Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (11): 1705-1714.DOI: 10.16258/j.cnki.1674-5906.2025.11.004
• Papers on Carbon Cycling and Carbon Emission Reduction • Previous Articles Next Articles
WANG Zongyang(
), ZENG Xuelan, ZHU Zhenchang, GUO Fen, LUO Lijuan, ZHANG Wuying, DU Qingping, ZHANG Yuan*(
)
Received:2025-03-12
Online:2025-11-18
Published:2025-11-05
王宗阳(
), 曾雪兰, 祝振昌, 郭芬, 罗丽娟, 张武英, 杜青平, 张远*(
)
通讯作者:
E-mail: 作者简介:王宗阳(1994年生),男,博士研究生,主要从事红树林遥感监测。E-mail: 1112124007@mail2.gdut.edu.cn
基金资助:CLC Number:
WANG Zongyang, ZENG Xuelan, ZHU Zhenchang, GUO Fen, LUO Lijuan, ZHANG Wuying, DU Qingping, ZHANG Yuan. Spatial Distribution and Driving Mechanisms of Vegetation and Soil Carbon Density in the Mangrove Ecosystem of Zhanjiang City[J]. Ecology and Environmental Sciences, 2025, 34(11): 1705-1714.
王宗阳, 曾雪兰, 祝振昌, 郭芬, 罗丽娟, 张武英, 杜青平, 张远. 湛江市红树林植被及土壤碳密度空间分布及其驱动机制分析[J]. 生态环境学报, 2025, 34(11): 1705-1714.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.11.004
| 样方区域 | 土壤采集样方数量 | 植被样方调查数量 | 土壤样方编号 | 土壤样方编号 | 植被类型 | 群落类型 |
|---|---|---|---|---|---|---|
| 麻章区 太平镇S1 | 3 | 3 | S1-1 | S1-1 | 无瓣海桑(Sonneratia apetala) | 无斑海桑 |
| S1-2 | S1-2 | 桐花树(Aegiceras corniculatum) | 桐花树 | |||
| S1-3 | S1-3 | 桐花树 | 桐花树 | |||
| 雷州市 河北港S2 | 3 | 3 | S2-1 | S2-1 | 无瓣海桑 | 无瓣海桑 |
| S2-2 | S2-2 | 白骨壤(Avicennia marina) | 白骨壤 | |||
| S2-3 | S2-3 | 白骨壤 | 白骨壤 | |||
| 东海岛S3 | 2 | 3 | S3-1 | S3-1 | 秋茄(Kandelia obovata)、白骨壤 | 白骨壤 |
| S3-2 | S3-2 | 无瓣海桑 | 无瓣海桑 | |||
| S3-3 | 无瓣海桑 | 无瓣海桑 | ||||
| 徐闻县 金鸡村S4 | 3 | 3 | S4-1 | S4-1 | 白骨壤 | 白骨壤 |
| S4-2 | S4-2 | 白骨壤 | 白骨壤 | |||
| S4-3 | S4-3 | 白骨壤 | 白骨壤 | |||
| 徐闻县 笃头村S5 | 3 | 3 | S5-1 | S5-1 | 无瓣海桑 | 无瓣海桑 |
| S5-2 | S5-2 | 白骨壤 | 白骨壤 | |||
| S5-3 | S5-3 | 秋茄 | 秋茄 | |||
| 雷州市 流沙湾S6 | 4 | 4 | S6-1 | S6-1 | 白骨壤 | 白骨壤 |
| S6-2 | S6-2 | 白骨壤、桐花树、红海榄(Rhizophora stylosa) | 桐花树 | |||
| S6-3 | S6-3 | 白骨壤 | 白骨壤 | |||
| S6-4 | S6-4 | 白骨壤、桐花树、红海榄 | 白骨壤 | |||
| 雷州市 企水镇S7 | 2 | 4 | S7-1 | S7-1 | 白骨壤、红海榄 | 白骨壤 |
| S7-2 | 白骨壤、红海榄、木榄(Bruguiera gymnorrhiza) | 白骨壤 | ||||
| S7-3 | S7-3 | 红海榄 | 红海榄 | |||
| S7-4 | 红海榄 | 红海榄 | ||||
| 遂溪县 斗仑S8 | 4 | 3 | S8-1 | S8-1 | 无瓣海桑、桐花树 | 无瓣海桑 |
| S8-2 | S8-2 | 无瓣海桑、桐花树 | 无瓣海桑 | |||
| S8-3 | S8-3 | 白骨壤、桐花树 | 白骨壤 | |||
| 廉江市 高桥S9 | 3 | 4 | S9-1 | S9-1 | 秋茄、红海榄 | 红海榄 |
| S9-2 | S9-2 | 木榄 | 木榄 | |||
| S9-3 | S9-3 | 秋茄、桐花树、白骨壤、木榄 | 木榄 | |||
| S9-4 | 木榄、红海榄 | 木榄 | ||||
| 霞山区 特呈岛S10 | 2 | 3 | S10-1 | S10-1 | 木榄、红海榄、白骨壤 | 白骨壤 |
| S10-2 | S10-2 | 红海榄、白骨壤 | 红海榄 | |||
| S10-3 | 红海榄、白骨壤 | 红海榄 |
Table 1 The overview of survey plots
| 样方区域 | 土壤采集样方数量 | 植被样方调查数量 | 土壤样方编号 | 土壤样方编号 | 植被类型 | 群落类型 |
|---|---|---|---|---|---|---|
| 麻章区 太平镇S1 | 3 | 3 | S1-1 | S1-1 | 无瓣海桑(Sonneratia apetala) | 无斑海桑 |
| S1-2 | S1-2 | 桐花树(Aegiceras corniculatum) | 桐花树 | |||
| S1-3 | S1-3 | 桐花树 | 桐花树 | |||
| 雷州市 河北港S2 | 3 | 3 | S2-1 | S2-1 | 无瓣海桑 | 无瓣海桑 |
| S2-2 | S2-2 | 白骨壤(Avicennia marina) | 白骨壤 | |||
| S2-3 | S2-3 | 白骨壤 | 白骨壤 | |||
| 东海岛S3 | 2 | 3 | S3-1 | S3-1 | 秋茄(Kandelia obovata)、白骨壤 | 白骨壤 |
| S3-2 | S3-2 | 无瓣海桑 | 无瓣海桑 | |||
| S3-3 | 无瓣海桑 | 无瓣海桑 | ||||
| 徐闻县 金鸡村S4 | 3 | 3 | S4-1 | S4-1 | 白骨壤 | 白骨壤 |
| S4-2 | S4-2 | 白骨壤 | 白骨壤 | |||
| S4-3 | S4-3 | 白骨壤 | 白骨壤 | |||
| 徐闻县 笃头村S5 | 3 | 3 | S5-1 | S5-1 | 无瓣海桑 | 无瓣海桑 |
| S5-2 | S5-2 | 白骨壤 | 白骨壤 | |||
| S5-3 | S5-3 | 秋茄 | 秋茄 | |||
| 雷州市 流沙湾S6 | 4 | 4 | S6-1 | S6-1 | 白骨壤 | 白骨壤 |
| S6-2 | S6-2 | 白骨壤、桐花树、红海榄(Rhizophora stylosa) | 桐花树 | |||
| S6-3 | S6-3 | 白骨壤 | 白骨壤 | |||
| S6-4 | S6-4 | 白骨壤、桐花树、红海榄 | 白骨壤 | |||
| 雷州市 企水镇S7 | 2 | 4 | S7-1 | S7-1 | 白骨壤、红海榄 | 白骨壤 |
| S7-2 | 白骨壤、红海榄、木榄(Bruguiera gymnorrhiza) | 白骨壤 | ||||
| S7-3 | S7-3 | 红海榄 | 红海榄 | |||
| S7-4 | 红海榄 | 红海榄 | ||||
| 遂溪县 斗仑S8 | 4 | 3 | S8-1 | S8-1 | 无瓣海桑、桐花树 | 无瓣海桑 |
| S8-2 | S8-2 | 无瓣海桑、桐花树 | 无瓣海桑 | |||
| S8-3 | S8-3 | 白骨壤、桐花树 | 白骨壤 | |||
| 廉江市 高桥S9 | 3 | 4 | S9-1 | S9-1 | 秋茄、红海榄 | 红海榄 |
| S9-2 | S9-2 | 木榄 | 木榄 | |||
| S9-3 | S9-3 | 秋茄、桐花树、白骨壤、木榄 | 木榄 | |||
| S9-4 | 木榄、红海榄 | 木榄 | ||||
| 霞山区 特呈岛S10 | 2 | 3 | S10-1 | S10-1 | 木榄、红海榄、白骨壤 | 白骨壤 |
| S10-2 | S10-2 | 红海榄、白骨壤 | 红海榄 | |||
| S10-3 | 红海榄、白骨壤 | 红海榄 |
| 物种 | 异速生长方程 |
|---|---|
| 桐花树 | Babove=31.34×(d2×h)0.465 (1) |
| Bbelow=9.33×(d2×h)0.303 (2) | |
| 白骨壤 | Babove=0.308×d 2.11 (3) |
| Bbelow=1.28×d1.17 (4) | |
| 木榄 | Babove=0.186×d 2.31 (5) |
| Bbelow=0.4697×d1.5543 (6) | |
| 秋茄 | Babove=0.187×d1.855+0.267×d1.906 (7) |
| Bbelow=4.6×d1.136 (8) | |
| 无瓣海桑 | Babove=0.258×d 2.287 (9) |
| Bbelow=0.045×d2.320 (10) | |
| 红海榄 | Babove=0.2206×d 2.4292 (11) |
| Bbelow=0.261×d1.86 (12) |
Table 2 Allometric growth equations of different mangrove vegetation types
| 物种 | 异速生长方程 |
|---|---|
| 桐花树 | Babove=31.34×(d2×h)0.465 (1) |
| Bbelow=9.33×(d2×h)0.303 (2) | |
| 白骨壤 | Babove=0.308×d 2.11 (3) |
| Bbelow=1.28×d1.17 (4) | |
| 木榄 | Babove=0.186×d 2.31 (5) |
| Bbelow=0.4697×d1.5543 (6) | |
| 秋茄 | Babove=0.187×d1.855+0.267×d1.906 (7) |
| Bbelow=4.6×d1.136 (8) | |
| 无瓣海桑 | Babove=0.258×d 2.287 (9) |
| Bbelow=0.045×d2.320 (10) | |
| 红海榄 | Babove=0.2206×d 2.4292 (11) |
| Bbelow=0.261×d1.86 (12) |
| 指标 | 指标含义 | 公式 |
|---|---|---|
| 面积 | 斑块面积 | |
| 回转半径 | 斑块内像元到 其质心的距离和 | 式中:E——回转半径(m);r——像元到斑块质心的距离(m);i——指标的像元个数,i=1, 2,..., M |
| 形状指数 | 形状复杂度, 正方形为1(最小值) | 式中:H——形状指数;P——周长(m);A——面积(m2) |
| 分形维数 | 周长的卷曲程度, 正方形为1,边界 复杂的值无限趋近2 | 式中:C——分形维数;P——周长(m);A——面积(m2) |
| 周长面积比 | 简单的形状复杂性量,同面积下斑块细长 (即周长变大)值升高 | 式中:R——周长面积比;P——周长(m);A——面积(m2) |
| 近圆形形状指数 | 圆形斑块的圆形 接近0,细长线形 斑块的圆形接近1 | 式中:L——近圆形形状指数;A——面积(m2);AS——最小外接圆面积(m2) |
| 邻近指数 | 连通性指数评价 空间连通性 | 式中:G——邻近指数;A*——斑块内像元总面积(m2);i——指标的像元个数,i=1, 2,..., M; C——斑块中所有像元的联通性;A*——斑块内像元总面积(m2);V——斑块中3×3窗口个数总和 |
Table 3 Mangrove landscape pattern index
| 指标 | 指标含义 | 公式 |
|---|---|---|
| 面积 | 斑块面积 | |
| 回转半径 | 斑块内像元到 其质心的距离和 | 式中:E——回转半径(m);r——像元到斑块质心的距离(m);i——指标的像元个数,i=1, 2,..., M |
| 形状指数 | 形状复杂度, 正方形为1(最小值) | 式中:H——形状指数;P——周长(m);A——面积(m2) |
| 分形维数 | 周长的卷曲程度, 正方形为1,边界 复杂的值无限趋近2 | 式中:C——分形维数;P——周长(m);A——面积(m2) |
| 周长面积比 | 简单的形状复杂性量,同面积下斑块细长 (即周长变大)值升高 | 式中:R——周长面积比;P——周长(m);A——面积(m2) |
| 近圆形形状指数 | 圆形斑块的圆形 接近0,细长线形 斑块的圆形接近1 | 式中:L——近圆形形状指数;A——面积(m2);AS——最小外接圆面积(m2) |
| 邻近指数 | 连通性指数评价 空间连通性 | 式中:G——邻近指数;A*——斑块内像元总面积(m2);i——指标的像元个数,i=1, 2,..., M; C——斑块中所有像元的联通性;A*——斑块内像元总面积(m2);V——斑块中3×3窗口个数总和 |
| 植被类型 | 碳储量密度(以C计)/(Mg∙hm−2) | ||
|---|---|---|---|
| 红树林植被碳密度 | 红树林土壤碳密度 | 红树林碳密度 | |
| 白骨壤 | 22.01±6.04 1) | 81.29±33.81 | 103.3±39.85 |
| 红海榄 | 17.29±4.77 | 198.71±54.41 | 216±59.18 |
| 木榄 | 7.21±2.98 | 251.2±44.16 | 258.41±47.14 |
| 秋茄 | 13.6±4.32 | 233.23±42.65 | 246.83±46.97 |
| 桐花树 | 25.26±1.93 | 133.6±6.72 | 158.86±8.65 |
| 无瓣海桑 | 46.77±27.64 | 102.61±72.1 | 149.38±99.74 |
Table 4 Average carbon storage density of different community type
| 植被类型 | 碳储量密度(以C计)/(Mg∙hm−2) | ||
|---|---|---|---|
| 红树林植被碳密度 | 红树林土壤碳密度 | 红树林碳密度 | |
| 白骨壤 | 22.01±6.04 1) | 81.29±33.81 | 103.3±39.85 |
| 红海榄 | 17.29±4.77 | 198.71±54.41 | 216±59.18 |
| 木榄 | 7.21±2.98 | 251.2±44.16 | 258.41±47.14 |
| 秋茄 | 13.6±4.32 | 233.23±42.65 | 246.83±46.97 |
| 桐花树 | 25.26±1.93 | 133.6±6.72 | 158.86±8.65 |
| 无瓣海桑 | 46.77±27.64 | 102.61±72.1 | 149.38±99.74 |
| 景观格局指标 | 地上植被碳密度 | 地下植被碳密度 | 植被碳密度 | 物种数 | 土壤碳密度 |
|---|---|---|---|---|---|
| 面积平均值 | 0.023 | −0.006 | 0.014 | −0.570 | −0.479 |
| 面积中值 | 0.803 1) | 0.818 | 0.838 | 0.173 | 0.375 |
| 面积变异系数 | −0.158 | −0.219 | −0.185 | 0.691 | 0.492 |
| 回转半径平均值 | 0.137 | 0.087 | 0.125 | −0.539 | −0.455 |
| 回转半径中值 | 0.767 | 0.809 | 0.810 | 0.248 | 0.410 |
| 回转半径变异系数 | −0.431 | −0.447 | −0.453 | 0.210 | 0.055 |
| 形状指数平均值 | 0.377 | 0.319 | 0.371 | −0.385 | −0.392 |
| 形状指数中值 | 0.638 | 0.653 | 0.667 | 0.511 | 0.491 |
| 形状指数变异系数 | −0.122 | −0.217 | −0.159 | −0.400 | −0.594 |
| 分形维数平均值 | 0.585 | 0.427 | 0.554 | 0.284 | 0.106 |
| 分形维数中值 | 0.529 | 0.577 | 0.565 | 0.679 | 0.520 |
| 分形维数变异系数 | 0.070 | −0.008 | 0.046 | −0.428 | −0.570 |
| 周长面积比平均值 | −0.545 | −0.657 | −0.603 | −0.232 | −0.340 |
| 周长面积比中值 | −0.464 | −0.608 | −0.530 | −0.352 | −0.428 |
| 周长面积比变异系数 | 0.559 | 0.695 | 0.626 | −0.159 | 0.117 |
| 近圆形形状指数平均值 | 0.482 | 0.338 | 0.451 | 0.348 | 0.182 |
| 近圆形形状指数中值 | 0.635 | 0.451 | 0.597 | 0.096 | 0.010 |
| 近圆形形状指数变异系数 | −0.249 | −0.120 | −0.215 | −0.698 | −0.488 |
| 邻近指数平均值 | 0.590 | 0.711 | 0.653 | 0.197 | 0.318 |
| 邻近指数中值 | 0.486 | 0.608 | 0.545 | 0.354 | 0.406 |
| 邻近指数变异系数 | −0.414 | −0.380 | −0.418 | −0.683 | −0.424 |
Table 5 Correlation coefficients between mangrove vegetation, soil carbon density, species number, and landscape pattern index
| 景观格局指标 | 地上植被碳密度 | 地下植被碳密度 | 植被碳密度 | 物种数 | 土壤碳密度 |
|---|---|---|---|---|---|
| 面积平均值 | 0.023 | −0.006 | 0.014 | −0.570 | −0.479 |
| 面积中值 | 0.803 1) | 0.818 | 0.838 | 0.173 | 0.375 |
| 面积变异系数 | −0.158 | −0.219 | −0.185 | 0.691 | 0.492 |
| 回转半径平均值 | 0.137 | 0.087 | 0.125 | −0.539 | −0.455 |
| 回转半径中值 | 0.767 | 0.809 | 0.810 | 0.248 | 0.410 |
| 回转半径变异系数 | −0.431 | −0.447 | −0.453 | 0.210 | 0.055 |
| 形状指数平均值 | 0.377 | 0.319 | 0.371 | −0.385 | −0.392 |
| 形状指数中值 | 0.638 | 0.653 | 0.667 | 0.511 | 0.491 |
| 形状指数变异系数 | −0.122 | −0.217 | −0.159 | −0.400 | −0.594 |
| 分形维数平均值 | 0.585 | 0.427 | 0.554 | 0.284 | 0.106 |
| 分形维数中值 | 0.529 | 0.577 | 0.565 | 0.679 | 0.520 |
| 分形维数变异系数 | 0.070 | −0.008 | 0.046 | −0.428 | −0.570 |
| 周长面积比平均值 | −0.545 | −0.657 | −0.603 | −0.232 | −0.340 |
| 周长面积比中值 | −0.464 | −0.608 | −0.530 | −0.352 | −0.428 |
| 周长面积比变异系数 | 0.559 | 0.695 | 0.626 | −0.159 | 0.117 |
| 近圆形形状指数平均值 | 0.482 | 0.338 | 0.451 | 0.348 | 0.182 |
| 近圆形形状指数中值 | 0.635 | 0.451 | 0.597 | 0.096 | 0.010 |
| 近圆形形状指数变异系数 | −0.249 | −0.120 | −0.215 | −0.698 | −0.488 |
| 邻近指数平均值 | 0.590 | 0.711 | 0.653 | 0.197 | 0.318 |
| 邻近指数中值 | 0.486 | 0.608 | 0.545 | 0.354 | 0.406 |
| 邻近指数变异系数 | −0.414 | −0.380 | −0.418 | −0.683 | −0.424 |
| [1] |
ALONGI D M, 2008. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change[J]. Estuarine, Coastal and Shelf Science, 76(1): 1-13.
DOI URL |
| [2] |
ALONGI D M, 2014. Carbon cycling and storage in mangrove forests[J]. Annual review of marine science, 6(1): 195-219.
DOI URL |
| [3] |
ARNAUD M, KRAUSE S, NORBY R J, et al., 2023. Global mangrove root production, its controls and roles in the blue carbon budget of mangroves[J]. Global Change Biology, 29(12): 3256-3270.
DOI URL |
| [4] |
ATWOOD T B, CONNOLLY R M, ALMAHASHEER H, et al., 2017. Global patterns in mangrove soil carbon stocks and losses[J]. Nature Climate Change, 7(7): 523-528.
DOI |
| [5] |
CHEN L Z, TAM N F Y, WANG W Q, et al., 2013. Significant niche overlap between native and exotic Sonneratia mangrove species along a continuum of varying inundation periods[J]. Estuarine Coastal and Shelf Science, 117: 22-28.
DOI URL |
| [6] |
FU C C, LI Y, ZENG L, et al., 2021. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats[J]. Global Change Biology, 27(1): 202-214.
DOI URL |
| [7] |
FU C W, SHEN Z B, TANG S H, et al., 2025. Tidal-driven N2O emission is a stronger resister than CH4 to offset annual carbon sequestration in mangrove ecosystems[J]. Science of The Total Environment, 964: 178568.
DOI URL |
| [8] |
GOLDBERG L, LAGOMASINO D, THOMAS N, et al., 2020. Global declines in human-driven mangrove loss[J]. Global Change Biology, 26(10): 5844-5855.
DOI URL |
| [9] | HAGGER V, WORTHINGTON T A, LOVELOCK C E, et al., 2022. Drivers of global mangrove loss and gain in social-ecological systems[J]. Nature Communications, 13(1): 6373. |
| [10] |
HUANG Z X, GUO F, OUYANG X G, et al., 2025. Differential carbon stocks and burial rates in natural versus planted mangrove forests under varied hydrogeomorphic conditions[J]. Catena, 254: 108981.
DOI URL |
| [11] |
JIA M M, WANG Z M, LI L, et al., 2014. Mapping China’s mangroves based on an object-oriented classification of Landsat imagery[J]. Wetlands, 34(2): 277-283.
DOI URL |
| [12] | KRAUSS K W, OSLAND M J, 2019. Tropical cyclones and the organization of mangrove forests: A review[J]. Annals of Botany, 125(2): 213-234. |
| [13] |
LOVELOCK C E, BENNION V, DE OLIVEIRA M, et al., 2024. Mangrove ecology guiding the use of mangroves as nature‐based solutions[J]. Journal of Ecology, 112(11): 2510-2521.
DOI URL |
| [14] | MA J, LI J W, WU W B, et al., 2023. Global forest fragmentation change from 2000 to 2020[J]. Nature Communications, 14(1): 3752. |
| [15] | MACREADIE P I, ANTON A, RAVEN J A, et al., 2019. The future of Blue Carbon science[J]. Nature Communications, 10(1): 3998. |
| [16] |
MENG Y C, GOU R K, BAI J K, et al., 2022. Spatial patterns and driving factors of carbon stocks in mangrove forests on Hainan Island, China[J]. Global Ecology and Biogeography, 31(9): 1692-1706.
DOI URL |
| [17] | NUNES M H, CAMARGO J L C, VINCENT G, et al., 2022. Forest fragmentation impacts the seasonality of Amazonian evergreen canopies[J]. Nature Communications, 13(1): 917. |
| [18] | OUYANG X G, GUO F, LEE S Y, et al., 2024. Mangrove restoration in China’s tidal ecosystems[J] Science, 385(6711): 836-836. |
| [19] | SONG S S, DING Y L, LI W, et al., 2023. Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change[J]. Nature Communications, 14(1): 756. |
| [20] |
TAUBERT F, FISCHER R, GROENEVELD J, et al., 2018. Global patterns of tropical forest fragmentation[J]. Nature, 554(7693): 519-522.
DOI URL |
| [21] |
WANG Q D, SONG J M, LI X G, et al., 2016. Environmental evolution records reflected by radionuclides in the sediment of coastal wetlands: A case study in the Yellow River Estuary wetland[J]. Journal of Environmental Radioactivity, 162-163: 87-96.
DOI PMID |
| [22] |
WANG Z Y, ZHANG Y, LI F L, et al., 2024. Regional mangrove vegetation carbon stocks predicted integrating UAV-LiDAR and satellite data[J]. Journal of Environmental Management, 368: 122101.
DOI URL |
| [23] |
YU C X, FENG J X, LIU K, et al., 2020. Changes of ecosystem carbon stock following the plantation of exotic mangrove Sonneratia apetala in Qi’ao Island, China[J]. Science of The Total Environment, 717: 137142.
DOI URL |
| [24] |
ZANG Z, 2019. Analysis of intrinsic value and estimating losses of “blue carbon” in coastal wetlands: A case study of Yancheng, China[J]. Ecosystem Health and Sustainability, 5(1): 216-225.
DOI URL |
| [25] | ZHANG J Y, YANG X M, WANG Z H, et al., 2021. Remote sensing based spatial-temporal monitoring of the changes in coastline mangrove forests in China over the last 40 years[J]. Remote Sensing, 13(10): 1986. |
| [26] | 陈德亮, 赖慧文, 2021. IPCC AR6 WGI报告的背景、架构和方法[J]. 气候变化研究进展, 17(6): 636-643. |
| CHEN D L, LAI H W, 2021. Interpretation of the IPCC AR6 WGI report in terms of its context, structure, and methods[J]. Advances in Climate Change Research, 17(6): 636-643. | |
| [27] | 邓淞文, 杨飞, 王英辉, 等, 2024. 红树林碳库遥感监测研究进展[J]. 遥感学报, 28(10): 2448-2468. |
|
DENG S W, YANG F, WANG Y H, et al., 2024. Progress in remote sensing monitoring of Mangrove Carbon Storage[J]. National Remote Sensing Bulletin, 28(10): 2448-2468.
DOI URL |
|
| [28] | 胡懿凯, 徐耀文, 薛春泉, 等, 2019. 广东省无瓣海桑和林地土壤碳储量研究[J]. 华南农业大学学报, 40(6): 95-103. |
| HU Y K, XU Y W, XUE C Q, et al., 2019. Studies on carbon storages of Sonneratia apetala forest vegetation and soil in Guangdong Province[J]. Journal of South China Agricultural University, 40(6): 95-103. | |
| [29] | 姜亦飞, 杜金洲, 张敬, 等, 2012. 长江口崇明东滩不同植被带沉积速率研究[J]. 海洋学报, 34(2): 114-121. |
| JIANG Y F, DU J Z, ZHANG J, et al., 2012. The determination of sedimentation rates in various vegetational zones of Chongming tidal flat of the Changjiang Estuary[J]. Haiyang Xuebao, 34(2): 114-121. | |
| [30] | 李楠, 王友绍, 林立, 等, 2010. 湛江特呈岛红树植物群落结构特征[J]. 生态科学, 29(1): 8-13. |
| LI N, WANG Y S, LIN L, et al., 2010 Characteristics of the community structure of mangrove communities of Techeng Island, Zhanjiang[J]. Ecological Science, 29(1): 8-13. | |
| [31] | 罗奕奕, 李凌超, 程宝栋, 2024. 经济增长对森林破碎化的影响——以中国京津冀地区为例[J]. 南京林业大学学报 (自然科学版), 48(1): 227-236. |
| LUO Y Y, LI L C, CHENG B D, 2024. The impact of economic growth on forest fragmentation: A case study of Beijing-Tianjin-Hebei Region in China[J]. Journal of Nanjing Forestry University (Natural Science Edition), 48(1): 227-236. | |
| [32] | 唐明坤, 陈治兴, 郑夕平, 等, 2025. 四川康定力丘河流域景观格局变化及驱动力分析[J]. 四川林业科技, 46(2): 13-20. |
| TANG M K, CHEN Z X, ZHENG X P, et al., 2025. Analysis on landscape pattern change and driving forces of Liqiu River basin in Kangding, Sichuan Province[J]. Journal of Sichuan Forestry Science and Technology, 46(2): 13-20. | |
| [33] | 田义超, 黄远林, 陶进, 等, 2019. 基于无人机影像的北部湾典型岛群红树林生态系统净初级生产力估算[J]. 热带地理, 39(4): 583-596. |
|
TIAN Y C, HUANG Y L, TAO J, et al., 2019. Estimating the net primary productivity of typical mangrove and archipelago ecosystems in the Beibu Gulf based on unmanned aerial vehicle imagery[J]. Tropical Geography, 39(4): 583-596.
DOI |
|
| [34] | 吴雪, 赵鑫, 辜伟芳, 等, 2025. 浙南海岸带人工秋茄 (Kandelia obovata) 红树林与互花米草 (Spartina alterniflora) 盐沼土壤碳汇对比研究[J]. 热带海洋学报, 44(1): 172-181. |
| WU X, ZHAO X, GU W F, et al., 2025. Comparative study on soil carbon sinks of artificial Kandelia obovate mangrove and Spartina alterniflora salt marsh in the southern Zhejiang coastal zone[J]. Journal of Tropical Oceanography, 44(1): 172-181. | |
| [35] | 周治刚, 岳文, 李辉权, 等, 2024. 树种类型和潮滩高程对广东湛江高桥红树林碳储量的影响[J]. 热带海洋学报, 43(2): 108-120. |
| ZHOU Z G, YUE W, LI H Q, et al., 2024. Influence of tree species and intertidal elevations on the carbon storage of the Gaoqiao mangrove area in Zhanjiang, Guangdong Province[J]. Journal of Tropical Oceanography, 43(2): 108-120. |
| [1] | DONG Xin, LANG Jiayu, CHUYUAN Mengran, ZHAO Shanshan, ZHANG Jindong, BAI Wenke. The Seasonal Characteristics of Home Range and Habitat Utilization of Sichuan Golden Monkeys (Rhinopithecus roxellana) [J]. Ecology and Environmental Sciences, 2021, 30(7): 1342-1352. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn