Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (9): 1341-1350.DOI: 10.16258/j.cnki.1674-5906.2025.09.002
• Papers on Carbon Cycling and Carbon Emission Reduction • Previous Articles Next Articles
WU Xiyan1(), LI Weijun1,2,*(
), KA Nate1,2, PENG Yujie1
Received:
2024-11-15
Online:
2025-09-18
Published:
2025-09-05
吴锡言1(), 李维军1,2,*(
), 卡那特1,2, 彭玉杰1
通讯作者:
*E-mail: lishz0993@163.com
作者简介:
吴锡言(2002年生),女,硕士研究生,研究方向为污染物防治与控制。E-mail: 1508485570@qq.com
基金资助:
CLC Number:
WU Xiyan, LI Weijun, KA Nate, PENG Yujie. Analysis of China’s Continuous Temporal xCO2 Change in 2023 Based on Random Forest and OCO-2 Remote Sensing Data[J]. Ecology and Environmental Sciences, 2025, 34(9): 1341-1350.
吴锡言, 李维军, 卡那特, 彭玉杰. 基于随机森林和OCO-2遥感数据分析2023年中国连续时空xCO2变化特征[J]. 生态环境学报, 2025, 34(9): 1341-1350.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.09.002
数据名称 | 数据来源 | 时间分辨率 | 空间分 辨率 | 单位 | 数据 时间 |
---|---|---|---|---|---|
xCO2 | OCO-2 | 16 d | 1.29 km× 2.25 km | ×10−6 | 2022-2023 |
TCCON | - | - | 2022 | ||
u10 | ERA5-land | 月 | 0.1°×0.1° | m∙s−1 | 2023 |
v10 | m∙s−1 | ||||
t | K | ||||
Pt | m | ||||
INDVI | MODIS/MOD13A3 | 月 | 1 km×1 km | - | 2023 |
PLULC | 中国科学院资源环境科学与数据中心 | a | 1 km | - | 2020 |
HDEM | 250 m | m | |||
INL | VIIRS Nighttime Light | 月 | 15ʺ | nW∙cm−2∙sr−1 | 2023 |
Table 1 Data information
数据名称 | 数据来源 | 时间分辨率 | 空间分 辨率 | 单位 | 数据 时间 |
---|---|---|---|---|---|
xCO2 | OCO-2 | 16 d | 1.29 km× 2.25 km | ×10−6 | 2022-2023 |
TCCON | - | - | 2022 | ||
u10 | ERA5-land | 月 | 0.1°×0.1° | m∙s−1 | 2023 |
v10 | m∙s−1 | ||||
t | K | ||||
Pt | m | ||||
INDVI | MODIS/MOD13A3 | 月 | 1 km×1 km | - | 2023 |
PLULC | 中国科学院资源环境科学与数据中心 | a | 1 km | - | 2020 |
HDEM | 250 m | m | |||
INL | VIIRS Nighttime Light | 月 | 15ʺ | nW∙cm−2∙sr−1 | 2023 |
[1] | BA R, LOVALLO M, SONG W, et al., 2022. Multifractal analysis of MODIS Aqua and Terra satellite time series of normalized difference vegetation index and enhanced vegetation index of sites affected by wildfires[J]. Entropy, 24(12): 1748. |
[2] | CRISP D, MILLER C E, DECOLA P L, 2008. NASA Orbiting Carbon Observatory: Measuring the column averaged carbon dioxide mole fraction from space[J]. Journal of Applied Remote Sensing, 2(1): 23508-23521. |
[3] | CRISP D, POLLOCK H R, ROSENBERG P, et al., 2017. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products[J]. Atmospheric Measurement Technique, 10(1): 59-81. |
[4] | ELDERING A, TAYLOR T E, O'DELL C W, et al., 2019. The OCO-3 mission: Measurement objectives and expected performance based on 1 year of simulated data[J]. Atmospheric Measurement Techniques, 12(4): 2341-2370. |
[5] | ELVIDGE C D, ZHIZHIN M, GHOSH T, et al., 2021. Annual time series of global VIIRS Nighttime Lights derived from monthly averages: 2012 to 2019[J]. Remote Sensing, 13(5): 922. |
[6] | FANG J J, CHEN B Z, ZHANG H F, et al., 2023. Global evaluation and intercomparison of XCO2 retrievals from GOSAT, OCO-2, and TANSAT with TCCON[J]. Remote Sensing, 15(20): 5073. |
[7] | FRANKENBERG C, BUTZ A, TOON G C, 2011. Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 A-band spectra of reflected sun-light[J]. Geophysical Research Letters, 38(3): 1-5. |
[8] | FRANKENBERG C, O'DELL C, GUANTER L, et al., 2012. Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 retrievals[J]. Atmospheric Measurement Techniques, 5(8): 2081-2094. |
[9] | GUERLET S, BUTZ A, SCHEPERS D, et al., 2023. Aben impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements[J]. Journal of Geophysical Research: Atmospheres, 118(10): 4887-4905. |
[10] | HAN F Q, KASIMU A, WEI B H, et al., 2023. Spatial and temporal patterns and risk assessment of carbon source and sink balance of land use in watersheds of arid zones in China - a case study of Bosten Lake basin[J]. Ecological Indicators, 157(15): 111308-111323. |
[11] | HONG J M, KIM J, JUNG Y J, et al., 2023. Potential improvement of XCO2 retrieval of the OCO-2 by having aerosol information from the A-train satellites[J]. GIScience & Remote Sensing, 60(1): 2209968. |
[12] | HUETE A, DIDAN K, MIURA T, et al., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 83(1): 195-213. |
[13] | HWANG J, CHA D H, YOON D, et al., 2024. Effects of initial and boundary conditions on heavy rainfall simulation over the yellow sea and the Korean Peninsula: Comparison of ECMWF and NCEP analysis data effects and verification with dropsonde observation[J]. Advances in Atmospheric Sciences, 41: 1787-1803. |
[14] | HWANG Y, UM J S, 2016. Performance evaluation of OCO-2 XCO2 signatures in exploring casual relationship between CO2 emission and land cover[J]. Spatial Information Research, 24(4): 451-461. |
[15] | JOSHUA L L, GEOFFREY C T, JOSEPH M, et al., 2023. The total carbon column observing network’s GGG2020 data version[J]. Earth System Science Data, 16(5): 2197-2260. |
[16] | KIEL M, O'DELL C W, FISHER B, et al., 2019. How bias correction goes wrong: Measurement of XCO2 affected by erroneous surface pressure estimates[J]. Atmospheric Measurement Techniques, 12(4): 2241-2259. |
[17] | LAUGHNER J L, TOON C C, MENDONCA J, et al., 2024. The total carbon column observing network's GGG2020 data version[J]. Earth System Science Data, 16(5): 2197-2260. |
[18] | LI J, JIA K, WEI X Q, et al., 2022. High-spatiotemporal resolution mapping of spatiotemporally continuous atmospheric CO2 concentrations over the global continent[J]. International Journal of Applied Earth Observation and Geoinformation, 108: 102743-102756. |
[19] | LIANG A, HAN G, GONG W, et al., 2017. Comparison of global XCO2concentrations from OCO-2 with TCCON data in terms of latitude zones[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6): 2491-2498. |
[20] | LIU Z, OSTRENGA D, VOLLMER B, et al., 2017. Global precipitation measurement (GPM) mission products and services at the NASA goddard earth sciences (GES) data and information services center (DISC)[J]. Bulletin of the American Meteorological Society, 98(3): 437-444. |
[21] | LYU X, LI X B, WANG K, et al., 2023. Strengthening grassland carbon source and sink management to enhance its contribution to regional carbon neutrality[J]. Ecological Indicators, 152: 110341-110352. |
[22] | O'DELL C W, ELDERING A, WENNBERG P O, et al., 2018. Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm[J]. Atmospheric Measurement Techniques, 11(12): 6539-6576. |
[23] | SIABI Z, FALAHATKAR S, ALAVI J S, et al., 2019. Spatial distribution of XCO2 using OCO-2 data in growing seasons[J]. Journal of Environmental Management, 244: 110-118. |
[24] | SUTO H, KATAOKA F, KIKUCHI N, et al., 2021. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit[J]. Atmospheric Measurement Techniques, 14(3): 2013-2039. |
[25] | TAYLOR T E, O'DELL C W, CRISP D, et al., 2022. An 11-year record of XCO2 estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm[J]. Earth System Science Data, 14(1): 325-360. |
[26] | TESTA S, SOUDANI K, BOSCHETTI L, et al., 2017. MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests[J]. International Journal of Applied Earth Observation and Geoinformation, 64: 132-144. |
[27] | WORDEN J R, DORAN G, KULAWIK S, et al., 2017. Evaluation and attribution of OCO-2 XCO2 uncertainties[J]. Atmospheric Measurement Techniques, 10(7): 2759-2771. |
[28] | WUNCH D, WENNBERG P O, OSTERMAN G, et al., 2017. Comparisons of the orbiting carbon observatory-2 (OCO-2) XCO2 measurements with TCCON[J]. Atmospheric Measurement Techniques, 10(6): 2209-2238. |
[29] | YANG D X, JANNE H, YI L, et al., 2022. Detection of anthropogenic CO2 emission signatures with TanSat CO2 and with copernicus Sentinel-5 Precursor (S5P) NO2 measurements: First results[J]. Advances in atmospheric sciences, 40(1): 1-5. |
[30] | ZHAO J, LI T J, SHI K F, et al., 2021. Evaluation of ERA-5 precipitable water vapor data in plateau areas: A case study of the Northern Qinghai-Tibet Plateau[J]. Atmosphere. 12(10): 1367. |
[31] | 寇江泽, 刘温馨, 2024. 落实 “双碳” 行动建设美丽中国[N]. 人民日报, 2024-04-28(2). |
KOU J Z, LIU W X, 2024. Implementing the “Dual Carbon” Initiative to Build a Beautiful China[N]. People’s Daily, 2024-04-28 (2). | |
[32] |
刘佳雯, 贾若愚, 蒋玉颖, 等, 2023. 中国主要空气污染物浓度对土地利用类型的响应关系[J]. 资源科学, 45(9): 1869-1883.
DOI |
LIU J W, JIA R Y, JIANG Y Y, et al., 2023. The response of major air pollutants concentration to land use types in China[J]. Resources Science, 45(9): 1869-1883.
DOI |
|
[33] | 罗澜, 2024. 世界气象组织: 2023年气候变化和极端天气重创亚洲[J]. 生命与灾害 (7): 12-13. |
LUO L, 2024. World Meteorological Organisation: Climate change and extreme weather to hit Asia hard in 2023[J]. Life and Disasters (7): 12-13. | |
[34] | 杨扬, 韩佳容, 2024. 重点产业政策与中国省际贸易隐含碳排放转移[J]. 中山大学学报(社会科学版), 64(5): 178-187. |
YANG Y, HAN J L, 2024. Key industrial policies and implied carbon emission shift in China’s Interprovincial Trade[J]. Journal of Sun Yat-sen University (Social Science Edition), 64(5): 178-187. | |
[35] |
元志辉, 包刚, 银山, 等, 2016. 2000-2014年浑善达克沙地植被覆盖变化研究[J]. 草业学报, 25(1): 33-46.
DOI |
YUAN Z H, BAO G, YIN S, et al., 2016. Pegetation changes in Otindag sand country during 2000-2014[J]. Acta Prataculturae Sinica, 25(1): 33-46. | |
[36] |
张杨, 徐永明, 卢响军, 等, 2024. 基于OCO-2遥感数据的新疆维吾尔自治区大气XCO2空间化研究[J]. 生态环境学报, 33(2): 231-241.
DOI |
ZHANG Y, XU Y M, LU X J, et al., 2024. Spatialization of atmospheric XCO2 in Xinjiang Uygur Autonomous Region based on OCO-2 remote sensing data[J]. Journal of Ecological and Environmental Sciences, 33(2): 231-241. | |
[37] | 钟惠, 2019. 卫星遥感大气CO2浓度变化与人为排放的关联分析研究[D]. 北京: 中国科学院大学: 22-65. |
ZHONG H, 2019. Study on the correlation analysis of satellite remote sensing atmospheric CO2 concentration changes with anthropogenic emissions[D]. Beijing: University of Chinese Academy of Sciences: 22-65. |
[1] | ZHANG Yang, XU Yongming, LU Xiangjun, MO Yaping, JI Meng, ZHU Shanyou. Spatialization of Atmospheric XCO2 in Xinjiang Uygur Autonomous Region based on OCO-2 Remote Sensing Data [J]. Ecology and Environmental Sciences, 2024, 33(2): 231-241. |
[2] | WEI Xiaofeng, HAN Hong, YAN Xuejun, WANG Zaifeng, LI Shengzeng, TIAN Yong, LIANG Di, MA Mingliang, ZHANG Guiqin. Source Apportionment of PM2.5 during Heavy Pollution Process in Ji'nan Based on Satellite Remote Sensing and CMB Model [J]. Ecology and Environmental Sciences, 2022, 31(6): 1175-1183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn