Ecology and Environment ›› 2023, Vol. 32 ›› Issue (1): 11-17.DOI: 10.16258/j.cnki.1674-5906.2023.01.002
• Research Articles • Previous Articles Next Articles
HE Yating(), HE Youjun, WANG Peng, XIE Hesheng*(
)
Received:
2022-05-31
Online:
2023-01-18
Published:
2023-04-06
Contact:
XIE Hesheng
通讯作者:
谢和生
作者简介:
何亚婷(1980年生),女,副研究员,博士,研究方向为林草碳汇经济与政策、森林生态、林业战略与规划。E-mail: yatinghe@caf.ac.cn
基金资助:
CLC Number:
HE Yating, HE Youjun, WANG Peng, XIE Hesheng. Effects of Different Forest Management Regimes on Soil Organic Carbon in Aggregate Fractions in Natural Secondary Quercus mongolica Forests[J]. Ecology and Environment, 2023, 32(1): 11-17.
何亚婷, 何友均, 王鹏, 谢和生. 不同经营模式对蒙古栎林土壤有机碳组分的长效性影响[J]. 生态环境学报, 2023, 32(1): 11-17.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.01.002
森林经营模式 | 目标树经营 (M1) | 综合抚育经营 (M2) | 无干扰经营 (M3) |
---|---|---|---|
1999年林龄/a | 63 | 63 | 63 |
2021年林龄/a | 85 | 85 | 85 |
平均海拔/m | 330 | 330 | 373 |
坡度/(°) | 6 | 6 | 15 |
坡向 | 南S | 南S | 南S |
初始密度/(plant·hm-2) | 850 | 850 | 850 |
间伐时间 | 1999/2004/2010 | 1999/2004 | — |
间伐强度/% | 45/40/70 | 45/40 | — |
保留密度/(plant·hm-2) | 468/280/84 | 468/280 | — |
是否补植红松 | 是 | 否 | 否 |
抚育方式 | 折灌除草 | 不清理灌草 | — |
1999年树种组成 | 8蒙+1黑+ 1紫-黄 | 8蒙+1黑+ 1紫-黄 | 8蒙+1黑+ 1紫-黄 |
2021年树种组成 | 6蒙+1红+1紫+ 1白+1云 | 8蒙+1黑+ 1红 | 7蒙+2黄+ 1紫 |
Table 1 Summary of different natural secondary Quercus mongolica forest stands within three forest management regimes
森林经营模式 | 目标树经营 (M1) | 综合抚育经营 (M2) | 无干扰经营 (M3) |
---|---|---|---|
1999年林龄/a | 63 | 63 | 63 |
2021年林龄/a | 85 | 85 | 85 |
平均海拔/m | 330 | 330 | 373 |
坡度/(°) | 6 | 6 | 15 |
坡向 | 南S | 南S | 南S |
初始密度/(plant·hm-2) | 850 | 850 | 850 |
间伐时间 | 1999/2004/2010 | 1999/2004 | — |
间伐强度/% | 45/40/70 | 45/40 | — |
保留密度/(plant·hm-2) | 468/280/84 | 468/280 | — |
是否补植红松 | 是 | 否 | 否 |
抚育方式 | 折灌除草 | 不清理灌草 | — |
1999年树种组成 | 8蒙+1黑+ 1紫-黄 | 8蒙+1黑+ 1紫-黄 | 8蒙+1黑+ 1紫-黄 |
2021年树种组成 | 6蒙+1红+1紫+ 1白+1云 | 8蒙+1黑+ 1红 | 7蒙+2黄+ 1紫 |
项目 | 粗自由颗粒 有机碳 | 细自由颗粒 有机碳 | 物理保护 有机碳 | 矿物结合 有机碳 |
---|---|---|---|---|
cfPOC | 1 | |||
ffPOC | 0.143 | 1 | ||
iPOC | 0.362 | 0.560 | 1 | |
MOC | 0.360 | 0.377 | 0.338 | 1 |
TOC | 0.876*** | 0.414 | 0.556 | 0.607* |
PCA | 0.908* | 0.360 | 0.327 | 0.597 |
Table 2 Correlation coefficients between different organic carbon fractions and TOC in soil
项目 | 粗自由颗粒 有机碳 | 细自由颗粒 有机碳 | 物理保护 有机碳 | 矿物结合 有机碳 |
---|---|---|---|---|
cfPOC | 1 | |||
ffPOC | 0.143 | 1 | ||
iPOC | 0.362 | 0.560 | 1 | |
MOC | 0.360 | 0.377 | 0.338 | 1 |
TOC | 0.876*** | 0.414 | 0.556 | 0.607* |
PCA | 0.908* | 0.360 | 0.327 | 0.597 |
[1] |
ACHAT D, FORTIN M, LANDMANN G, et al., 2015. Forest soil carbon is threatened by intensive biomass harvesting[J]. Scientific Reports, 5: 15991.
DOI PMID |
[2] | CAI A D, XU H, DUAN Y H, et al., 2020. Changes in mineral-associated carbon and nitrogen by long-term fertilization and sequestration potential with various cropping across China dry croplands[J]. Soil & Tillage Research, 205: 104725. |
[3] | CARTER R, 2002. Soil quality for sustainable land management[J]. Agronomy Journal, 94(1): 38-47. |
[4] | CARTER R, ANGERS A, GREGORICH G, 2003. Characterizing organic matter retention for surface soils in eastern Canada using density and particle size[J]. Canada Journal of Soil Science, 83: 11-23. |
[5] | CHRISTERNSEN B, 2001. Physical fractionation of soil and structural and functional complexity in organic matter turnover[J]. Europe Journal of Soil Science, 52(3): 345-353. |
[6] | FAO, 2020. Global forest resources assessment 2020[R]. Rome: FAO. |
[7] |
GOLCHIN A, OADES J, SKJEMSTAD J, et al., 1994. Study of free and occluded particulate organic matter in soils by solid state 13C Cp/MAS NMR spectroscopy and scanning electron microscopy[J]. Soil Research, 32(2): 285-309.
DOI URL |
[8] |
HE Y T, ZHANG W J, XU M G, et al., 2015. Long-term combined chemical and manure fertilizations increased soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China[J]. Science of the Total Environment, 532: 635-644.
DOI URL |
[9] |
JANDL R, LINDNER M, VESTERDAL L, et al., 2007. How strongly can forest management influence soil carbon sequestration?[J]. Geoderma, 137(3-4): 253-268.
DOI URL |
[10] |
KIM C, SON Y, LEE W K et al., 2009. Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S.et Z. stand in Korea[J]. Forest Ecology and Management, 257(5): 1420-1426.
DOI URL |
[11] |
MATHER J, JALOTA K, DALAL C, et al., 2007. 13C- NMR analysis of decomposing litter and fine roots in the semi-arid Mulga Lands of southern Queensland[J]. Soil Biology and Biochemistry, 39: 993-1006.
DOI URL |
[12] |
PARK J H, KALBITZ K, MATZNER E. 2002. Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor[J]. Soil Biology and Biochemistry, 34(6): 813-822.
DOI URL |
[13] |
PAN Y D, BIRDSEY R, FANG J Y, et al., 2011. A large and persistent carbon sink in the world’s forests[J]. Science, 333(6045): 988-993.
DOI URL |
[14] |
POWERS M, KOLKA R, PALIK B, et al., 2011. Long-term management impacts on carbon storage in Lake States forests[J]. Forest Ecology and Management, 262(3): 424-431.
DOI URL |
[15] |
SIX J, CALLEWAERT P, LENDERS S, et al., 2002. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Science Society of America Journal, 66(6): 1981-1987.
DOI URL |
[16] |
SIX J, CONANT R T, PAUL E A, et al., 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant Soil, 241(2): 155-176.
DOI URL |
[17] | SIX J, GUGGENBERGER G, PAUSTIAN K, et al., 2001. Sources and composition of soil organic matter fractions between and within aggregates[J]. Europe Journal of Soil Science, 52: 607-618. |
[18] | SLEUTEL S, NEVE S, NEMETH T, et al., 2006. Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments[J]. Europe Journal of Agronomy, 25(3): 280-288. |
[19] | SUKRU T, DILEK G, 2021. Changes in carbon stocks of soil and forest floor in black pine plantations in Turkey[J]. Journal of Forest Research, 32(1): 339-347. |
[20] | 董莉莉, 刘红民, 汪成成, 等, 2019. 间伐对蒙古栎次生林生态系统碳储量的短期和长期影响[J]. 沈阳农业大学学报, 50(5): 614-620. |
DONG L L, LIU H M, WANG C C, et al., 2019. Short-term and long-term effects of thinning on carbon storage of Quercus mongolica secondary forests[J]. Journal of Shenyang Agricultural University, 50(5): 614-620. | |
[21] | 冯琪雅, 陈超凡, 覃林, 等, 2018. 不同经营模式对蒙古栎天然次生林植被的影响研究[J]. 林业科学, 54(1): 12-21. |
FENG Q Y, CHEN C F, QIN L, et al., 2018. Effects of different forest management models on vegetation of natural secondary Quecus Mongolica forests[J]. Scientia Silvae Sinicae, 54(1): 12-21. | |
[22] |
何亚婷, 谢和生, 何友均, 2022. 不同经营模式对蒙古栎天然次生林碳储量的影响[J]. 生态环境学报, 31(2):215-223.
DOI URL |
HE Y T, XIE H S, HE Y J, 2022. Effects of different forest management regimes on carbon stock of natural secondary Quercus mongolica forests[J]. Ecology and Environmental Sciences, 31(2): 215-223. | |
[23] | 黄桥明, 吕茂奎, 聂阳意, 等, 2020. 武夷山不同海拔森林表层土壤轻组有机质特征[J]. 生态学报, 40(17): 6215-6222. |
HUANG Q M, LÜ M K, NIE Y Y, et al., 2020. Characteristics of light fraction organic matter in surface soil of different altitude forests in Wuyi Mountain[J]. Acta Ecologica Sinica, 40(17): 6215-6222. | |
[24] | 江淼华, 吕茂奎, 林伟盛, 等, 2018. 生态恢复对红壤侵蚀地土壤有机碳组成及稳定性的影响[J]. 生态学报, 38(13): 4861-4868. |
JIANG M H, LÜ M K, LIN W S, et al., 2018. Effects of ecological restoration on soil organic carbon components and stability in a red soil erosion area[J]. Acta Ecologica Sinica, 38(13): 4861-4868. | |
[25] | 雷蕾, 肖文发, 2015. 采伐对森林土壤碳库影响的不确定性[J]. 林业科学研究, 28(6): 892-899. |
LEI L, XIAO W F, 2015. Uncertainty effect of forest harvest on soil carbon pool: A review[J]. Forest Research, 28(6): 892-899. | |
[26] | 李光敏, 陈伏生, 徐志文, 等, 2019. 间伐和林下植被剔除对毛竹林土壤活性有机碳的影响[J]. 江西农业大学学报, 41(4): 733-740. |
LI G M, CHEN F S, XU Z W, et al., 2019. Effects of thinning and understory removal on soil labile organic carbon in Moso plantation[J]. Acta Agriculturae Universitatis Jiangxiensis, 41(4): 733-740. | |
[27] | 刘骅, 佟小刚, 徐咏梅, 等, 2010. 长期施肥下灰漠土有机碳组分含量及其演变特征[J]. 植物营养与肥料学报, 16(4): 794-800. |
LIU H, TONG X G, XU Y M, et al., 2010. Evolution characteristics of organic carbon fractions in gray desert soil under long-term fertilization[J]. Plant Nutrition and Fertilizer Science, 16(4): 794-800. | |
[28] | 齐梦娟, 石朔蓉, 姜春前, 等, 2021. 青冈栎次生林土壤活性有机碳对间伐强度的响应[J]. 林业科学研究, 34(6): 122-129. |
QI M J, SHI S R, JIANG C Q, et al., 2021. Response of soil labile organic carbon to thinning intensity on secondary forest of Cyclobalanopsis glauca[J]. Forest Research, 34(6): 122-129. | |
[29] | 佟小刚, 黄绍敏, 徐明岗, 等, 2009. 长期不同施肥模式对潮土有机碳组分的影响[J]. 植物营养与肥料学报, 15(4): 831-836. |
TONG X G, HUANG S M, XU M G, et al., 2009. Effects of the different long-term fertilizations on fractions of organic carbon in fluvo-aquic soil[J]. Plant Nutrition and Fertilizer Science, 15(4): 831-836. | |
[30] | 王晓荣, 雷蕾, 曾立雄, 等, 2021. 抚育间伐对马尾松林土壤活性有机碳的短期影响[J]. 生态学杂志, 40(4): 1049-1061. |
WANG X R, LEI L, ZENG L X, et al., 2021. Short-term effects of tending thinning on soil labile organic carbon in Pinus massoniana stands[J]. Journal of Ecology, 40(4): 1049-1061. | |
[31] | 武朋辉, 党坤良, 常伟, 等, 2016. 抚育间伐对秦岭南坡锐齿栎天然次生林碳密度的影响[J]. 西北农林科技大学学报 (自然科学版), 44(10): 75-82. |
WU P H, DANG K L, CHANG W, et al., 2016. Effects of forest thinning on carbon density of Quercus aliena var. acuteserrata natural secondary forest on southern slope of Qinling Mountains[J]. Journal of Northwest A & F University (Natural Science Edition), 44(10): 75-82. | |
[32] | 徐金良, 毛玉明, 成向荣, 等, 2014. 间伐对杉木人工林碳储量的长期影响[J]. 应用生态学报, 25(7): 1898-1904. |
XU J L, MAO Y M, CHENG X R, et al., 2014. Long-term effects of thinning on carbon storage in Cunninghamia lanceolate plantations[J]. Chinese Journal of Applied Ecology, 25(7): 1898-1904. | |
[33] | 徐明岗, 梁国庆, 张夫道, 2006. 中国土壤肥力演变[M]. 北京: 中国农业科学技术出版社. |
XU M G, LIANG G Q, ZHANG F D, 2006. Variation of soil fertility in China[M]. Beijing: China Agricultural Science and Technology Press. | |
[34] | 闫东峰, 郭丹丹, 吴桂藏, 等, 2017. 栎类天然次生林不同组分及土壤碳氮分布对森林抚育的响应[J]. 浙江农林大学学报, 34(2): 215-224. |
YAN D F, GUO D D, WU G C, et al., 2017. Carbon and nitrogen distribution with forest tending in a natural secondary oak forest[J]. Journal of Zhejiang A & F University, 34(2): 215-224. | |
[35] | 尤文忠, 赵刚, 张慧东, 等, 2015. 抚育间伐对蒙古栎次生林生长的影响[J]. 生态学报, 35(1): 56-64. |
YOU W Z, ZHAO G, ZHANG H D, et al., 2015. Effects of thinning on growth of Mongolian oak (Quercus mongolica) secondary forests[J]. Acta Ecologica Sinica, 35(1): 56-64. | |
[36] | 赵鑫, 宇万太, 李建东, 2006. 不同经营管理条件下土壤有机碳及其组分研究进展[J]. 应用生态学报, 17(11): 2203-2209. |
ZHAO X, YU W T, LI J D, 2006. Research advances in soil organic carbon and its fractions under different management patterns[J]. Chinese Journal of Applied Ecology, 17(11): 2203-2209. | |
[37] |
周焘, 王传宽, 周正虎, 等, 2019. 抚育间伐对长白落叶松人工林土壤碳、氮及其组分的影响[J]. 应用生态学报, 30(5): 1651-1658.
DOI |
ZHOU T, WANG C K, ZHOU Z H, et al., 2019. Effects of thinning on soil carbon and nitrogen fractions in a Larix olgensis plantation[J]. Chinese Journal of Applied Ecology, 30(5): 1651-1658. |
[1] | HE Yating, XIE Hesheng, HE Youjun. Effects of Different Forest Management Regimes on Carbon Stock of Natural Secondary Quercus Mongolica Forests [J]. Ecology and Environment, 2022, 31(2): 215-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn