Ecology and Environment ›› 2022, Vol. 31 ›› Issue (12): 2302-2309.DOI: 10.16258/j.cnki.1674-5906.2022.12.004
Previous Articles Next Articles
SHENG Jifeng1,2,3(), LI Yao3,4, YU MeiJia3,4, HAN Yanying1,2,3,4, YE Yanhui1,2,3,4,*(
)
Received:
2022-09-22
Online:
2022-12-18
Published:
2023-02-15
Contact:
YE Yanhui
盛基峰1,2,3(), 李垚3,4, 于美佳3,4, 韩艳英1,2,3,4, 叶彦辉1,2,3,4,*(
)
通讯作者:
叶彦辉
作者简介:
盛基峰(1998年生),男,硕士研究生,主要从事高寒草地氮沉降研究。E-mail: 2459993896@qq.com
基金资助:
CLC Number:
SHENG Jifeng, LI Yao, YU MeiJia, HAN Yanying, YE Yanhui. Effects of Nitrogen and Phosphorus An Addition on Soil Nutrients and Activity of Related Enzymes in Alpine Grassland[J]. Ecology and Environment, 2022, 31(12): 2302-2309.
盛基峰, 李垚, 于美佳, 韩艳英, 叶彦辉. 氮磷添加对高寒草地土壤养分和相关酶活性的影响[J]. 生态环境学报, 2022, 31(12): 2302-2309.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.12.004
土壤养分名称 Soil nutrient name | 单位 Unit | 养分含量 Nutrient content |
---|---|---|
pH | 5.68 | |
有机碳 Organic carbon | g∙kg−1 | 42.51 |
全氮 Total nitrogen | g∙kg−1 | 2.78 |
全磷 Total phosphorus | g∙kg−1 | 0.70 |
铵态氮 Ammonium nitrogen | mg∙kg−1 | 18.60 |
硝态氮 Nitrate nitrogen | mg∙kg−1 | 0.68 |
有效磷 Available phosphorus | mg∙kg−1 | 14.26 |
Table 1 Original soil conditions of the test plot
土壤养分名称 Soil nutrient name | 单位 Unit | 养分含量 Nutrient content |
---|---|---|
pH | 5.68 | |
有机碳 Organic carbon | g∙kg−1 | 42.51 |
全氮 Total nitrogen | g∙kg−1 | 2.78 |
全磷 Total phosphorus | g∙kg−1 | 0.70 |
铵态氮 Ammonium nitrogen | mg∙kg−1 | 18.60 |
硝态氮 Nitrate nitrogen | mg∙kg−1 | 0.68 |
有效磷 Available phosphorus | mg∙kg−1 | 14.26 |
土壤养分名称 Soil nutrient name | 单位 Unit | 测定方法 Test methods |
---|---|---|
pH | pH计测定 | |
有机碳 Organic carbon | g∙kg−1 | 重铬酸钾氧化-外加热法 |
全氮 Total nitrogen | g∙kg−1 | 凯氏定氮法 |
全磷 Total phosphorus | g∙kg−1 | 钼锑抗比色法 |
铵态氮 Ammonium nitrogen | mg∙kg−1 | 氯化钾浸提-紫外分光光度法 |
硝态氮 Nitrate nitrogen | mg∙kg−1 | 氯化钙浸提-紫外分光光度法 |
有效磷 Available phosphorus | mg∙kg−1 | 碳酸氢铵浸提-钼锑抗比色法 |
蔗糖酶 Sucrase activity | μg∙g−1∙h−1 | 3, 5-二硝基水杨酸比色法 |
葡萄糖苷酶 Glucosidase activity | U∙g−1 | 标准硫代硫酸钠滴定法 |
脲酶 Urease activity | μg∙g−1∙h−1 | 苯酚-次氯酸钠比色法 |
Table 2 Methods for determination of soil physical and chemical properties and enzyme activity
土壤养分名称 Soil nutrient name | 单位 Unit | 测定方法 Test methods |
---|---|---|
pH | pH计测定 | |
有机碳 Organic carbon | g∙kg−1 | 重铬酸钾氧化-外加热法 |
全氮 Total nitrogen | g∙kg−1 | 凯氏定氮法 |
全磷 Total phosphorus | g∙kg−1 | 钼锑抗比色法 |
铵态氮 Ammonium nitrogen | mg∙kg−1 | 氯化钾浸提-紫外分光光度法 |
硝态氮 Nitrate nitrogen | mg∙kg−1 | 氯化钙浸提-紫外分光光度法 |
有效磷 Available phosphorus | mg∙kg−1 | 碳酸氢铵浸提-钼锑抗比色法 |
蔗糖酶 Sucrase activity | μg∙g−1∙h−1 | 3, 5-二硝基水杨酸比色法 |
葡萄糖苷酶 Glucosidase activity | U∙g−1 | 标准硫代硫酸钠滴定法 |
脲酶 Urease activity | μg∙g−1∙h−1 | 苯酚-次氯酸钠比色法 |
Figure 1 Effects of nitrogen and phosphorus addition on soil pH Different capital letters show significant difference at the 0.05 level in the same row. The same below
土壤养分名称 Soil nutrient name | pH | 有机碳 Organic carbon | 全氮 Total nitrogen | 全磷 Total phosphorus | 铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 有效磷 Available phosphorus | 蔗糖酶 Sucrase activity | 葡萄糖苷酶 Glucosidase activity |
---|---|---|---|---|---|---|---|---|---|
有机碳 Organic carbon | 0.544 | 1 | |||||||
全氮 Total nitrogen | 0.704* | −0.195 | 1 | ||||||
全磷 Total phosphorus | 0.096 | 0.708* | −0.415 | 1 | |||||
铵态氮 Ammonium nitrogen | 0.960** | 0.543 | 0.697* | 0.156 | 1 | ||||
硝态氮 Nitrate nitrogen | 0.969** | 0.395 | 0.814** | −0.053 | 0.962** | 1 | |||
有效磷 Available phosphorus | 0.955** | 0.678* | 0.574 | 0.334 | 0.962** | 0.904** | 1 | ||
蔗糖酶 Sucrase activity | 0.455 | 0.987** | −0.278 | 0.712* | 0.481 | 0.317 | 0.607 | 1 | |
葡萄糖苷酶 Glucosidase activity | 0.838** | 0.904** | 0.233 | 0.497 | 0.846** | 0.744* | 0.909** | 0.863** | 1 |
脲酶 Urease activity | −0.965** | −0.675* | −0.566 | −0.228 | −0.970** | −0.925** | −0.961** | −0.608 | −0.921** |
Table 3 Pearson correlation analysis of soil properties after different treatments
土壤养分名称 Soil nutrient name | pH | 有机碳 Organic carbon | 全氮 Total nitrogen | 全磷 Total phosphorus | 铵态氮 Ammonium nitrogen | 硝态氮 Nitrate nitrogen | 有效磷 Available phosphorus | 蔗糖酶 Sucrase activity | 葡萄糖苷酶 Glucosidase activity |
---|---|---|---|---|---|---|---|---|---|
有机碳 Organic carbon | 0.544 | 1 | |||||||
全氮 Total nitrogen | 0.704* | −0.195 | 1 | ||||||
全磷 Total phosphorus | 0.096 | 0.708* | −0.415 | 1 | |||||
铵态氮 Ammonium nitrogen | 0.960** | 0.543 | 0.697* | 0.156 | 1 | ||||
硝态氮 Nitrate nitrogen | 0.969** | 0.395 | 0.814** | −0.053 | 0.962** | 1 | |||
有效磷 Available phosphorus | 0.955** | 0.678* | 0.574 | 0.334 | 0.962** | 0.904** | 1 | ||
蔗糖酶 Sucrase activity | 0.455 | 0.987** | −0.278 | 0.712* | 0.481 | 0.317 | 0.607 | 1 | |
葡萄糖苷酶 Glucosidase activity | 0.838** | 0.904** | 0.233 | 0.497 | 0.846** | 0.744* | 0.909** | 0.863** | 1 |
脲酶 Urease activity | −0.965** | −0.675* | −0.566 | −0.228 | −0.970** | −0.925** | −0.961** | −0.608 | −0.921** |
[1] |
BERENDSE F, NVAN B, RYDIN H, et al., 2001. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs[J]. Global Change Biology, 7(5): 591-598.
DOI URL |
[2] |
FAYIAH M, DONG S K, KHOMERA S W, et al., 2020. Status and challenges of Qinghai-Tibet Plateau’s grasslands: An analysis of causes, mitigation measures, and way forward[J]. Sustainability, 12(3): 1099-1120.
DOI URL |
[3] |
FU G, SHEN Z X, 2017. Response of alpine soils to nitrogen addition on the Tibetan Plateau: A meta-analysis[J]. Applied Soil Ecology, 114: 99-104.
DOI URL |
[4] |
GONG S W, ZHANG T, GUO J X, 2020. Warming and nitrogen deposition accelerate soil phosphorus cycling in a temperate meadow ecosystem[J]. Soil Research, 58(1): 109-115.
DOI URL |
[5] |
HARPOLE W S, NGAI J T, CLELAND E E, et al., 2011. Nutrient co-limitation of primary producer communities[J]. Ecology Letters, 14(9): 852-862.
DOI PMID |
[6] |
HU W J, TAN J R, SHI X R, et al., 2022. Nutrient addition and warming alter the soil phosphorus cycle in grasslands: A global meta-analysis[J]. Journal of Soils and Sediments, 22(10): 2608-2619.
DOI URL |
[7] |
JING X, YANG X X, REN F, et al., 2016. Neutral effect of nitrogen addition and negative effect of phosphorus addition on topsoil extracellular enzymatic activities in an alpine grassland ecosystem[J]. Applied Soil Ecology, 107: 205-213.
DOI URL |
[8] |
LI J H, CHENG B H, ZHANG R, et al., 2020. Nitrogen and phosphorus additions accelerate decomposition of slow carbon pool and lower total soil organic carbon pool in alpine meadows[J]. Land Degradation & Development, 32(4): 1761-1772.
DOI URL |
[9] |
LI Q, LÜ J H, PENG C H, et al., 2021. Nitrogen-addition accelerates phosphorus cycling and changes phosphorus use strategy in a subtropical Moso bamboo forest[J]. Environmental Research Letters, 16(2): 024023.
DOI URL |
[10] |
LIU M H, GAN B P, LI Q, et al., 2022. Effects of Nitrogen and Phosphorus Addition on Soil Extracellular Enzyme Activity and Stoichiometry in Chinese Fir (Cunninghamia lanceolata) Forests[J]. Frontiers in Plant Science, 13: 834184.
DOI URL |
[11] |
LIU S B, ZAMANIAN K, SCHLEUSS P, et al., 2018. Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles[J]. Agriculture Ecosystem & Environment, 252: 93-104.
DOI URL |
[12] |
LUO R Y, FAN J L, WANG W J, et al., 2019. Nitrogen and phosphorus enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan Plateau[J]. Science of The Total Environment, 650: 303-312.
DOI URL |
[13] |
LUO R Y, KUZYAKOV Y, LIU D Y, et al., 2020. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls[J]. Soil Biology and Biochemistry, 144: 107764-107775.
DOI URL |
[14] |
MOORHEAD D L, RINKES Z L, SINSABAUGH R L, et al., 2013. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models[J]. Frontiers in Microbiology, 4: 223-235.
DOI PMID |
[15] | SONG X Z, PENG C H, CIAIS P, et al., 2020. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest[J]. Science Advances, 6(12): 5790-5799. |
[16] |
ULLAH S, AI C, HUANG S, et al., 2019. The responses of extracellular enzyme activities and microbial community composition under nitrogen addition in an upland soil[J]. PLoS ONE, 14(9): e0223026.
DOI URL |
[17] |
VANCE C P, UHDE-STONE C, ALLAN D.L, 2003. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource[J]. The New Phytologist, 157(3): 423-447.
DOI URL |
[18] |
WANG R, BALKANSKI Y, BOUCHER O, CIAIS P, et al., 2015. Significant contribution of combustion related emissions to the atmospheric phosphorus budget[J]. Nature Geoscience, 8: 48-54.
DOI URL |
[19] |
WIDDIG M, HEINTZ B A, SCHLEUSS P M, et al., 2020. Efects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil[J]. Soil Biology and Biochemistry, 151: 108041.
DOI URL |
[20] |
WU Y, ZHOU H K, SUN W, et al., 2022. Temperature sensitivity of soil enzyme kinetics under N and P fertilization in an alpine grassland, China[J]. Science of The Total Environment, 838(5): 156042.
DOI URL |
[21] |
XIAO H, YANG H L, ZHAO M L, et al., 2021. Soil extracellular enzyme activities and the abundance of nitrogen-cycling functional genes responded more to N addition than P addition in an Inner Mongolian meadow steppe[J]. Science of The Total Environment, 759(1): 143541.
DOI URL |
[22] |
YANG S, XU Z W, WANG R Z, et al., 2017. Variations in soil microbial community composition and enzymatic activities inresponse to increased N deposition and precipitation in Inner Mongolian grassland[J]. Applied soil ecology, 119: 275-285.
DOI URL |
[23] |
YU T Y, GUANUAN H, BATELAAN O, et al., 2016. Contrasting responses of water use efficiency to drought across globalterrestrial ecosystems[J]. Scientific reports, 6: 23284.
DOI URL |
[24] | ZI H B, HU L, WANG C T, 2022. Differentiate responses of soil microbial community and enzyme activities to nitrogen and phosphorus addition rates in an alpine meadow[J]. Frontiers in Plant Science, 833: 155163-155163. |
[25] | 曹石榴, 2019. 土壤化学营养元素研究[J]. 农村经济与科技, 30(21): 32-33. |
CAO S L, 2019. Research on soil chemical nutrient elements[J]. Rural Economy and Technology, 30(21): 32-33. | |
[26] | 方运霆, 莫江明, 周国逸, 等, 2004. 南亚热带森林土壤有效氮含量及其对模拟氮沉降增加的初期响应[J]. 生态学报, 24(11): 2353-2359. |
FANG Y T, MO J M, ZHOU G Y, et al., 2004. The short-term responses of soil available nitrogen of Dinghushan forests to simulated N deposition in subtropical China[J]. Acta Ecologica Sinica. 24(11): 2353-2359. | |
[27] |
范珍珍, 王鑫, 王超, 等, 2018. 整合分析氮磷添加对土壤酶活性的影响[J]. 应用生态学报, 29(4): 1266-1272.
DOI |
FAN Z Z, WANG X, WANG C, et al., 2018. Effect of nitrogen and phosphorus addition on soil enzyme activities: A meta-analysis[J]. Chinese Journal of Applied Ecology, 29(4): 1266-1272.
DOI |
|
[28] | 冯慧芳, 余明, 薛立, 2020. 外源性氮磷添加及林分密度对大叶相思林土壤酶活性的影响[J]. 生态学报, 40(14): 4894-4902. |
FENG H F, YU M, XUE L, 2020. Effects of nitrogen and phosphorus additions on soil enzyme activities in Acacia auriculiformis stands under different planting densities[J]. Acta Ecologica Sinica, 40(14): 4894-4902. | |
[29] | 刘红梅, 周广帆, 李洁, 等, 2018. 氮沉降对贝加尔针茅草原土壤酶活性的影响[J]. 生态环境学报, 27(8): 1387-1394. |
LIU H M, ZHOU G F, LI J, et al., 2018. Effects of nitrogen deposition on soil enzyme activities of Stipa baicalensis steppe[J]. Ecology and Environmental Sciences, 27(8): 1387-1394. | |
[30] | 刘姝萱, 安慧, 张馨文, 等, 2022. 氮磷添加对荒漠草原植物-凋落物-土壤生态化学计量特征的影响[J/OL]. 生态学报, https://kns.cnki.net/kcms/detail/11.2031.Q.20220618.1156.010.html. |
LIU S X, AN H, ZHANG X W, et al., 2022. Effects of nitrogen and phosphorus addition on the ecological stoichiometry of plant-litter-soil in desert grassland[J/OL]. Acta Ecologica Sinica, https://kns.cnki.net/ kcms/detail/11.2031.Q.20220618.1156.010.html. | |
[31] | 宋学贵, 胡庭兴, 鲜骏仁, 等, 2009. 川南天然常绿阔叶林土壤酶活性特征及其对模拟N沉降的响应[J]. 生态学报, 29(3): 1234-1240. |
SONG X G, HU T X, XIAN J R, et al., 2009. Soil enzyme activities and its response to simulated nitrogen deposition in an evergreen broad-leaved forest, southern Sichuan[J]. Acta Ecologica Sinica. 29(3): 1234-1240. | |
[32] | 苏洁琼, 李新荣, 鲍婧婷, 2014. 施氮对荒漠化草原土壤理化性质及酶活性的影响[J]. 应用生态学报, 25(3): 664-670. |
SU J Q, LI X R, BAO J T, 2014. Effects of nitrogen addition on soil physico-chemical properties and enzyme activities in desertified steppe[J]. Chinese Journal of Applied Ecology, 25(3): 664-670. | |
[33] | 苏渝钦, 刘何铭, 郑泽梅, 等, 2016. 氮磷添加对中亚热带常绿阔叶林土壤有效氮和pH值的影响[J]. 生态学杂志, 35(9): 2279-2285. |
SU Y Q, LIU H M, ZHEN Z M, et al., 2016. Effects of N and P addition on soil available nitrogen and pH in a subtropical forest[J]. Chinese Journal of Ecology, 35(9): 2279-2285. | |
[34] | 孙亚男, 李茜, 李以康, 等, 2016. 氮、磷养分添加对高寒草甸土壤酶活性的影响[J]. 草业学报, 25(2): 18-26. |
SUN Y N, LI Q, LI Y K, et al., 2016. The effect of nitrogen and phosphorus applications on soil enzyme activities in Qinghai-Tibetan alpine meadows[J]. Acta Prataculturae Sinica, 25(2): 18-26. | |
[35] | 史晓鹏, 2018. 施氮磷肥对半干旱区不同生长年限紫花苜蓿地上生物量及土壤养分和水分的影响[D]. 兰州: 兰州大学. |
SHI X P, 2018. The effect of nitrogen and phosphorus fertilizer on different growing year alfalfa aboveground biomass, soil nutrients and soil water in semi-arid area[D]. Lanzhou: Lanzhou University. | |
[36] | 王常慧, 邢雪荣, 韩兴国, 2004. 草地生态系统中土壤氮素矿化影响因素的研究进展[J]. 应用生态学报, 15(11): 2184-2188. |
WANG C H, XING X R, HAN X G, 2004. Research progress on influencing factors of soil nitrogen mineralization in grassland ecosystems[J]. Chinese Journal of Applied Ecology, 15(11): 2184-2188. | |
[37] | 涂利华, 胡庭兴, 张健, 等, 2009. 华西雨屏区苦竹林土壤酶活性对模拟氮沉降的响应[J]. 应用生态学报, 20(12): 2943-2948. |
TU L H, HU T X, ZHANG J, et al., 2009. Soil enzyme activities in a Pleioblastus amurus plantation in rainy area of west China under simulated nitrogen deposition[J]. Chinese Joumal of Applied Ecology, 20(12): 2943-2948. | |
[38] | 魏金明, 姜勇, 符明明, 等, 2011. 水、肥添加对内蒙古典型草原土壤碳、氮、磷及pH的影响[J]. 生态学杂志, 30(8): 1642-1646. |
WEI J M, JIANG Y, FU M M, et al., 2011. Effects of water addition and fertilization on soil nutrient contents and pH value of typical grassland in Inner Mongolia[J]. Chinese Journal of Ecology, 30(8): 1642-1646. | |
[39] |
吴建波, 王小丹, 2021. 藏北高寒草原土壤酶活性对氮添加的响应及其影响因素[J]. 草地学报, 29(3): 555-562.
DOI |
WU J B, WANG X D, 2021. Responses of soil enzyme activities to nitrogen addition and its impace factors at the alpine steppe of northern Tibet[J]. Acta Agrestia Sinica. 29(4): 555-562. | |
[40] | 文旻, 胡启斌, 阳文静, 等, 2021. 氮、磷添加对鄱阳湖典型苔草湿地土壤养分和植物生物量的影响[J]. 生态学杂志, 40(6): 1669-1676. |
WEN Y, HU Q B, YANG W J, 2021. Effects of nitrogen and phosphorus addition on soil nutrients and plant biomass in a typical Poyang Lake marshland[J]. Chinese Journal of Ecology, 40(8): 1669-1676. | |
[41] |
叶彦辉, 刘云龙, 韩艳英, 等, 2017. 氮沉降对西藏高山灌丛草甸土壤理化性质的短期影响[J]. 草地学报, 25(5): 973-981.
DOI |
YE Y H, LIU Y L, HAN Y Y, et al., 2017. Short-term effects of nitrogen deposition on soil physical and chemical properties of alpine shrub meadow in Tibet[J]. Acta Agrestia Sinica, 25(5): 973-981. | |
[42] | 张进霞, 2014. 氮磷调控对紫花苜蓿生产性能及其土壤养分特性的影响[D]. 兰州: 甘肃农业大学. |
ZHANG J X, 2014. Effect of nitrogen and phosphorus supply levels on productivity and the soil nutriment feature of alfalfa[D]. Lanzhou: Gansu Agricultural University. | |
[43] |
赵晓琛, 皇甫超河, 刘红梅, 等, 2016. 贝加尔针茅草原土壤酶活性及微生物量碳氮对养分添加的响应[J]. 草地学报, 24(1): 47-53.
DOI |
ZHAO X S, HANGFU C H, LIU H M, et al., 2016. Response of soil enzyme activity and microbial biomass carbon and nitrogen to the nutrient addition of Stipa baicalensis Steppe in Inner Mongolia[J]. Acta Agrestia Sinica, 24(1): 47-53. | |
[44] | 翟珈莹, 2020. 氮磷添加对青藏高原高寒草地土壤微生物及化学计量特征的影响[D]. 咸阳: 中国科学院大学 (中国科学院教育部水土保持与生态环境研究中心). |
ZHAI J Y, 2020. Effects of nitrogen and phosphorus addition on soil microbes and stoichiometric characteristic of alpine meadow in Qinghai-Tibet lateau[D]. Xianyang: Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education. |
[1] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[2] | ZHOU Qinyuan, DONG Quanmin, Wang Fangcao, LIU Yuzhen, FENG Bin, YANG Xiaoxia, YU Yang, ZHANG Chunping, CAO Quan, LIU Wenting. Effects of Mixed Grazing on Aggregates and Organic Carbon in Rhizosphere Soil of Stellera chamaejasme in Alpine Grassland [J]. Ecology and Environment, 2023, 32(4): 660-667. |
[3] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[4] | ZHANG Beier, WU Jianqiang, WANG Min, XIONG Lijun, TAN Juan, SHEN Cheng, HUANG Botao, HUANG Shenfa. Evaluation of Soil Health in Different Arable Land Ecological Conservation Projects [J]. Ecology and Environment, 2023, 32(2): 388-396. |
[5] | YANG Chong, WANG Chunyan, WANG Wenying, MAO Xufeng, ZHOU Huakun, CHEN Zhe, SUONANJi , JIN Lei, MA Huaqing. Soil Nutrient Characteristics and Quality Evaluation of Alpine Grassland in the Source Area of the Yellow River on the Qinghai Tibet Plateau [J]. Ecology and Environment, 2022, 31(5): 896-908. |
[6] | LONG Jing, HUANG Yao, LIU Zhanfeng, JIAN Shuguang, WEI Liping, WANG Jun. Leaf Traits and Nutrient Resorption of Two Woody Species on A Tropical Coral Island [J]. Ecology and Environment, 2022, 31(2): 248-256. |
[7] | YU Fei, YE Caihong, XU Tiaozi, ZHANG Zhongrui, ZHU Hangyong, ZHANG Geng, HUA Lei, DENG Jianfeng, DING Xiaogang. Evaluation of Heavy Metal Pollution in Woodland Soil of Granite Area in Shaoguan City [J]. Ecology and Environment, 2022, 31(2): 354-362. |
[8] | ZHANG Xiaoli, WANG Guoli, CHANG Fangdi, ZHANG Hongyuan, PANG Huancheng, ZHANG Jianli, WANG Jing, JI Hongjie, LI Yuyi. Effects of Microbial Agents on Physicochemical Properties and Microbial Flora of Rhizosphere Saline-alkali Soil [J]. Ecology and Environment, 2022, 31(10): 1984-1992. |
[9] | ZONG Ning, SHI Peili, ZHU Juntao. Changes of Plant Community Composition and Niche Characteristics during Desertification Process in An Alpine Steppe [J]. Ecology and Environment, 2021, 30(8): 1561-1570. |
[10] | LIAO Yingchun, DUAN Honglang, SHI Xingxing, MENG Qingyin, LIU Wenfei, SHEN Fangfang, FAN Houbao, ZHU Tao. The Relationship between the Stand Growth and Root Biomass of Cunninghamia lanceolate Plantations [J]. Ecology and Environment, 2021, 30(6): 1121-1128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn