, 33(6):1160-1164. |
WEI Y, LI X, SANG W, et al., 2014. Difference in photosynthetic response of Kobresia humilis along latitude gradients[J]. Ecological Science, 33(6):1160-1164. | |
[22] | 王海珍, 韩路, 徐雅丽, 等, 2017. 土壤水分梯度对灰胡杨光合作用与抗逆性的影响[J]. 生态学报, 37(2):432-442. |
WANG H Z, HAN L, XU Y L, et al., 2017. Effects of soil water gradient on photosynthetic characteristics and stress resistance of Populus pruinosa in the Tarim Basin, China[J]. Acta Ecologica Sinica, 37(2):432-442. | |
[23] | 徐春华, 张华, 张兰, 等, 2015. 基于通径分析的兰州北山三种典型植物光合作用影响因子[J]. 生态学杂志, 34(5):1289-1294. |
XU C H, ZHANG H, ZHANG L, et al., 2015. Factors influencing photosynjournal of three typical plant species in Beishan Mountain of Lanzhou based on path analysis[J]. Chinese Journal of Ecology, 34(5):1289-1294. |
[1] | CAO Xiaoyun, ZHU Cunxiong, CHEN Guoqian, SUN Shujiao, ZHAO Huifang, ZHU Wenbin, ZHOU Bingrong. Surface Greenness Change and Topographic Differentiation over Qaidam Basin from 2000 to 2021 [J]. Ecology and Environment, 2022, 31(6): 1080-1090. |
[2] | LEI Jun, ZHANG Jian, ZHAO Funian, QI Yue, ZHANG Xiuyun, LI Qiang, SHANG Junlin. Response of Photosynthetic Parameters for Spring Wheat at Flowering Stage to Soil Moisture and Temperature [J]. Ecology and Environment, 2022, 31(6): 1151-1159. |
[3] | LIU Jin, LONG Jian, LI Juan, LI Hong. Differentiation Characteristics of Calcium Bioabsorption Capacity of Dominant Tree Species with Altitude in Typical Karst Mountain Area [J]. Ecology and Environment, 2021, 30(8): 1589-1598. |
[4] | ZHAO Xiaoliang, GUO Meng, LV Meiting, ZHAO Xueying, JIANG Guiguo, HUANG Yuanyuan, WANG Fan, JI Yaqin. Study on Retention Capacity of Green Tree Species to Atmospheric Particulate Matter and Heavy Metals in Fuxin [J]. Ecology and Environment, 2021, 30(8): 1662-1671. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn