Ecology and Environment ›› 2022, Vol. 31 ›› Issue (2): 215-223.DOI: 10.16258/j.cnki.1674-5906.2022.02.001
• Research Articles • Next Articles
HE Yating(), XIE Hesheng, HE Youjun(
)
Received:
2021-11-13
Online:
2022-02-18
Published:
2022-04-14
Contact:
HE Youjun
通讯作者:
何友均
作者简介:
何亚婷(1980年生),女,助理研究员,博士,研究方向为林草碳汇经济与政策、森林生态、林业战略与规划。E-mail: yatinghe@caf.ac.cn
基金资助:
CLC Number:
HE Yating, XIE Hesheng, HE Youjun. Effects of Different Forest Management Regimes on Carbon Stock of Natural Secondary Quercus Mongolica Forests[J]. Ecology and Environment, 2022, 31(2): 215-223.
何亚婷, 谢和生, 何友均. 不同经营模式对蒙古栎天然次生林碳储量的影响[J]. 生态环境学报, 2022, 31(2): 215-223.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.02.001
森林经营模式 Forest management regimes | 目标树经营 (MSR1) Target tree management | 综合抚育经营 (MSR2) Comprehensive tending management | 无干扰经营 (MSR3) No-disturbance management |
---|---|---|---|
1999年林龄 Sand age in 2016/a | 63 | 63 | 63 |
2016年林龄 Sand age in 2016/a | 80 | 80 | 80 |
平均海拔 Elevation/m | 330 | 330 | 373 |
坡度 Slope gradient/(°) | 6 | 6 | 15 |
坡向 Aspect | 南S | 南S | 南S |
初始密度 Initial density/(plant∙hm-2) | 850 | 850 | 850 |
间伐时间 Thinning time | 1999/2004/2010 | 1999/2004 | — |
间伐强度 Thinning intensity/% | 45/40/70 | 45/40 | — |
保留密度 Reserve density (plant∙hm-2) | 468/280/84 | 468/280 | |
是否补植红松 Replanting Pinus koraiensis or not | 是 | 否 | 否 |
抚育方式 Tending methods | 折灌除草 | 不清理灌草 | |
1999年树种组成 Species composition in 1999 | 8蒙+1黑+1紫-黄 | 8蒙+1黑+1紫-黄 | 8蒙+1黑+1紫-黄 |
2016年树种组成 Species composition in 2016 | 6蒙+3红+1云 | 8蒙+1黑+1红 | 8蒙+1黄+1紫 |
Table 1 Summary of different natural secondary Quercus mongolica forest stands within three forest management regimes
森林经营模式 Forest management regimes | 目标树经营 (MSR1) Target tree management | 综合抚育经营 (MSR2) Comprehensive tending management | 无干扰经营 (MSR3) No-disturbance management |
---|---|---|---|
1999年林龄 Sand age in 2016/a | 63 | 63 | 63 |
2016年林龄 Sand age in 2016/a | 80 | 80 | 80 |
平均海拔 Elevation/m | 330 | 330 | 373 |
坡度 Slope gradient/(°) | 6 | 6 | 15 |
坡向 Aspect | 南S | 南S | 南S |
初始密度 Initial density/(plant∙hm-2) | 850 | 850 | 850 |
间伐时间 Thinning time | 1999/2004/2010 | 1999/2004 | — |
间伐强度 Thinning intensity/% | 45/40/70 | 45/40 | — |
保留密度 Reserve density (plant∙hm-2) | 468/280/84 | 468/280 | |
是否补植红松 Replanting Pinus koraiensis or not | 是 | 否 | 否 |
抚育方式 Tending methods | 折灌除草 | 不清理灌草 | |
1999年树种组成 Species composition in 1999 | 8蒙+1黑+1紫-黄 | 8蒙+1黑+1紫-黄 | 8蒙+1黑+1紫-黄 |
2016年树种组成 Species composition in 2016 | 6蒙+3红+1云 | 8蒙+1黑+1红 | 8蒙+1黄+1紫 |
树种 Tree species | 干 Stem | 枝 Branch | 叶 Leaf | 根 Root |
---|---|---|---|---|
蒙古栎 Quercus mongolica | B=0.0179D2.857 | B=0.0000197D4.292 | B=0.0000366D3.49 | — |
红松 Pinus koraiensis | B=0.0320D2.8387 | B=0.01637D2.0451 | B=0.0475D1.4018 | B=0.0301D2.3795 |
紫椴 Tilia amurensis | B=0.03565D2.391 | B=0.004725D2.5021 | B=0.000625D2.5021 | B=0.2704D1.2991 |
白桦/黑桦 Betula platyphylla Betula dahurica | B=0.1462D2.2942 | B=0.0354D1.0804 | B=0.02283D1.0607 | B=0.03287D2.3501 |
色木槭 Acer mono | B=1.3709D1.8713 | B=0.05579D1.8093 | B=0.09056D1.8128 | B=0.3824D1.6088 |
红皮云杉 Picea koraiensis | B=0.0567D2.4750 | B=0.0116D2.4054 | B=0.0083D2.3733 | B=0.0088D2.538 |
山杨 Populus davidiana | B=0.4573D1.921 | B=0.0403D2.0442 | B=0.0186D2.2071 | B=0.2105D1.8717 |
Table 2 Main tree species biomass models of stem, brunch, leaf and root
树种 Tree species | 干 Stem | 枝 Branch | 叶 Leaf | 根 Root |
---|---|---|---|---|
蒙古栎 Quercus mongolica | B=0.0179D2.857 | B=0.0000197D4.292 | B=0.0000366D3.49 | — |
红松 Pinus koraiensis | B=0.0320D2.8387 | B=0.01637D2.0451 | B=0.0475D1.4018 | B=0.0301D2.3795 |
紫椴 Tilia amurensis | B=0.03565D2.391 | B=0.004725D2.5021 | B=0.000625D2.5021 | B=0.2704D1.2991 |
白桦/黑桦 Betula platyphylla Betula dahurica | B=0.1462D2.2942 | B=0.0354D1.0804 | B=0.02283D1.0607 | B=0.03287D2.3501 |
色木槭 Acer mono | B=1.3709D1.8713 | B=0.05579D1.8093 | B=0.09056D1.8128 | B=0.3824D1.6088 |
红皮云杉 Picea koraiensis | B=0.0567D2.4750 | B=0.0116D2.4054 | B=0.0083D2.3733 | B=0.0088D2.538 |
山杨 Populus davidiana | B=0.4573D1.921 | B=0.0403D2.0442 | B=0.0186D2.2071 | B=0.2105D1.8717 |
Figure 1 Carbon storage and spatial distribution of tree layer MSR1: Target tree management; MSR2: Comprehensive tending management; MSR3: No-disturbance management. Different lowercase letters indicate significant differences among different managements at 0.05 level. The same below Mean±SE, n=6
Figure 3 Carbon storage of soil layer in the stands investigated Different capital letters indicate that the same management has significant differences in different soil layers at 0.05 level
经营模式 Management regimes | 总碳储量 Total carbon stock/(t∙hm-2) | 乔木层 Tree layer/% | 灌木层 Shrub layer/% | 草本层 Herb layer/% | 凋落物层 Litter layer/% | 土壤层 Soil layer/% |
---|---|---|---|---|---|---|
目标树经营MSR1 | 183.01±10.61b | 9.53 | 0.10 | 0.42 | 0.39 | 89.56 |
综合抚育经营MSR2 | 218.81±12.19b | 12.42 | 0.41 | 0.21 | 0.35 | 86.62 |
无干扰经营MSR3 | 279.01±15.12a | 16.41 | 0.15 | 0.16 | 0.58 | 82.71 |
Table 3 Total stand carbon stock and its vertical distribution
经营模式 Management regimes | 总碳储量 Total carbon stock/(t∙hm-2) | 乔木层 Tree layer/% | 灌木层 Shrub layer/% | 草本层 Herb layer/% | 凋落物层 Litter layer/% | 土壤层 Soil layer/% |
---|---|---|---|---|---|---|
目标树经营MSR1 | 183.01±10.61b | 9.53 | 0.10 | 0.42 | 0.39 | 89.56 |
综合抚育经营MSR2 | 218.81±12.19b | 12.42 | 0.41 | 0.21 | 0.35 | 86.62 |
无干扰经营MSR3 | 279.01±15.12a | 16.41 | 0.15 | 0.16 | 0.58 | 82.71 |
[1] |
ACHAT D L, FORTIN M, LANDMANN G, et al., 2015. Forest soil carbon is threatened by intensive biomass harvesting[J]. Scientific Reports, DOI: 10.1038/srep15991.
DOI |
[2] |
ADIKU S, AMON N, JONES J, et al., 2010. Simple formulation of the soil water effect on residue decomposition[J]. Communications in Soil Science and Plant Analysis, 41(1-4): 267-276.
DOI URL |
[3] |
BORYS A, SUCKOW F, REYER C, et al., 2016. The impact of climate change under different thinning managements on carbon sequestration in a German forest district[J]. Mitigation and Adaptation Strategies for Global Change, 21(6): 861-881.
DOI URL |
[4] | BRAVO F, LEMAY V, JANDL R, 2017. Managing forest ecosystems: the challenge of climate change[M]. Second edition. Cham (Switzerland): Springer: 1-5. |
[5] | FAO, 2020. Global forest resources assessment 2020 [R]. Rome: FAO. |
[6] | HARTIKAINEN M, EYVINDSON K, MIETTINEN K, et al., 2016. Data-Based Forest Management with Uncertainties and Multiple Objectives//International Workshop on Machine Learning, Optimization and Big Data[R]. Cham (Switzerland): Springe: 16-29. |
[7] |
JANDL R, NEUMANN M, ECKMULLNER O, 2007. Productivity increase in Northern Austria Norway spruce forests due to changes in nitrogen cycling and climate[J]. Journal of Plant Nutrition and Soil Science, 170(1): 157-165.
DOI URL |
[8] |
LAL R, 2005. Forest soils and carbon sequestration[J]. Forest Ecology and Management, 220(1-3): 242-258.
DOI URL |
[9] | MALTAMO M, NAESSET E, VAUHKONEN J, 2014. Forestry applications of airborne laser scanning: Concepts and case studies[R]. Cham (Switzerland): Springer: 18-20. |
[10] |
MCROBERTS R E, WINTER S, GHIRICI G, 2012. Assessing forest naturalness[J]. Forest Science, 58(3): 294-309.
DOI URL |
[11] |
RAISA M, TAPIO L, SAMI N, et al., 2011. How forest management and climate change affect the carbon sequestration of a Norway spruce stand?[J]. Journal of Forest Planning, 16: 1-15.
DOI URL |
[12] |
SEIDL R, RAMMER W, JAGER D, et al., 2007. Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria[J]. Forest Ecology and Management, 248(1): 64-79.
DOI URL |
[13] |
TRIVINO M, JUUTINEN A, MAZZIOTTA A, et al., 2015. Managing a boreal forest landscape for providing timber, storing and sequestering carbon[J]. Ecosystem Services, 14: 179-189.
DOI URL |
[14] |
ZANCHI G, BELYAZID S, AKSELSSON C, et al., 2014. Modelling the effects of management intensification on multiple forest services: A Swedish case study[J]. Ecological Model, 284: 48-59.
DOI URL |
[15] | 崔鹏程, 2017. 近自然森林经营中的目标树作业法[J]. 山西林业, 246(1): 20-21. |
CUI P C, 2017. Target tree operation method in near natural forest management[J]. Shanxi Forestry, 246(1): 20-21. | |
[16] | 董莉莉, 刘红民, 汪成成, 等, 2019. 间伐对蒙古栎次生林生态系统碳储量的短期和长期影响[J]. 沈阳农业大学学报, 50(5): 614-620. |
DONG L L, LIU H M, WANG C C, et al., 2019. Short-term and long-term effects of thinning on carbon storage of Quercus mongolica secondary forests[J]. Journal of Shenyang Agricultural University, 50(5): 614-620. | |
[17] | 冯琪雅, 陈超凡, 覃林, 等, 2018. 不同经营模式对蒙古栎天然次生林植被的影响研究[J]. 林业科学, 54(1): 12-21. |
FENG Q Y, CHEN C F, QIN L, et al., 2018. Effects of different forest management models on vegetation of natural secondary Quecus Mongolica forests[J]. Scientia Silvae Sinicae, 54(1):12-21. | |
[18] | 关继义, 陈义亮, 祝宁, 等, 1999. 灌木层及主要灌木树种在蒙古栎林养分循环中的地位和作用[J]. 植物研究, 19(1): 100-110. |
GUAN J Y, CHEN Y L, ZHU N, et al., 1999. Status and role of the shrub layer and its main shrub species in nutrient cycling of mongolian oak forest[J]. Bulletin of Botanical Research, 19(1): 100-110. | |
[19] | 关松荫, 1986. 土壤酶及其研究法[M]. 北京: 农业出版社: 68. |
GUAN S Y, 1986. Soil enzymes and its methodology[M]. Beijing: Agricultural Press: 68. | |
[20] | 郭诗宇, 胡伯特, 福斯特, 等, 2021. 目标树经营:德国经验与湖北实践[J]. 世界林业研究, 34(2):14-20. |
GUO S Y, HU B T, FU S T, et al., 2021. Target tree management: German experience and Hubei practices[J]. World Forestry Research, 34(2): 14-20. | |
[21] | 何列艳, 亢新刚, 范小莉, 等, 2011. 长白山区林下主要灌木生物量估算与分析[J]. 南京林业大学学报, 35(5): 45-50. |
HE L Y, KANG X G, FAN X L, et al., 2011. Estimation and analysis of understory shrub biomass in Changbai Mountains[J]. Journal of Nanjing Forestry University, 35(5): 45-50. | |
[22] | 何友均, 覃林, 李志勇, 2013. 森林经营对多维目标功能的影响评价与模拟研究[M]. 北京: 科学出版社:17. |
HE Y J, QIN L, LI Z Y, 2013. Impact assessment of forest management strategies on multi-purposes and its modeling[M]. Beijing: Since Press: 17. | |
[23] | 侯元兆, 陈幸良, 孙国吉, 2017. 栎类经营[M]. 北京: 中国林业出版社. |
HOU Y Z, CHEN X L, SUN G J, 2017. Lilei Jingying[M]. Beijing: China Forestry Publishing House. | |
[24] | 胡会峰, 刘国华, 2006. 森林管理在全球CO2减排中的作用[J]. 应用生态学报, 17(4): 709-714. |
HU H F, LIU G H, 2006. Roles of forest management in global carbon dioxide mitigation[J]. Journal of Applied Ecology, 17(4): 709-714.
DOI URL |
|
[25] | 胡雪凡, 张会儒, 周超凡, 等, 2019, 不同抚育间伐方式对蒙古栎次生林空间结构的影响[J]. 北京林业大学学报, 41(5): 137-147. |
HU X F, ZHANG H R, ZHOU C F, et al., 2019. Effects of different thinning patterns on the spatial structure of Quercus mongolica secondary forests[J]. Journal of Beijing Forestry University, 41(5): 137-147. | |
[26] | 姜萍, 叶吉, 吴刚, 2005. 长白山阔叶红松林大样地木本植物组成及主要树种的生物量[J]. 北京林业大学学报, 27(增刊): 112-115. |
JIANG P, YE J, WU G, 2005. Woody species composition and biomass of main tree species in a 25 hm2 plot of broadleaved and Korean pine mixed forests of Changbai Mountain, northeast China[J]. Journal of Beijing Forestry University, 27(Supp 2): 112-115. | |
[27] | 梁星云, 何友均, 张谱, 等, 2013. 不同经营模式对丹清河林场天然次生林植物群落结构及其多样性的影响[J]. 林业科学, 49(3): 93-102. |
LIANG X Y, HE Y J, ZHANG P, et al., 2013. Effects of different forest management managements on plant community structure and biodiversity of natural secondary forests in Danqinghe Forestry Farm[J]. Scientia Silvae Sinicae, 49(3): 93-102. | |
[28] | 刘恩, 王晖, 刘世荣, 2012. 南亚热带不同林龄红锥人工林碳贮量与碳固定特征[J]. 应用生态学报, 23(2): 335-340. |
LIU E, WANG H, LIU S R, 2012. Characteristics of carbon storage and sequestration in different age beech (Castanopsis hystrix) plantations in south subtropical area of China[J]. Chinese Journal of Applied Ecology, 23(2): 335-340. | |
[29] | 陆元昌, 雷相东, 洪玲霞, 等, 2010. 近自然森林经理计划体系技术应用示范[J]. 西南林学院学报, 30(2): 1-6. |
LU Y C, LEI X D, HONG L X, et al., 2010. Demonstrative application of the close-to-nature forest management planning system to forestry practice[J]. Journal of Southwest Forestry University, 30(2): 1-6. | |
[30] | 全锋, 周超凡, 段光爽, 等, 2020. 基于蓄积生长率的蒙古栎天然次生林抚育间伐研究[J]. 林业科学研究, 33(2): 61-68. |
QUAN F, ZHOU C F, DUAN G S, et al., 2020. Thinning and tending of natural secondary forest of Quercus mongolica based on volume growth rate[J]. Forest Research, 33(2): 61-68. | |
[31] | 戎建涛, 何友均, 2014. 不同森林经营模式对丹清河林场天然次生林碳贮量的影响[J]. 林业科学, 50(9): 26-35. |
RONG J T, HE Y J, 2014. Effects of different forest management managements on carbon stock in natural secondary forests at Danqinghe Forestry Farm[J]. Scientia SilvaeSinicae, 50(9): 26-35. | |
[32] | 孙德权, 2015. 蒙古栎林间伐抚育林龄级及种群变化规律的研究[J]. 防护林科技, 146(11): 48-50. |
SUN D Q, 2015. Variation regularity of population and age class of tending thinning in Quercus mongolica plantation[J]. Protection Forest Science and Technology, 146(11): 48-50. | |
[33] | 魏文俊, 尤文忠, 柴兵, 等, 2015. 辽东山区蒙古栎天然林固碳特征研究[J]. 防护林科技, 137(2): 1-4. |
WEN W J, YOU W Z, CHAI B, et al., 2015. Carbon fixation of Quercus mongolica plantation in mountainous area in eastern Liaoning province[J]. Protection Forest Science and Technology, 137(2): 1-4. | |
[34] | 吴水荣, 海因里希·施皮克尔, 陈绍志, 等, 2015. 德国森林经营及其启示[J]. 林业经济, 37(1): 50-55. |
WU S R, HEINRICH S, CHEN S Z, et al., 2015. Forest management in Germany and its inspirations for China[J]. Forestry Economics, 37(1): 50-55. | |
[35] | 徐振邦, 李昕, 戴洪才, 1985. 长白山阔叶红松林生物生产量的研究[J]. 森林生态系统研究 (5): 33-46. |
XU Z B, L X, DAI H C, 1985. Study on biomass of broad-leaved Korean pine forest in Changbai Mountain[J]. Forest Ecosystem Research (5): 33-46. | |
[36] | 尤文忠, 魏文俊, 邢兆凯, 等, 2011. 辽东山区落叶松人工林和蒙古栎天然次生林的固碳功能[J]. 东北林业大学学报, 39(10): 21-24. |
YOU W Z, WEI W J, XING Z K, et al., 2011. Carbon fixation of larch plantations and natural secondary forests in mountainous regions of eastern Liaoning[J]. Journal of Northeast Forestry University, 39(10): 21-24. | |
[37] | 张象君, 王庆成, 王石磊, 等, 2011. 小兴安岭落叶松人工纯林目标树化改造对林下植物多样性的影响[J]. 林业科学, 47(1): 6-14. |
ZHANG X J, WANG Q C, WANG S L et al., 2011. Effect of the close-to-nature transformation of Larix gmelinii Pure stands on plant diversity of Understory Vegetation in Xiaoxing'an mountains of China[J]. Scientia Silvae Sinicae, 47(1): 6-14. | |
[38] | 张晓红, 张会儒, 2019. 蒙古栎次生林垂直结构特征对目标树经营的响应[J]. 北京林业大学学报, 41(5): 56-65. |
ZHANG X H, ZHANG H R, 2019. Response of vertical structure characteristics of natural secondary Quercus mongolica forest to crop tree release[J]. Journal of Beijing Forestry University, 41(5): 56-65. | |
[39] | 张晓红, 张会儒, 卢军, 等, 2016. 美国目标树经营体系及其经营效果研究进展[J]. 世界林业研究, 29(1): 91-96. |
ZHANG X H, ZHANG H R, LU J, et al., 2016. Research progress in crop tree release and its effect in the United States[J]. World Forestry Research, 29(1): 91-96. | |
[40] | 张晓红, 张会儒, 卢军, 等, 2020. 目标树抚育间伐对蒙古栎天然次生林生长的初期影响[J]. 林业科学, 56(10): 83-92. |
ZHANG X H, ZHANG H R, LU J, et al., 2020. Early effects of crop tree release tending on growth of natural secondary Quercus mongolica forest[J]. Scientia SilvaeSinicae, 56(10): 83-92. |
[1] | HE Yating, HE Youjun, WANG Peng, XIE Hesheng. Effects of Different Forest Management Regimes on Soil Organic Carbon in Aggregate Fractions in Natural Secondary Quercus mongolica Forests [J]. Ecology and Environment, 2023, 32(1): 11-17. |
[2] | CHEN Keyi, WANG Jianjun, HE Youjun, ZHANG Liwen. Estimations of Forest Carbon Storage and Carbon Sequestration Potential of Key State-Owned Forest Region in Daxing’anling, Heilongjiang Province [J]. Ecology and Environment, 2022, 31(9): 1725-1734. |
[3] | XIAO Jun, LEI Lei, ZENG Lixiong, LI Zhaochen, MA Chenggong, XIAO Wenfa. Effects of Different Management Regimes on Carbon Stock of Pinus tabulaeformis Plantations in Northern China [J]. Ecology and Environment, 2022, 31(11): 2134-2142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn