Ecology and Environment ›› 2022, Vol. 31 ›› Issue (9): 1919-1926.DOI: 10.16258/j.cnki.1674-5906.2022.09.023
• Perspectives • Previous Articles
WU Haoping1,2,3(), QIN Hongjie1,3, HE Bin2, YOU Yi1, CHEN Jinfeng1, ZOU Chunping1, YANG Siyu1, HAO Beibei2,*(
)
Received:
2022-05-08
Online:
2022-09-18
Published:
2022-11-07
Contact:
HAO Beibei
吴昊平1,2,3(), 秦红杰1,3, 贺斌2, 尤毅1, 陈金峰1, 邹春萍1, 杨思雨1, 郝贝贝2,*(
)
通讯作者:
郝贝贝
作者简介:
吴昊平(1986年生),男,助理研究员,博士,研究方向为湿地碳氮耦合循环、水生植物生态环境效应与水环境生态修复。E-mail: wuhaoping@gdaas.cn
基金资助:
CLC Number:
WU Haoping, QIN Hongjie, HE Bin, YOU Yi, CHEN Jinfeng, ZOU Chunping, YANG Siyu, HAO Beibei. A Brief Discussion on the Development Trend of the Agricultural Non-point Source Pollution Control Model Based on Carbon Neutrality[J]. Ecology and Environment, 2022, 31(9): 1919-1926.
吴昊平, 秦红杰, 贺斌, 尤毅, 陈金峰, 邹春萍, 杨思雨, 郝贝贝. 基于碳中和的农业面源污染治理模式发展态势刍议[J]. 生态环境学报, 2022, 31(9): 1919-1926.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.09.023
[1] | ALVES M, GRIGNARD B, MEREAU R, et al., 2017. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies[J]. Catalysis Science & Technology, 7(13): 2651-2684. |
[2] |
ANDERSON K, PETERS G, 2016. The trouble with negative emissions[J]. Science, 354(6309): 182-183.
PMID |
[3] | BAI Z, WANG X, WU X, et al., 2021. China requires region-specific manure treatment and recycling technologies[J]. Circular Agricultural Systems, 1(1): 1-8. |
[4] |
BEERLING D J, KANTZAS E P, LOMAS M R, et al., 2020. Potential for large-scale CO2 removal via enhanced rock weathering with croplands[J]. Nature, 583(7815): 242-248.
DOI URL |
[5] |
BELLER M, BORNSCHEUER U T, 2014. CO2 fixation through hydrogenation by chemical or enzymatic methods[J]. Angewandte Chemie International Edition, 53(18): 4527-4528.
DOI URL |
[6] |
BIRDJA Y Y, PÉREZ-GALLENT E, FIGUEIREDO M C, et al., 2019. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 4(9): 732-745.
DOI URL |
[7] |
CAI T, SUN H, QIAO J, et al., 2021. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 373(6562): 1523-1527.
DOI PMID |
[8] | CHEN J M, 2021. Carbon neutrality: Toward a sustainable future[J]. The Innovation, 2(3): 1-2. |
[9] | DAWAR K, KHAN A, SARDAR K, et al., 2021. Effects of the nitrification inhibitor nitrapyrin and mulch on N2O emission and fertilizer use efficiency using 15N tracing techniques[J]. Science of The Total Environment, 757: 143739. |
[10] |
DIAZ-ELSAYED N, REZAEI N, GUO T, et al., 2019. Wastewater-based resource recovery technologies across scale: A review[J]. Resources, Conservation and Recycling, 145: 94-112.
DOI URL |
[11] | DISSANAYAKE P D, YOU S, IGALAVITHANA A D, et al., 2020. Biochar-based adsorbents for carbon dioxide capture: A critical review[J]. Renewable and Sustainable Energy Reviews, 119: 109582. |
[12] | HARINDINTWALI J D, ZHOU J, MUHOZA B, et al., 2021. Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture[J]. Journal of Environmental Management, 293: 112856. |
[13] | HOU S L, DONG J, ZHAO B, 2020. Formation of C-X bonds in CO2 chemical fixation catalyzed by metal-organic frameworks[J]. Advanced Materials, 32(3): 1806163. 1-1806163.14. |
[14] | IPCC, 2021. Climate change 2021:the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge Press. |
[15] |
JIN H, OKAMOTO T, ISHIDA M, 1998. Development of a novel chemical-looping combustion: synthesis of a looping material with a double metal oxide of CoO-NiO[J]. Energy & Fuels, 12(6): 1272-1277.
DOI URL |
[16] | KASTNER M, MILTNER A, 2018. SOM and microbes-what is left from microbial life. The future of soil carbon[M]. Massachusetts: Academic Press:125- 163. |
[17] |
LEHMANN J, 2007. A handful of carbon[J]. Nature, 447(7141): 143-144.
DOI URL |
[18] | LEÓN L F, LAM D C, SWAYNE D A, et al., 2000. Integration of a nonpoint source pollution model with a decision support system[J]. Environmental Modelling & Software, 15(3): 249-255. |
[19] |
LI K, PENG B, PENG T, 2016. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels[J]. ACS Catalysis, 6(11): 7485-7527.
DOI URL |
[20] |
LI S, GAO L, JIN H, 2017. Realizing low life cycle energy use and GHG emissions in coal based polygeneration with CO2 capture[J]. Applied Energy, 194: 161-171.
DOI URL |
[21] | LIANG C, SCHIMEL J P, JASTROW J D, 2017. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2(8): 1-6. |
[22] |
LIANG D, LU X, ZHUANG M, et al., 2021. China’s greenhouse gas emissions for cropping systems from 1978-2016[J]. Scientific Data, 8(1): 171.
DOI URL |
[23] |
LIU R, XU F, ZHANG P, et al., 2016. Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT[J]. Journal of Hydrology, 533: 379-388.
DOI URL |
[24] |
LIU Y Q, WANG H R, JIANG Z M, et al., 2021. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 590(7847): 600-605.
DOI URL |
[25] |
LIU Z H, WANG K, CHEN Y, et al., 2020. Third-generation biorefineries as the means to produce fuels and chemicals from CO2[J]. Nature Catalysis, 3(3): 274-288.
DOI URL |
[26] | MAHANTA S K, GARCIA S C, ISLAM M R, 2020. Forage based feeding systems of dairy animals: Issues, limitations and strategies[J]. Range Management & Agroforestry, 41(2): 188-199. |
[27] | MATHUR M, AWASTHI S, 2016. Carbon neutral village/cluster: a conceptual framework for envisioning[J]. Current Science, 110(7): 1208-1215. |
[28] |
SHAHEEN S M, NIAZI N K, HASSAN N E E, et al., 2019. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: A critical review[J]. International Materials Reviews, 64(4): 216-247.
DOI URL |
[29] |
SHANG Z, ABDALLA M, XIA L, et al., 2021. Can cropland management practices lower net greenhouse emissions without compromising yield?[J]. Global Change Biology, 27(19): 4657-4670.
DOI PMID |
[30] | SIEDT M, SCHÄFFER A, SMITH K E C, et al., 2021. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides[J]. Science of The Total Environment, 751: 141607. |
[31] | SUBHARAT S, SHU D, ZHENG T, et al., 2016. Vaccination of sheep with a methanogen protein provides insight into levels of antibody in saliva needed to target ruminal methanogens[J]. PLoS One, 11(7): e0159861. |
[32] |
TURSI A, 2019. A review on biomass: importance, chemistry, classification, and conversion[J]. Biofuel Research Journal, 6(2): 962-979.
DOI URL |
[33] | UNFCCC, 2015. Paris Agreement (United Nations Framework Convention on Climate Change)[EB/OL]. [2015-12-12]. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement. |
[34] | WANG C K, LUO X Z, ZHANG H, 2013. Differences between the shares of greenhouse gas emissions calculated with GTP and GWP for major countries[J]. Climate Change Research, 9(1): 49-54. |
[35] | WANG F, HARINDINTWALI J D, YUAN Z Z, et al., 2021. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation, 2(4): 100180. |
[36] |
WANG M, JANSSEN P H, SUN X Z, et al., 2013. A mathematical model to describe in vitro kinetics of H2 gas accumulation[J]. Animal Feed Science and Technology, 184(1-4): 1-16.
DOI URL |
[37] |
WANG Y Q, BAI R, DI H J, et al., 2018. Differentiated mechanisms of biochar mitigating straw-induced greenhouse gas emissions in two contrasting paddy soils[J]. Frontiers in Microbiology, 9: 2566.
DOI URL |
[38] | WMO, 2021. World Meteorological Organization (WMO) statement on the state of the global climate 2020 [EB/OL]. [2022-01-24]. https://public.wmo.int/en/our-mandate/climate/wmo-statement-state-of-global-climate |
[39] |
WU F C, LI F B, ZHAO X L, et al., 2022. Meet the challenges in the “Carbon Age”[J]. Carbon Research, 1(1): 1-2.
DOI URL |
[40] | YIN Y, YANG C, LI M T, et al., 2021. Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting: A review[J]. Science of The Total Environment, 798: 149294. |
[41] |
ZHANG R, XIE W M, YU H Q, et al., 2014. Optimizing municipal wastewater treatment plants using an improved multi-objective optimization method[J]. Bioresource Technology, 157: 161-165.
DOI PMID |
[42] | ZHONG Y H, JIANG M, MIDDLETON B A, 2020. Effects of water level alteration on carbon cycling in peatlands[J]. Ecosystem Health and Sustainability, 6(1): 199-227. |
[43] | 卞荣军, 李恋卿, 2021. 生物质废弃物处理与农业碳中和[J]. 科学, 73(6): 22-26, 4. |
BIAN R J, LI L Q, 2021. Waste Biomass Treatment and Carbon Neutrality[J]. Science, 73(6): 22-26, 4.
DOI URL |
|
[44] | 陈治池, 何强, 蔡然, 等, 2022. 碳中和趋势下数学模拟在污水处理系统中的发展与综合应用[J]. 中国环境科学, 42(6): 2587-2602. |
CHEN Z C, HE Q, CAI R, et al., 2022. The development and comprehensive application of mathematical simulation in sewage treatment system under the trend of carbon neutralization[J]. China Environmental Science, 42(6): 2587-2602. | |
[45] | 程琨, 潘根兴, 2021. 农业与碳中和[J]. 科学, 73(6): 8-12, 4. |
CHENG K, PAN G X, 2021. Agriculture and Carbon Neutrality[J]. Science, 73(6): 8-12, 4.
DOI URL |
|
[46] | 贺斌, 胡茂川, 2022. 广东省各区县农业面源污染负荷估算及特征分析[J]. 生态环境学报, 31(4): 771-776. |
HE B, HU M C, 2022. Evaluation of agriculture non-point pollution load and its characteristics in all districts and counties of Guangdong[J]. Ecology and Environmental Sciences, 31(4): 771-776. | |
[47] | 廖秋阳, 2022. 基于碳中和背景下的几种农村污水处理节能技术运用[J]. 河南科技, 41(3): 124-127. |
LIAO Q Y, 2022. Application of energy-saving technologies in rural sewage treatment based on carbon neutralization[J]. Henan Science and Technology, 41(3): 124-127. | |
[48] | 任杰, 曾安平, 2021. 基于二氧化碳的生物制造: 从基础研究到工业应用的挑战[J]. 合成生物学, 2(6): 854-862. |
REN J, ZENG A P, 2021. CO2 based biomanufacturing: From basic research to industrial application[J]. Synthetic Biology Journal, 2(6): 854-862. | |
[49] | 宋云华, 2017. 广东渔业光伏项目经济环保效益分析[J]. 价值工程, 36(7): 103-104. |
SONG Y H, 2017. Analysis on economic and environmental benefits of Guangdong Fishery Photovoltaic Project[J]. Value Engineering, 36(7): 103-104. | |
[50] | 谭天伟, 陈必强, 张会丽, 等, 2021. 加快推进绿色生物制造助力实现“碳中和”[J]. 化工进展, 40(3): 1137-1141. |
TAN T W, CHEN B Q, ZHANG H L, et al., 2021. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 40(3): 1137-1141. | |
[51] | 唐博文, 2022. 从国际经验看中国农业温室气体减排路径[J]. 世界农业, 515(3):18-24. |
TANG B W, 2022. China’s agricultural greenhouse gas emission reduction path from international experience[J]. World Agriculture, 515(3):18-24. | |
[52] | 汤俊超, 吴宜文, 张姚, 等, 2022. 浅谈“光伏+农业”产业的发展模式[J]. 中国农学通报, 38(11): 144-152. |
TANG J C, WU Y W, ZHANG Y, et al., 2022. A brief introduction on the industrial development mode of photovoltaic agriculture[J]. Chinese Agricultural Science Bulletin, 38(11): 144-152. | |
[53] | 王斌, 李玉娥, 蔡岸冬, 等, 2022. 碳中和视角下全球农业减排固碳政策措施及对中国的启示[J]. 气候变化研究进展, 18(1): 110-118. |
WANG B, LI Y E, CAI A D, et al., 2022. Global policies in agricultural greenhouse gas reduction and carbon sequestration and their enlightenment to China in the view of carbon neutrality[J]. Climate Change Research, 18(1): 110-118. | |
[54] | 王萌, 周丽丽, 耿润哲, 2020. 农业面源污染治理的技术与政策研究进展[J]. 环境与可持续发展, 45(1): 98-103. |
WANG M, ZHOU L L, GENG R Z, 2020. A review: the technology and policy design of agricultural non-point source pollution management[J]. Environment and Sustainable Development, 45(1): 98-103. | |
[55] | 王绍军, 张明, 宋烨, 等, 2020. 聊城食用菌产业发展现状与建议[J]. 中国果菜, 40(10): 69-74. |
WANG S J, ZHANG M, SONG Y, et al., 2020. Development status and suggestions of edible fungi industry in Liaocheng City[J]. China Fruit & Vegetable, 40(10): 69-74. | |
[56] | 武淑霞, 刘宏斌, 刘申, 等, 2018. 农业面源污染现状及防控技术[J]. 中国工程科学, 20(5): 23-30. |
WU S X, LIU H B, LIU S, et al., 2018. Review of current situation of agricultural non-point source pollution and its prevention and control technologies[J]. Strategic Study of CAE, 20(5): 23-30. | |
[57] | 夏军, 翟晓燕, 张永勇, 2012. 水环境非点源污染模型研究进展[J]. 地理科学进展, 31(7): 941-952. |
XIA J, ZHAI X Y, ZHANG Y Y, 2012. Progress in the research of water environmental nonpoint source pollution models[J]. Progress in Geography, 31(7): 941-952.
DOI |
|
[58] | 谢立勇, 杨育蓉, 赵洪亮, 等, 2022. “双碳”战略背景下农业与农村减排技术路径分析[J]. 中国生态农业学报(中英文), 30(4): 527-534. |
XIE L Y, YANG Y R, ZHAO H L, et al., 2022. Technical pathways of mitigating greenhouse gases emission from agriculture and rural areas under double-carbon strategy[J]. Chinese Journal of Eco-Agriculture, 30(4): 527-534. | |
[59] | 杨林章, 吴永红, 2018. 农业面源污染防控与水环境保护[J]. 中国科学院院刊, 33(2): 168-176. |
YANG L Z, WU Y H, 2018. Prevention and control of agricultural non-point source pollution and aquatic environmental protection[J]. Bulletin of Chinese Academy of Sciences, 33(2): 168-176. | |
[60] | 张岳, 葛铜岗, 孙永利, 等, 2021. 基于城镇污水处理全流程环节的碳排放模型研究[J]. 中国给水排水, 37(9): 65-74. |
ZHANG Y, GE T G, SUN Y L, et al., 2021. Research on carbon emission model based on the whole process of urban sewage treatment[J]. China Water & Wastewater, 37(9): 65-74. |
[1] | WANG Jiayi, SUN Tingting, SHA Runyu, CHEN Tinghong, XING Ran, QIN Boqiang, SHI Wenqing. Study on the Synergic Effect of Algae Salvage on Pollution Control and Carbon Emission Reduction in Eutrophic Lakes [J]. Ecology and Environment, 2023, 32(6): 1108-1114. |
[2] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environment, 2023, 32(5): 825-834. |
[3] | XIAO Guoju, LI Xiujing, GUO Zhanqiang, HU Yanbin, WANG Jing. Effects of Soil Organic Carbon on Maize Growth and Water Use at the Eastern Foot of Helan Mountain in Ningxia [J]. Ecology and Environment, 2022, 31(9): 1754-1764. |
[4] | JIANG Chaoqiang, LI Chen, ZHU Qifa, XU Haiqing, LIU Yanhong, SHEN Jia, YAN Yifeng, YU Fei, ZU Chaolong. Evaluation of Carbon Sink and Economic Benefit in Different Planting Patterns in Southern Anhui [J]. Ecology and Environment, 2022, 31(7): 1285-1292. |
[5] | ZHANG Han, TANG Changyuan, XUAN Yingxue, JIANG Tao, HUANG Pinyi, YANG Qiu, CAO Yingjie. The Regular Pattern and Influencing Factors of CO2 and CH4 Fluxes from Mangrove Soil [J]. Ecology and Environment, 2022, 31(5): 939-948. |
[6] | LIANG Lei, MA Xiuzhi, HAN Xiaorong, LI Changsheng, ZHANG Zhijie. Effects of Litter on Soil Greenhouse Gas Flux of Pinus tabulaeformis Plantation in Daqing Mountain under Simulated Warming [J]. Ecology and Environment, 2022, 31(3): 478-486. |
[7] | HAO Xiaoyu, WANG Xiaojun, GAO Hongsheng, MAO Mingyan, SUN Lei, MA Xingzhu, ZHOU Baoku, CHI Fengqin, LI Weiqun. Estimation of Greenhouse Gas Emission and Carbon Footprint of Farmland under Different Straw Returning Methods in Songnen Plain [J]. Ecology and Environment, 2022, 31(2): 318-325. |
[8] | ZHU Mengyuan, SONG Yanyu, GAO Siqi, GONG Chao, LIU Zhendi, MA Xiuyan, YUAN Jiabao, YANG Xu. Diversity Characteristics of Soil Microbial Carbon Source Metabolism in Wetlands with Different Vegetation Types in the Sanjiang Plain [J]. Ecology and Environment, 2022, 31(12): 2310-2319. |
[9] | CAO Yun, SUN Yinglong, JIANG Yueqing, WAN Jun. Analysis on Temporal-spatial Variations and Driving Factors of Net Ecosystem Productivity in the Yellow River Basin [J]. Ecology and Environment, 2022, 31(11): 2101-2110. |
[10] | CHEN Si, WANG Can, LI Xiang, Li Mingrui, ZHAN Fangdong, LI Yuan, ZU Yanquan, HE Yongmei. Effects of Different UV-B Radiation Levels on Soil Enzyme Activities, Active Organic Carbon Content and Greenhouse Gas Emissions in Paddy Fields [J]. Ecology and Environment, 2021, 30(6): 1260-1268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn