Ecology and Environment ›› 2022, Vol. 31 ›› Issue (4): 688-694.DOI: 10.16258/j.cnki.1674-5906.2022.04.006
• Research Articles • Previous Articles Next Articles
ZHAO Junyu1,2(), HUANG Xiaorui1, SHI Yuanyuan1,2, SONG Xianchong1,2, QIN Zuoyu1,2, TANG Jian1,2,*(
)
Received:
2021-09-09
Online:
2022-04-18
Published:
2022-06-22
Contact:
TANG Jian
赵隽宇1,2(), 黄小芮1, 石媛媛1,2, 宋贤冲1,2, 覃祚玉1,2, 唐健1,2,*(
)
通讯作者:
唐健
作者简介:
赵隽宇(1994年生),男,工程师,硕士,从事土壤环境与遥感信息技术研究。E-mail: 779343445@qq.com
基金资助:
CLC Number:
ZHAO Junyu, HUANG Xiaorui, SHI Yuanyuan, SONG Xianchong, QIN Zuoyu, TANG Jian. FTIR Characteristics of Rhizosphere Soil of Multi-generation Continuous Eucalyptus Plantation in South Subtropical Region[J]. Ecology and Environment, 2022, 31(4): 688-694.
赵隽宇, 黄小芮, 石媛媛, 宋贤冲, 覃祚玉, 唐健. 南亚热带多代连栽桉树人工林根际土壤FTIR特征分析[J]. 生态环境学报, 2022, 31(4): 688-694.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.04.006
区组 Block | 经度 Longitude | 纬度 Latitude | 海拔 Altitude/m | 坡度 Slope/(°) | 坡向 Aspect | 树高 Height/m | 胸径 DBH/cm |
---|---|---|---|---|---|---|---|
T0 | 108°8′10″E | 22°40′17″N | 188 | 26 | 东北 | 12.33±0.74 | 9.84±0.33 |
T1 | 108°6′12″E | 22°39′59″N | 192 | 24 | 北 | 13.71±1.25 | 11.28±0.86 |
T2 | 108°12′17″E | 22°41′46″N | 196 | 27 | 北 | 10.58±1.04 | 9.88±0.77 |
T3 | 108°11′49″E | 22°42′0″N | 203 | 24 | 东北 | 11.63±0.90 | 7.65±1.81 |
Table 1 Survey of the research area
区组 Block | 经度 Longitude | 纬度 Latitude | 海拔 Altitude/m | 坡度 Slope/(°) | 坡向 Aspect | 树高 Height/m | 胸径 DBH/cm |
---|---|---|---|---|---|---|---|
T0 | 108°8′10″E | 22°40′17″N | 188 | 26 | 东北 | 12.33±0.74 | 9.84±0.33 |
T1 | 108°6′12″E | 22°39′59″N | 192 | 24 | 北 | 13.71±1.25 | 11.28±0.86 |
T2 | 108°12′17″E | 22°41′46″N | 196 | 27 | 北 | 10.58±1.04 | 9.88±0.77 |
T3 | 108°11′49″E | 22°42′0″N | 203 | 24 | 东北 | 11.63±0.90 | 7.65±1.81 |
类别 Category | 结构归属 Structural style | 振动形式 Vibration | 特征频率 Characteristic frequency λ/cm-1 | 峰强度 Peak intensity |
---|---|---|---|---|
醇、酚类 Alcohols, phenols | ‒OH | vs | 3620 | m |
‒OH, ‒NH | 3423 | m, br | ||
脂肪烃类 Aliphatic hydrocarbon | ‒CH2, C‒H | vs | 2929 | w |
酯类、多糖 Esters, polysaccharide | ‒C=C=C, ‒C=C=O | vs | 2361 | w |
芳香族类 Aromatic series | C=C, C=O | vs | 1631 | m |
醇、酚类 Alcohols, phenols | C‒O | δ | 1165 | s, br |
酯类 Esters | C‒O‒C | vs | 1088 | s |
碳酸根离子 Carbonate ion | CO32- | β | 800 | m |
醛类 Aldehydes | ‒CH | c | 778 | m |
芳香族类、烯烃 Aromatic series, alkene | C‒H、C=C | vs | 694 | m, sh |
硅酸盐 Silicate | Si-O-Fe | vs | 469 | s |
Table 2 Attribution of functional groups of ir absorption peaks
类别 Category | 结构归属 Structural style | 振动形式 Vibration | 特征频率 Characteristic frequency λ/cm-1 | 峰强度 Peak intensity |
---|---|---|---|---|
醇、酚类 Alcohols, phenols | ‒OH | vs | 3620 | m |
‒OH, ‒NH | 3423 | m, br | ||
脂肪烃类 Aliphatic hydrocarbon | ‒CH2, C‒H | vs | 2929 | w |
酯类、多糖 Esters, polysaccharide | ‒C=C=C, ‒C=C=O | vs | 2361 | w |
芳香族类 Aromatic series | C=C, C=O | vs | 1631 | m |
醇、酚类 Alcohols, phenols | C‒O | δ | 1165 | s, br |
酯类 Esters | C‒O‒C | vs | 1088 | s |
碳酸根离子 Carbonate ion | CO32- | β | 800 | m |
醛类 Aldehydes | ‒CH | c | 778 | m |
芳香族类、烯烃 Aromatic series, alkene | C‒H、C=C | vs | 694 | m, sh |
硅酸盐 Silicate | Si-O-Fe | vs | 469 | s |
波数 λ/cm-1 | 区组Block | |||
---|---|---|---|---|
T0 | T1 | T2 | T3 | |
469 | 8.19±0.18a | 7.88±0.16a | 8.75±0.23a | 8.21±1.02a |
694 | 0.61±0.08d | 0.74±0.06cd | 1.03±0.58bc | 2.03±0.59a |
778 | 1.22±0.28a | 1.08±0.16a | 1.15±0.41a | 1.55±0.32a |
800 | 1.72±0.34a | 1.81±0.39a | 1.68±0.33a | 2.12±0.31a |
1088 | 11.15±2.04c | 11.41±0.89c | 13.24±0.63b | 16.01±0.85a |
1165 | 17.54±1.13a | 16.28±2.16a | 15.98±2.18a | 17.87±1.96a |
1631 | 4.46±0.82b | 3.95±0.71c | 4.44±1.12b | 6.57±0.63a |
2361 | 0.18±0.07c | 0.07±0.05c | 0.37±0.11b | 0.66±0.03a |
2929 | 0.50±0.22b | 0.43±0.31b | 1.10±0.36a | 1.17±0.17a |
3423 | 3.48±0.98b | 2.73±0.06b | 5.46±0.65a | 7.4±1.82a |
3620 | 0.64±0.41b | 0.58±0.12b | 1.28±0.09a | 1.94±0.84a |
Table 3 Integral of relative peak area of main peaks in soil infrared spectra
波数 λ/cm-1 | 区组Block | |||
---|---|---|---|---|
T0 | T1 | T2 | T3 | |
469 | 8.19±0.18a | 7.88±0.16a | 8.75±0.23a | 8.21±1.02a |
694 | 0.61±0.08d | 0.74±0.06cd | 1.03±0.58bc | 2.03±0.59a |
778 | 1.22±0.28a | 1.08±0.16a | 1.15±0.41a | 1.55±0.32a |
800 | 1.72±0.34a | 1.81±0.39a | 1.68±0.33a | 2.12±0.31a |
1088 | 11.15±2.04c | 11.41±0.89c | 13.24±0.63b | 16.01±0.85a |
1165 | 17.54±1.13a | 16.28±2.16a | 15.98±2.18a | 17.87±1.96a |
1631 | 4.46±0.82b | 3.95±0.71c | 4.44±1.12b | 6.57±0.63a |
2361 | 0.18±0.07c | 0.07±0.05c | 0.37±0.11b | 0.66±0.03a |
2929 | 0.50±0.22b | 0.43±0.31b | 1.10±0.36a | 1.17±0.17a |
3423 | 3.48±0.98b | 2.73±0.06b | 5.46±0.65a | 7.4±1.82a |
3620 | 0.64±0.41b | 0.58±0.12b | 1.28±0.09a | 1.94±0.84a |
[1] | ALVAREZ ORDÓÑEZ A, PRIETO M, 2012. Fourier transform infrared spectroscopy in food microbiology[M]. USA: Springer. |
[2] | ALVAREZ-ORDÓEZ A, PRIETO M, 2012. Fourier transform infrared spectroscopy in food microbiology[M]. USA: Springer, 1-35. |
[3] |
COMINO F, CERVERA MATA A, ARANDA V, et al., 2020. Short-term impact of spent coffee grounds over soil organic matter composition and stability in two contrasted mediterranean agricultural soils[J]. Journal of Soils and Sediments, 20(3): 1182-1198.
DOI URL |
[4] |
FANG B Z, YU S X, WANG Y F, et al., 2009. Allelopathic Effects of Eucalyptus urophylla on ten tree species in south China[J]. Agroforestry Systems, 76(2): 401-408.
DOI URL |
[5] |
HE Y T, HE X H, XU M G, et al., 2018. Long-term fertilization increases soil organic carbon and alters its chemical composition in three wheat-maize cropping sites across Central and South China[J]. Soil & Tillage Research, DOI: 10.19675/j.cnki. 2020. 11047
DOI |
[6] |
KLASSEN R A, 2009. Geological controls on soil parent material geochemistry along Northern Manitoba-North Dakota transect[J]. Applied Geochemistry, 24(8): 1382-1393.
DOI URL |
[7] | LI Z Q, ZHAO B Z, WANG Q Y, et al., 2015. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies[J]. Plos One, 10(4): 1-14. |
[8] | LI Z, ZHAO B, WANG Q, et al., 2015. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies[J]. Plos One, 10(4): e0124359. |
[9] |
MARGENOT A J, CALDERÓN F J, BOWLES T M, et al., 2015. Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields[J]. Soil Science Society of America Journal, 79(3): 772-782.
DOI URL |
[10] |
POSPÍŠILOVÁ Ľ, FASUROVÁ N, 2009. Spectroscopic characteristics of humic acids originated in soils and lignite[J]. Soil and Water Research, 4(4): 168-175.
DOI URL |
[11] |
PROMMER J, WALKER T W N, WANEK W, et al., 2020. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity[J]. Global Change Biology, 26(2): 669-681.
DOI URL |
[12] |
QIN F C, LIU S, YU S X, 2018. Effects of allelopathy and competition for water and nutrients on survival and growth of tree species in Eucalyptus urophylla plantations[J]. Forest Ecology and Management, 424: 387-395.
DOI URL |
[13] |
SUN Z Y, HUANG Y H, YANG L, et al., 2017. Plantation age, understory vegetation, and species-specific traits of target seedlings alter the competition and facilitation role of Eucalyptus in South China[J]. Restoration Ecology, 25(5): 749-758.
DOI URL |
[14] |
TIERNAN H, BYRNE B, KAZARIAN S G, 2021. ATR-FTIR spectroscopy and spectroscopic imaging to investigate the behaviour of proteins subjected to freeze-thaw cycles in droplets, wells, and under flow[J]. The Analyst, 146(9): 2902-2909.
DOI URL |
[15] |
VALASI L, ARVANITAKI D, MITROPOULOU A, et al., 2020. Study of the quality parameters and the antioxidant capacity for the FTIR-chemometric differentiation of Pistacia vera oils[J]. Molecules, 25(7): 1614.
DOI URL |
[16] |
VALASI L, KOKOTOU M G, PAPPAS C S, 2015. GC-MS, FTIR and Raman spectroscopic analysis of fatty acids of Pistacia vera (Greek variety “Aegina”) oils from two consecutive harvest periods and chemometric differentiation of oils quality[J]. Food Research International, 148: 110590.
DOI URL |
[17] |
WANG X X, LI X F, DOU F G, et al., 2021. Elucidating the impact of three metallic nanoagrichemicals and their bulk and ionic counterparts on the chemical properties of bulk and rhizosphere soils in rice paddies[J]. Environmental Pollution, DOI: 10.1016/j.envpol.2021.118005.
DOI |
[18] | ZHU L Y, WANG J C, WENG Y L, et al., 2020. Soil Characteristics of Eucalyptus urophylla×Eucalyptus grandis plantations under different management measures for harvest residues with soil depth gradient across time[J]. Ecological Indicators, 117(Pt 1): 106530. 1-106530.12. |
[19] |
ZHU L Y, WANG X H, CHEN F F, et al., 2019. Effects of the successive planting of Eucalyptus urophyllaon the soil bacterial and fungal community structure, diversity, microbial biomass, and enzyme activity[J]. Land Degradation & Development, 30(6): 636-646.
DOI URL |
[20] | 陈艳芳, 曾明, 2016. 梨园根际土壤的连作化感作用及化感物质成分分析[J]. 果树学报, 33(S1): 121-128. |
CHEN Y F, ZENG M, 2016. A study on allelopathy and analysis of allelochemicals in rhizosphere soil in orchards with continuous cropping of pear[J]. Journal of Fruit Science, 33(S1): 121-128. | |
[21] | 陈叶, 南静, 苏彩娟, 等, 2020. 膜荚黄芪根水浸液对4种作物种子萌发及幼苗生长的影响[J]. 作物杂志 (2): 188-193. |
CHEN Y, NAN J, SU C J, et al., 2020. Effects of Astragalus membranaceus root water extract on seed germination and seedling growth of four crops[J]. Crops (2): 188-193. | |
[22] | 韩芳, 包媛媛, 刘项宇, 等, 2021. 不同轮作方式对马铃薯根际土壤真菌群落结构的影响[J]. 生态环境学报, 30(7): 1412-1419. |
HAN F, BAO Y Y, LIU X Y, et al., 2021. Effects of different potato rotation patterns on fungal community structure in rhizosphere soil[J]. Ecology and Environmental Sciences, 30(7): 1412-1419. | |
[23] | 侯玉平, 柳林, 王信, 等, 2013. 外来植物火炬树水浸液对土壤微生态系统的化感作用[J]. 生态学报, 33(13): 4041-4049. |
HOU Y P, LIU L, WANG X, et al., 2013. Allelopathic effects of aqueous extract of exotic plant Rhus typhina L. on soil micro- ecosystem[J]. Acta Ecologica Sinica, 33(13): 4041-4049.
DOI URL |
|
[24] | 吉恒宽, 吴月颖, 符佩娇, 等, 2020. 热带滨海区不同土地利用背景下土壤溶解性有机氮的组成与粒径分布特征[J]. 生态环境学报, 29(3): 525-535. |
JI H K, WU Y Y, FU P J, et al., 2020. Composition and size distribution characteristics of soil dissolved organic nitrogen under different land use types in tropical coastal areas[J]. Ecology and Environmental Sciences, 29(3): 525-535. | |
[25] | 李金金, 张健, 余俊里, 等, 2018. 外源添加巨桉两种挥发性化合物对受体植物萌发、生长及四种生理指标的影响[J]. 生态科学, 37(6): 9-19. |
LI J J, ZHANG J, YU J L, et al., 2018. Effects of two exogenously added volatile compounds from Eucalyptus grandis plantations on seed germination, seedling growth and four physiological indexes of target plants[J]. Ecological Science, 37(6): 9-19. | |
[26] | 李婷, 赵世伟, 张扬, 等, 2011. 黄土区次生植被恢复对土壤有机碳官能团的影响[J]. 生态学报, 31(18): 5199-5206. |
LI T, ZHAO S W, ZHANG Y, et al., 2011. Effect of revegetation on functional groups of soil organic carbon on the Loess Plateau[J]. Acta Ecologica Sinica, 31(18): 5199-5206. | |
[27] | 李婷, 2012. 黄土丘陵区植被恢复过程中土壤有机碳官能团变化的研究[D]. 杨凌: 中国科学院研究生院 (教育部水土保持与生态环境研究中心). |
LI T, 2012. Studies on the changes of functional groups of soil organic carbon during the process of different vegetation restoration on the Hilly Region Loess Plateau[D]. Yangling: Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education. | |
[28] | 李召阳, 刘晟, 刘嘉元, 等, 2022. 滨海不同生境湿地土壤有机碳官能团特征及其影响因子[J]. 应用与环境生物学报, 28(02): 276-282. |
LI Z Y, LIU S, LIU J Y, et al., 2022. The characteristics and influencing factors of soil organic carbon functional groups in coastal wetlands with different habitats[J]. Chinese Journal of Applied and Environmental Biology, 28(02): 276-282. | |
[29] | 李哲, 张仲胜, 李敏, 等, 2019. 黄河三角洲盐沼表层土壤有机碳含量、可溶性有机碳含量及其官能团结构特征[J]. 湿地科学, 17(6): 645-650. |
LI Z, ZHANG Z S, LI M, et al., 2019. Contents of organic carbon and dissolved organic carbon and characteristics of functional group structure in surface soils of salt marshes in Yellow River Delta[J]. Wetland Science, 17(6): 645-650. | |
[30] | 芦金荣, 周萍, 2013. 化学药物[M]. 南京: 东南大学出版社: 486. |
LU J R, ZHOU P, 2013. Chemical drugs[M]. Nanjing: Southeast University Press: 486. | |
[31] | 毛霞丽, 陆扣萍, 孙涛, 等, 2015. 长期施肥下浙江稻田不同颗粒组分有机碳的稳定特征[J]. 环境科学, 36(5): 1827-1835. |
MAO X L, LU K P, SUN T, et al., 2015. Effect of long-term fertilizer application on the stability of organic carbon in particle size fractions of a paddy soil in Zhejiang Province, China[J]. Environmental Science, 36(5): 1827-1835.
DOI URL |
|
[32] | 盛明, 龙静泓, 雷琬莹, 等, 2020. 秸秆还田对黑土团聚体内有机碳红外光谱特征的影响[J]. 土壤与作物, 9(4): 355-366. |
SHENG M, LONG J H, LEI W Y, et al., 2020. Effect of straw returning on the characteristics of Fourier Infrared Spectroscopy organic carbon within aggregates in a mollisols[J]. Soils and Crops, 9(4): 355-366. | |
[33] | 陶宝先, 张保华, 董杰, 等, 2017. 不同土地利用方式对寿光市农业土壤有机碳分子结构和稳定性的影响[J]. 生态环境学报, 26(10): 1801-1806. |
TAO B X, ZHANG B H, DONG J, et al., 2017. Effects of land use change on the molecular structure and stability of agricultural soil organic carbon in Shouguang City[J]. Ecology and Environmental Sciences, 26(10): 1801-1806. | |
[34] | 王晗光, 张健, 杨婉身, 等, 2006. 巨桉根系和根系土壤化感物质的研究[J]. 四川师范大学学报 (自然科学版), 29(3): 368-371. |
WANG H G, ZHANG J, YANG W S, et al., 2006. A Research on the allelopathic substances in root system and root system soil of Eucalyptus grandis[J]. Journal of Sichuan Normal University (Natural Science), 29(3): 368-371. | |
[35] | 王豁然, 2010. 桉树生物学概论[M]. 北京: 科学出版社: 1-23. |
WANG H R, 2010. Introduction to eucalyptus biology[M]. Beijing: Science Press: 1-23. | |
[36] | 张丹桔, 2017. 巨桉 (Eucalyptus grandis) 人工林化感作用[C]. 中国第八届植物化感作用学术研讨会论文摘要集. |
ZHANG D J, 2017. Allelopathy of Eucalyptus grandis plantation[C]. Abstracts of the 8th Symposium on Allelopathy of Plants in China. | |
[37] | 张沛健, 徐建民, 卢万鸿, 等, 2021. 雷州半岛不同林龄尾细桉人工林植物多样性和土壤理化性质分析[J]. 中南林业科技大学学报, 41(9): 96-105. |
ZHANG P J, XU J M, LU W H, et al., 2021. Plant diversity and soil physicochemical properties under different aged Eucalyptus urophylla×Eucalyptus tereticornis plantations in Leizhou Peninsula[J]. Journal of Central South University of Forestry & Technology, 41(9): 96-105. | |
[38] | 朱强, 邹梦辉, 安黎, 等, 2014. 6种园林树种水浸液对作物的化感作用[J]. 浙江农业学报, 26(5): 1252-1256. |
ZHU Q, ZOU M H, AN L, et al., 2014. Allelopathy of aqueous extracts of six garden tree species on crops[J]. Acta Agriculturae Zhejiangensis, 26(5): 1252-1256. | |
[39] | 朱宇林, 谭萍, 陆绍锋, 等, 2011. 桉树叶水浸提液对4种植物种子化感作用的生物测定[J]. 西北林学院学报, 26(1): 134-137. |
ZHU Y L, TAN P, LU S F, et al., 2011. Bioassay of allelopathic activity of water extract of Eucalyptus leaves on seed germination of different kinds of plants[J]. Joural of Northwest Forestry University, 26(1): 134-137. |
[1] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[2] | ZHANG Beier, WU Jianqiang, WANG Min, XIONG Lijun, TAN Juan, SHEN Cheng, HUANG Botao, HUANG Shenfa. Evaluation of Soil Health in Different Arable Land Ecological Conservation Projects [J]. Ecology and Environment, 2023, 32(2): 388-396. |
[3] | YANG Rui, SUN Weimin, LI Yongbin, GUO Lifang, JIAO Nianyuan. Isolation, Identification and Plant Growth Promotion of Rhizosphere Phosphorus-dissolving Bacteria from Tailings Pioneer Plants [J]. Ecology and Environment, 2023, 32(1): 166-174. |
[4] | XIE Shaowen, GUO Xiaosong, YANG Fen, HUANG Qiang, CHEN Manjia, WEI Xinghu, LIU Chengshuai. Accumulation Characteristics, Geochemical Fractions Distribution and Ecological Risk of Heavy Metals in Soils of Urban Parks in Guangzhou, China [J]. Ecology and Environment, 2022, 31(11): 2206-2215. |
[5] | XIN Weidong, DU Yidan, LIU Huayu, YANG Yimeng, ZHAO Haozhi, YANG Dan. Responses and Biological Indications of Ground-dwelling Arthropods Diversity to Different Vegetation Restoration Patterns in Coal Gangue [J]. Ecology and Environment, 2022, 31(10): 2079-2088. |
[6] | SONG Xianchong, CAI Xuemei, CHEN Tao, PAN Wen, SHI Yuanyuan, TANG Jian, CAO Jizhao. Variation Characteristics of Rhizosphere and Non-rhizosphere Soil Nutrient in Successive Eucalyptus Plantation [J]. Ecology and Environment, 2021, 30(9): 1814-1820. |
[7] | CHEN Yuqin, CHEN Guantao, WANG Yu, CHEN Huixin, LI Qinghua, TU Lihua. Effect of Ten-year Simulated Nitrogen Deposition on Aluminium Fractions of Rhizospheric and Bulk Soils in A Pleioblastus amarus Plantation [J]. Ecology and Environment, 2021, 30(7): 1368-1374. |
[8] | HAN Fang, BAO Yuanyuan, LIU Xiangyu, ZHANG Xinyong, WEI Denghui, ZHANG Haoran, TIAN Qinglong. Effects of Different Potato Rotation Patterns on Fungal Community Structure in Rhizosphere Soil [J]. Ecology and Environment, 2021, 30(7): 1412-1419. |
[9] | ZHENG Zhiheng, XIONG Kangning, RONG Li, CHI Yongkuan. Effects of Biological Crusts on Soil Properties in Karst Rocky Desertification Areas of Different Levels [J]. Ecology and Environment, 2021, 30(6): 1202-1212. |
[10] | CHA Lijuan, ZHOU Dandan, FENG Hongjuan, ZHAO Shuyuan, FENG Kaiping. Research on the Bioaccumulation Characteristics of Two Kinds of Wild Edible Fungi to Soil Heavy Metals [J]. Ecology and Environment, 2021, 30(10): 2093-2099. |
[11] | GE Yinglan, SUN Ting. Soil Microbial Community Structure and Diversity of Potato in Rhizosphere and Non-rhizosphere Soil [J]. Ecology and Environment, 2020, 29(1): 141-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn