Ecology and Environment ›› 2022, Vol. 31 ›› Issue (5): 939-948.DOI: 10.16258/j.cnki.1674-5906.2022.05.009
• Research Articles • Previous Articles Next Articles
ZHANG Han1(), TANG Changyuan1,2,3,4,*, XUAN Yingxue2,3,4, JIANG Tao1, HUANG Pinyi1, YANG Qiu1, CAO Yingjie2,3,4
Received:
2022-02-10
Online:
2022-05-18
Published:
2022-07-12
Contact:
TANG Changyuan
张涵1(), 唐常源1,2,3,4,*, 禤映雪2,3,4, 江涛1, 黄品怡1, 杨秋1, 曹英杰2,3,4
通讯作者:
唐常源
作者简介:
张涵(1997年生),女,硕士研究生、研究方向为土壤温室气体排放和碳同位素。E-mail: zhangh589@mail2.sysu.edu.cn
基金资助:
CLC Number:
ZHANG Han, TANG Changyuan, XUAN Yingxue, JIANG Tao, HUANG Pinyi, YANG Qiu, CAO Yingjie. The Regular Pattern and Influencing Factors of CO2 and CH4 Fluxes from Mangrove Soil[J]. Ecology and Environment, 2022, 31(5): 939-948.
张涵, 唐常源, 禤映雪, 江涛, 黄品怡, 杨秋, 曹英杰. 珠江口红树林土壤甲烷和二氧化碳通量特征及其影响因素研究[J]. 生态环境学报, 2022, 31(5): 939-948.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.05.009
指标 Index | 气象因素 Meteorological factors | 土壤理化性质 Soil Physicochemical property | 外源输入 Exogenous input | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
土壤温度 Siol temperature/ ℃ | pH | 氧化还原 电位 ORP/mV | 土壤湿度 Soil moisture/ % | 溶解氧 DO/ (mg∙L-1) | 容重 Bulk densty/ (g∙cm-3) | 电导率 EC/ (103 μS∙cm-1) | ρ(SO42-)/ (mg∙L-1) | ρ(Cl-)/ (mg∙L-1) | ρ(DIC)/ (mg∙L-1) | w(oc)/ (g∙kg-1) | ||
外滩Seaward | 24.49±5.45a | 7.71±0.27a | 171.69±41.71a | 46.25±8.24a | 6.20a | 1.24a | 10.30±1.88a | 181.62±87.02ab | 3883.46±831.28a | 878.60±281.79ab | 26.75a | |
中滩 Middle | 25.03±5.13a | 7.27±0.42b | 140.82±61.02a | 30.69±6.83b | 5.79a | 1.38b | 11.11±3.44a | 306.70±239.24a | 3875.25±1943.90a | 579.52±182.35a | 46.97b | |
内滩 Landward | 24.77±5.58a | 6.91±0.44b | 99.13±130.99a | 18.45±5.23c | 3.47b | 1.26c | 10.81±2.12a | 35.93±17.74b | 3763.30±709.11a | 2346.21±2704.34b | 8.6c |
Table 1 Physicochemical properties of soil and soil water in seaward, middle and landward
指标 Index | 气象因素 Meteorological factors | 土壤理化性质 Soil Physicochemical property | 外源输入 Exogenous input | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
土壤温度 Siol temperature/ ℃ | pH | 氧化还原 电位 ORP/mV | 土壤湿度 Soil moisture/ % | 溶解氧 DO/ (mg∙L-1) | 容重 Bulk densty/ (g∙cm-3) | 电导率 EC/ (103 μS∙cm-1) | ρ(SO42-)/ (mg∙L-1) | ρ(Cl-)/ (mg∙L-1) | ρ(DIC)/ (mg∙L-1) | w(oc)/ (g∙kg-1) | ||
外滩Seaward | 24.49±5.45a | 7.71±0.27a | 171.69±41.71a | 46.25±8.24a | 6.20a | 1.24a | 10.30±1.88a | 181.62±87.02ab | 3883.46±831.28a | 878.60±281.79ab | 26.75a | |
中滩 Middle | 25.03±5.13a | 7.27±0.42b | 140.82±61.02a | 30.69±6.83b | 5.79a | 1.38b | 11.11±3.44a | 306.70±239.24a | 3875.25±1943.90a | 579.52±182.35a | 46.97b | |
内滩 Landward | 24.77±5.58a | 6.91±0.44b | 99.13±130.99a | 18.45±5.23c | 3.47b | 1.26c | 10.81±2.12a | 35.93±17.74b | 3763.30±709.11a | 2346.21±2704.34b | 8.6c |
指标 Index | 气象因素 Meteorological factors | 土壤理化性质 Soil physicochemical property | 外源输入 Exogenous input | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
土壤温度 Soil temperature/ ℃ | pH | 氧化还原 电位 ORP/ mV | 土壤湿度 Soil moisture/ % | 溶解氧 DO/ (mg∙L-1) | 容重 Bulk densty/ (g∙cm-3) | 电导率 EC/ (103 μS∙cm-1) | ρ(SO42-)/ (mg∙L-1) | ρ(Cl-)/ (mg∙L-1) | ρ(DIC)/ (mg∙L-1) | w(oc)/ (g∙kg-1) | ||
二氧化碳 CO2 | 0.05 | -0.46* | -0.61* | -0.44* | -0.46* | -0.23 | -0.07* | -0.31 | -0.03 | 0.23 | -0.44* | |
甲烷 CH4 | 0.25 | 0.56** | 0.11 | 0.43* | 0.24 | 0.21 | -0.33 | 0.09 | -0.24 | 0.52** | 0.42* |
Table 2 Spearman correlation between CO2 and CH4 fluxes and physicochemical factors
指标 Index | 气象因素 Meteorological factors | 土壤理化性质 Soil physicochemical property | 外源输入 Exogenous input | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
土壤温度 Soil temperature/ ℃ | pH | 氧化还原 电位 ORP/ mV | 土壤湿度 Soil moisture/ % | 溶解氧 DO/ (mg∙L-1) | 容重 Bulk densty/ (g∙cm-3) | 电导率 EC/ (103 μS∙cm-1) | ρ(SO42-)/ (mg∙L-1) | ρ(Cl-)/ (mg∙L-1) | ρ(DIC)/ (mg∙L-1) | w(oc)/ (g∙kg-1) | ||
二氧化碳 CO2 | 0.05 | -0.46* | -0.61* | -0.44* | -0.46* | -0.23 | -0.07* | -0.31 | -0.03 | 0.23 | -0.44* | |
甲烷 CH4 | 0.25 | 0.56** | 0.11 | 0.43* | 0.24 | 0.21 | -0.33 | 0.09 | -0.24 | 0.52** | 0.42* |
采样点 Site | 通量 Flux/(kg∙hm-2∙d-1) | ||
---|---|---|---|
甲烷CH4 | 二氧化碳CO2 | 均值 Mean | |
外滩 Seaward | 0.50±0.42 | 11.62±16.26 | 12.12 |
中滩 Middle | 3.23±5.05 | 18.58±33.37 | 21.81 |
内滩 Landward | 0.15±0.69 | 150.90±150.90 | 151.05 |
均值 Mean | 3.88 | 181.10 | 184.98 |
Table 3 CO2-equivalent fluxes from the mangrove soils in seaward, middle and landward
采样点 Site | 通量 Flux/(kg∙hm-2∙d-1) | ||
---|---|---|---|
甲烷CH4 | 二氧化碳CO2 | 均值 Mean | |
外滩 Seaward | 0.50±0.42 | 11.62±16.26 | 12.12 |
中滩 Middle | 3.23±5.05 | 18.58±33.37 | 21.81 |
内滩 Landward | 0.15±0.69 | 150.90±150.90 | 151.05 |
均值 Mean | 3.88 | 181.10 | 184.98 |
采样点 Site | Keeling plot | 拟合优度 r2 | 截距 δ13Cs-CO2/‰ |
---|---|---|---|
外滩 Seaward | y=7382.1x-34.68 | 0.80 | -34.68 |
外滩 Seaward | y=8199.3x-25.09 | 0.99 | -25.09 |
外滩 Seaward | y=10903x-29.54 | 0.99 | -29.54 |
中滩 Middle | y=10731x-23.19 | 0.95 | -23.19 |
中滩 Middle | y=6582x-21.35 | 0.93 | -21.35 |
中滩 Middle | y=6870.2x-19.92 | 0.99 | -19.92 |
中滩 Middle | y=5050.8x-14.61 | 0.98 | -14.61 |
中滩 Middle | y=5245.9x-14.73 | 0.93 | -14.73 |
中滩 Middle | y=4473.9x-15.66 | 0.96 | -15.66 |
内滩 Landward | y=4072.4x-17.97 | 0.98 | -17.97 |
内滩 Landward | y=2529.3x-12.42 | 0.98 | -12.42 |
内滩 Landward | y=3014.9x-15.23 | 0.96 | -15.23 |
内滩 Landward | y=5174.7x-18.57 | 0.99 | -18.57 |
Table 4 Regression equation and δ13C-CO2 obtained by keeling curve
采样点 Site | Keeling plot | 拟合优度 r2 | 截距 δ13Cs-CO2/‰ |
---|---|---|---|
外滩 Seaward | y=7382.1x-34.68 | 0.80 | -34.68 |
外滩 Seaward | y=8199.3x-25.09 | 0.99 | -25.09 |
外滩 Seaward | y=10903x-29.54 | 0.99 | -29.54 |
中滩 Middle | y=10731x-23.19 | 0.95 | -23.19 |
中滩 Middle | y=6582x-21.35 | 0.93 | -21.35 |
中滩 Middle | y=6870.2x-19.92 | 0.99 | -19.92 |
中滩 Middle | y=5050.8x-14.61 | 0.98 | -14.61 |
中滩 Middle | y=5245.9x-14.73 | 0.93 | -14.73 |
中滩 Middle | y=4473.9x-15.66 | 0.96 | -15.66 |
内滩 Landward | y=4072.4x-17.97 | 0.98 | -17.97 |
内滩 Landward | y=2529.3x-12.42 | 0.98 | -12.42 |
内滩 Landward | y=3014.9x-15.23 | 0.96 | -15.23 |
内滩 Landward | y=5174.7x-18.57 | 0.99 | -18.57 |
[1] |
ALLEN D, DALAL R, RENNENBERG H, et al., 2007. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere[J]. Soil Biology and Biochemistry, 39(2): 622-631.
DOI URL |
[2] |
ALONGI D, 2014. Carbon sequestration in mangrove forests[J]. Carbon Management, 3(3): 313-322.
DOI URL |
[3] |
ANDRES R J, MARLAND G, FUNG I, et al., 1996. A 1°×1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950-1990 [J]. Global Biogeochemical Cycles, 10(3): 419-429.
DOI URL |
[4] |
BENDER M M, 1971. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation[J]. Phytochemistry, 10(6): 1239-1244.
DOI URL |
[5] |
BHOMIA R K, MACKENZIE R A, MURDIYARSO D, et al., 2016. Impacts of land use on Indian mangrove forest carbon stocks: Implications for conservation and management[J]. Ecological Applications, 26(5): 1396-1408.
DOI URL |
[6] |
BISWAS H, MUKHOPADHYAY S K, SEN S, et al., 2007. Spatial and temporal patterns of methane dynamics in the tropical mangrove dominated estuary, NE coast of Bay of Bengal, India[J]. Journal of Marine Systems, 68(1): 55-64.
DOI URL |
[7] |
BOTTNER P, AUSTRUI F, CORTEZ J, et al., 1998. Decomposition of 14C- and 15N-labelled plant material, under controlled conditions, in coniferous forest soils from a north-south climatic sequence in western Europe[J]. Soil Biology and Biochemistry, 30(5): 597-610.
DOI URL |
[8] |
CHANG T C, YANG S S, 2003. Methane emission from wetlands in Taiwan[J]. Atmospheric Environment, 37(32): 4551-4558.
DOI URL |
[9] |
CHEN G C, CHEN B, YU D, et al., 2016. Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect[J]. Environmental Research Letters, 11(12): 124019.
DOI URL |
[10] |
CHEN G C, TAM N F Y, YE Y, 2010. Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China[J]. Science of the Total Environment, 408(13): 2761-2767.
DOI URL |
[11] | CHURCH J, CLARK P, CAZENAVE A, et al., 2013. Climate Change 2013:The physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press: 1138-1191. |
[12] |
DIAO H Y, WANG A Z, YUAN F H, et al., 2022. Autotrophic respiration modulates the carbon isotope composition of soil respiration in a mixed forest[J]. Science of The Total Environment, 807(Part 2): 150834.
DOI URL |
[13] |
DONATO D, KAUFFMAN J, MURDIYARSO D, et al., 2011. Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience, 4: 293-297.
DOI URL |
[14] |
DUARTE C, MIDDELBURG J, CARACO N, 2005. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2(1): 1-8.
DOI URL |
[15] | FARQUHAR G, O'LEARY M H O, BERRY J, 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Australian journal of plant physiology, 9: 121-137. |
[16] | GARCIA J L, PATEL B K C, OLLIVIER B, 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea[J]. Science, 6(4): 205-226. |
[17] |
HANSON P J, EDWARDS N T, GARTEN C T, et al., 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations[J]. Biogeochemistry, 48(1): 115-146.
DOI URL |
[18] | IPCC, 2014. Climate Change 2014: Synthesis report[R]. Geneva, Switzerland: IPCC. |
[19] |
IRANDOOST F, AGAH H, ROSSI L, et al., 2021. Stable isotope ratios (δ13C and δ15N) and heavy metal levels in macroalgae, sediment, and benthos from the northern parts of Persian Gulf and the Gulf of Oman[J]. Marine Pollution Bulletin, 163: 111909.
DOI URL |
[20] |
JACOTOT A, MARCHAND C, ALLENBACH M, 2019. Biofilm and temperature controls on greenhouse gas (CO2 and CH4) emissions from a Rhizophora mangrove soil (New Caledonia)[J]. Science of The Total Environment, 650(Part 1): 1019-1028.
DOI URL |
[21] |
JACOTOT A, MARCHAND C, ALLENBACH M, 2018. Tidal variability of CO2 and CH4 emissions from the water column within a Rhizophora mangrove forest (New Caledonia)[J]. The Science of the total environment, 631-632: 334-340.
DOI URL |
[22] |
KEELING C D, 1958. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas[J]. Geochimica et Cosmochimica Acta, 13(4): 322-334.
DOI URL |
[23] |
KELLEY C A, MARTENS C S, USSLER III W, 1995. Methane dynamics across a tidally flooded riverbank margin[J]. Limnology and Oceanography, 40(6): 1112-1129.
DOI URL |
[24] |
KRISTENSEN E, BOUILLON S, DITTMAR T, et al., 2008. Organic carbon dynamics in mangrove ecosystems: A review[J]. Aquatic Botany, 89(2): 201-219.
DOI URL |
[25] |
LIN G, EHLERINGER J, 1997. Carbon Isotopic Fractionation Does Not Occur during Dark Respiration in C3 and C4 Plants[J]. Plant physiology, 114(1): 391-394.
DOI URL |
[26] |
LIU L Y, XIE G J, DING J, et al., 2022. Microbial methane emissions from the non-methanogenesis processes: A critical review[J]. Science of The Total Environment, 806(Part 4): 151362.
DOI URL |
[27] |
LÜTHI D, LE FLOCH M, BEREITER B, et al., 2008. High-resolution carbon dioxide concentration record 650,000-800,000 years before present[J]. Nature, 453(7193): 379-382.
DOI URL |
[28] |
MAIER M, SCHACK K H, HILDEBRAND E E, et al., 2011. Soil CO2 efflux vs. soil respiration: Implications for flux models[J]. Agricultural and Forest Meteorology, 151(12): 1723-1730.
DOI URL |
[29] |
MARCHAND C, FERNANDEZ J M, MORETON B, et al., 2012. The partitioning of transitional metals (Fe, Mn, Ni, Cr) in mangrove sediments downstream of a ferralitized ultramafic watershed (New Caledonia)[J]. Chemical Geology, 300-301: 70-80.
DOI URL |
[30] |
MAZZOLA V, PERKS M P, SMITH J, et al., 2022. Assessing soil carbon dioxide and methane fluxes from a Scots pine raised bog-edge-woodland[J]. Journal of Environmental Management, 302(Part B): 114061.
DOI URL |
[31] |
MCLEOD E, CHMURA G L, BOUILLON S, et al., 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 9(10): 552-560.
DOI URL |
[32] |
MEDINA C D, ARENAS F, CANTERA K J, et al., 2022. Carbon sources supporting macrobenthic crustaceans in tropical eastern pacific mangroves[J]. Food Webs, 30: e00219.
DOI URL |
[33] |
MURDIYARSO D, PURBOPUSPITO J, KAUFFMAN J B, et al., 2015. The potential of Indonesian mangrove forests for global climate change mitigation[J]. Nature Climate Change, 5(12): 1089-1092.
DOI URL |
[34] |
NEUE H U, GAUNT J L, WANG Z P, et al., 1997. Carbon in tropical wetlands[J]. Geoderma, 79(1-4):163-185.
DOI URL |
[35] |
POFFENBARGER H J, NEEDELMAN B A, MEGONIGAL J P, 2011. Salinity Influence on Methane Emissions from Tidal Marshes[J]. Wetlands, 31(5): 831-842.
DOI URL |
[36] |
PURVAJA R, RAMESH R, 2001. Natural and Anthropogenic Methane Emission from Coastal Wetlands of South India[J]. Environmental Management, 27(4): 547-557.
DOI URL |
[37] |
RUSTAD L, CAMPBELL J, MARION G, et al., 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 126(4): 543-562.
DOI URL |
[38] |
SINGH J S, GUPTA S R, 1977. Plant decomposition and soil respiration in terrestrial ecosystems[J]. The Botanical Review, 43(4): 449-528.
DOI URL |
[39] | SOUMIS N, DUCHEMIN É, CANUEL R, et al., 2004. Greenhouse gas emissions from reservoirs of the western United States[J]. Global Biogeochemical Cycles, 18(3): 1-11. |
[40] |
VAUGHN L J S, CONRAD M E, BILL M, et al., 2016. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra[J]. Global Change Biology, 22(10): 3487-3502.
DOI URL |
[41] |
WHITICAR M J, FABER E, SCHOELL M, 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—Isotope evidence[J]. Geochimica et Cosmochimica Acta, 50(5): 693-709.
DOI URL |
[42] |
WIDORY D, JAVOY M, 2003. The carbon isotope composition of atmospheric CO2 in Paris[J]. Earth and Planetary Science Letters, 215(1): 289-298.
DOI URL |
[43] |
ZHANG G B, YU H Y, FAN X F, et al., 2015. Effect of rice straw application on stable carbon isotopes, methanogenic pathway, and fraction of CH4 oxidized in a continuously flooded rice field in winter season[J]. Soil Biology and Biochemistry, 84: 75-82.
DOI URL |
[44] | 杜明智, 王广帅, 刘浩, 等, 2022. 设施番茄土壤温室气体排放对水氮管理的响应[J]. 灌溉排水学报, 41(1): 101-109. |
DU M Z, WANG G S, LIU H, et al., 2022. Change in greenhouse gas emissions from soil in greenhouse as affected by irrigation and nitrogen fertilization[J]. Journal of Irrigation and Drainage, 41(1): 101-109. | |
[45] | 高春, 胡杰龙, 颜葵, 等, 2017. 海南东寨港红树林土壤二氧化碳和甲烷排放通量研究[J]. 湿地科学, 15(3): 351-357. |
GAO C, HU J L, YAN K, et al., 2017. Carbon dioxide and methaneemission fluxes from soil in mangrove forest in Dongzhaigang, Hainan[J]. Wetland Science, 15(3): 351-357. | |
[46] | 郝庆菊, 王跃思, 宋长春, 等, 2004. 三江平原湿地土壤CO2和CH4排放的初步研究[J]. 农业环境科学学报, 48(23): 846-851. |
HAO Q J, WANG Y S, SONG C C, et al., 2004. Primary Study on CO2 and CH4 Emissions from Wetland Soils in the Sanjiang Plain[J]. Journal of Agro-Environment Science, 48(23): 846-851. | |
[47] | 贾庆宇, 刘晶淼, 梁成华, 等, 2015. 辽河三角洲稻区近地层CH4浓度与通量特征[J]. 生态环境学报, 24(5): 804-810. |
JIA Q Y, LIU J M, LIANG C H, et al., 2015. The characteristics of CH4 concentration and flux of the near surface in liaohe delta rice region[J]. Ecology and Environmental Sciences, 24(5): 804-810. | |
[48] | 姜懿珊, 罗春玲, 张干, 2020. 碳同位素自然丰度分析在土壤生态系统碳动态研究中应用[J]. 生态环境学报, 29(9): 1920-1926. |
JIANG Y S, LUO C L, ZHANG G, 2020. Application of natural abundance carbon isotope analysis in carbon dynamic of soil ecosystem: A review[J]. Ecology and Environmental Sciences, 29(9): 1920-1926. | |
[49] | 康文星, 赵仲辉, 田大伦, 等, 2008. 广州市红树林和滩涂湿地生态系统与大气二氧化碳交换[J]. 应用生态学报, 19(12): 2605-2610. |
KANG W X, ZHAO Z H, TIAN D L, et al., 2008. CO2 exchanges between mangrove- and shoal wetland ecosystems and atmosphere in Guangzhou[J]. Chinese Journal of Applied Ecology, 19(12): 2605-2610. | |
[50] | 李海生, 吴灿雄, 欧阳美霞, 等, 2020. 广州市南沙区红树林资源现状与保护[J]. 湿地科学, 18(2): 158-165. |
LI H S, WU C X, OUYANG M X, et al., 2020. The current status and conservation of mangrove resources in nansha district of Guangzhou[J]. Wetland Science, 18(2): 158-165. | |
[51] | 李森, 蔡厚才, 陈万东, 等, 2020. 海岸带生态恢复区不同林龄红树林对CH4和CO2排放通量的影响[J]. 生态环境学报, 29(12): 2414-2422. |
LI S, CAI H C, CHEN W D, et al., 2020. Analysis on CH4 and CO2 fluxes of mangroves with different ages in the coastal ecological restoration zone[J]. Ecology and Environmental Sciences, 29(12): 2414-2422. | |
[52] | 沙晨燕, 2011. 美国俄亥俄州人工河滨湿地甲烷排放[J]. 生态学杂志, 30(11): 2456-2464. |
SHA C Y, 2011. Methane emission from riparian constructed wetland in Ohio, USA[J]. Chinese Journal of Ecology, 30(11): 2456-2464. | |
[53] | 宋长春, 杨文燕, 徐小锋, 等, 2004. 沼泽湿地生态系统土壤CO2和CH4排放动态及影响因素[J]. 环境科学, 25(4): 1-6. |
SONG C C, YANG W Y, XU X F, et al., 2004. Dynamics of CO2 and CH4 concentration in the mire soil and its impact factors[J]. Environmental Science, 25(4): 1-6.
DOI URL |
|
[54] | 谢军飞, 李玉娥, 2002. 农田土壤温室气体排放机理与影响因素研究进展[J]. 中国农业气象, 23(4): 47-52. |
XIE J F, LI Y E, 2002. A Review of studies on mechanism of greenhouse gas (GHG) emission and its affecting factors in arable soils[J]. Chinese Journal of Agrometeorology, 23(4): 47-52. | |
[55] | 徐华, 蔡祖聪, 八木一行, 2008. 水稻土CH4产生潜力及其影响因素[J]. 土壤学报, 45(1): 98-104. |
XU H, CAI Z C, YAGI K, 2008. Methane production potentials of rice paddy soils and its affecting factors[J]. Acta Pedologica Sinica, 45(1): 98-104. | |
[56] | 张晓艳, 徐华, 马静, 等, 2016. 不同地区稻田土壤甲烷氧化碳同位素分馏特征及其影响因素研究[J]. 生态环境学报, 25(6): 927-933. |
ZHANG X Y, XU H, MA J, et al., 2016. CH4 oxidation isotope fractionation and the influences in rice fields in different regions in China[J]. Ecology and Environmental Sciences, 25(6): 927-933. | |
[57] | 张尹, 于志国, 金彪, 2020. 典型温带雨养泥炭沼泽湿地地下部二氧化碳和甲烷浓度变化规律及其影响因素[J]. 生态学报, 40(24): 8936-8947. |
ZHANG Y, YU Z G, JIN B, 2020. The variation of CO2 and CH4 concentrations and their influencing factors in the underground of typical temperate ombrotrophic bogs[J]. Acta Ecologica Sinica, 40(24): 8936-8947. |
[1] | DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration [J]. Ecology and Environment, 2022, 31(8): 1566-1572. |
[2] | LIANG Lei, MA Xiuzhi, HAN Xiaorong, LI Changsheng, ZHANG Zhijie. Effects of Litter on Soil Greenhouse Gas Flux of Pinus tabulaeformis Plantation in Daqing Mountain under Simulated Warming [J]. Ecology and Environment, 2022, 31(3): 478-486. |
[3] | WANG Xuan, XIONG Xin, ZHANG Huiling, ZHAO Mengdi, HU Minghui, CHU Guowei, MENG Ze, ZHANG Deqiang. Effects of Simulated Acid Rain on Litter Decomposition and Soil Respiration in A Low Subtropical Forest [J]. Ecology and Environment, 2021, 30(9): 1805-1813. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn