Ecology and Environment ›› 2024, Vol. 33 ›› Issue (1): 119-130.DOI: 10.16258/j.cnki.1674-5906.2024.01.013
• Research Article • Previous Articles Next Articles
LI Xueying1,2,3(), LU Zheng2,3, HE Yuan1,2,3, YANG Xiaofan2,3,*(
)
Received:
2023-08-04
Online:
2024-01-18
Published:
2024-03-19
Contact:
YANG Xiaofan
李雪莹1,2,3(), 陆峥2,3, 何源1,2,3, 杨晓帆2,3,*(
)
通讯作者:
杨晓帆
作者简介:
李雪莹(1999年生),女,博士研究生,主要从事地下水溶质运移模型研究。E-mail: lixueying@mail.bnu.edu.cn
基金资助:
CLC Number:
LI Xueying, LU Zheng, HE Yuan, YANG Xiaofan. Reconstruction of Porous Media Microstructure Via X-ray Computed Tomography and Generative Adversarial Networks[J]. Ecology and Environment, 2024, 33(1): 119-130.
李雪莹, 陆峥, 何源, 杨晓帆. 应用XCT断层扫描技术和GAN深度学习模型的多孔介质微观结构定量研究[J]. 生态环境学报, 2024, 33(1): 119-130.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.01.013
Y仪器型号及参数 | CT METROTOM 1500 225 kV |
---|---|
射线管输出功率/W | 300‒450 |
射线管输出电压/kV | 189‒200 |
射线管输出电流/μA | 1.80×103‒2.50×103 |
仪器最小分辨率/μm | 7 |
满足上述条件的湿度 | 18‒22 ℃, 2.0 K∙d−1, 1.0 K∙m−1, 40%‒70% (无凝结) |
Table 1 Parameters of XCT scanning
Y仪器型号及参数 | CT METROTOM 1500 225 kV |
---|---|
射线管输出功率/W | 300‒450 |
射线管输出电压/kV | 189‒200 |
射线管输出电流/μA | 1.80×103‒2.50×103 |
仪器最小分辨率/μm | 7 |
满足上述条件的湿度 | 18‒22 ℃, 2.0 K∙d−1, 1.0 K∙m−1, 40%‒70% (无凝结) |
参数 | 石英砂 | 土壤 |
---|---|---|
原始图像大小 | 5003 | 6503 |
训练图像大小 | 643 | 643 |
批处理数据量 | 4 | 4 |
学习率 | 10−5 | 10−5 |
迭代次数 | 1000 | 1000 |
GPU数量 | 4 | 4 |
优化器 | Adam | Adam |
第一动量衰减因子 | 0.999 | 0.999 |
Z向量大小 | 512 | 512 |
模型稳定性方法 | White Noise (σ=0.1) | White Noise (σ=0.1) |
Table 2 Training parameters of GAN
参数 | 石英砂 | 土壤 |
---|---|---|
原始图像大小 | 5003 | 6503 |
训练图像大小 | 643 | 643 |
批处理数据量 | 4 | 4 |
学习率 | 10−5 | 10−5 |
迭代次数 | 1000 | 1000 |
GPU数量 | 4 | 4 |
优化器 | Adam | Adam |
第一动量衰减因子 | 0.999 | 0.999 |
Z向量大小 | 512 | 512 |
模型稳定性方法 | White Noise (σ=0.1) | White Noise (σ=0.1) |
参数 | 石英砂 |
---|---|
粘度η/(Pa·s) | 0.010 |
流体密度ρ/(kg·m−3) | 1.00 |
重力加速度g/(m·s−2) | 9.80 |
Table 3 Parameters of CFD simulation
参数 | 石英砂 |
---|---|
粘度η/(Pa·s) | 0.010 |
流体密度ρ/(kg·m−3) | 1.00 |
重力加速度g/(m·s−2) | 9.80 |
模拟条件 | 压力场p | 速度场u |
---|---|---|
初始条件 | 均质场,0 | |
入口条件 | 出入口, 均值10−5 | 零梯度 |
出口条件 | 固定值, 均值0 | |
上边界条件 | 循环 | 循环, 均值0 |
Table 4 Conditions of CFD simulation
模拟条件 | 压力场p | 速度场u |
---|---|---|
初始条件 | 均质场,0 | |
入口条件 | 出入口, 均值10−5 | 零梯度 |
出口条件 | 固定值, 均值0 | |
上边界条件 | 循环 | 循环, 均值0 |
评价指标 | 石英砂 | 土壤 | |||
---|---|---|---|---|---|
训练数据 | 合成数据 | 训练数据 | 合成数据 | ||
平均孔隙弦长 [像素](变量) | 8.62 | 13.6 | 10.9 | 18.6 | |
平均粒径弦长 [像素] (变量) | 11.5 | 17.7 | 10.2 | 17.6 | |
孔隙度 (变量) | 0.428 | 0.433 | 0.517 | 0.534 | |
表面面积 (变量) | 1.60×10−8 | 1.65×10−8 | 1.62×10−8 | 1.65×10−8 | |
平均曲率 (变量) | 2.89×10−11 | 1.59×10−11 | 1.99×10−10 | 1.25×10−10 | |
欧拉数 (变量) | −2.22×10−11 | −2.74×10−11 | −2.02×10−11 | −2.74×10−11 |
Table 5 Results of Minkowski functional evaluation
评价指标 | 石英砂 | 土壤 | |||
---|---|---|---|---|---|
训练数据 | 合成数据 | 训练数据 | 合成数据 | ||
平均孔隙弦长 [像素](变量) | 8.62 | 13.6 | 10.9 | 18.6 | |
平均粒径弦长 [像素] (变量) | 11.5 | 17.7 | 10.2 | 17.6 | |
孔隙度 (变量) | 0.428 | 0.433 | 0.517 | 0.534 | |
表面面积 (变量) | 1.60×10−8 | 1.65×10−8 | 1.62×10−8 | 1.65×10−8 | |
平均曲率 (变量) | 2.89×10−11 | 1.59×10−11 | 1.99×10−10 | 1.25×10−10 | |
欧拉数 (变量) | −2.22×10−11 | −2.74×10−11 | −2.02×10−11 | −2.74×10−11 |
[1] | BLUNT M J, 2017. Multiphase flow in permeable media: A pore-scale perspective[M]. Cambridge: Cambridge University Press. |
[2] |
BULTREYS T, DE BOEVER W, CNUDDE V, 2016. Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art[J]. Earth-Science Reviews, 155: 93-128.
DOI URL |
[3] |
BULTREYS T, BOONE M A, BOONE M N, et al., 2015. Real-time visualization of Haines jumps in sandstone with laboratory-based microcomputed tomography[J]. Water Resources Research, 51(10): 8668-8676.
DOI URL |
[4] | CHUNG S Y, KIM J S, DIETMAR S, 2019. Overview of the use of micro-computed tomography (micro-CT) to investigate the relation between the material characteristics and properties of cement-based materials[J]. Construction and Building Materials, 229(1168): 43-55. |
[5] |
FULLWOOD D T, NIEZGODA S R, KALIDINDI S R, 2008. Microstructure reconstructions from 2-point statistics using phase-recovery algorithms[J]. Acta Materialia, 56(5): 942-948.
DOI URL |
[6] |
GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, 2018. A survey on deep learning techniques for image and video semantic segmentation[J]. Applied Soft Computing, 70: 41-65.
DOI URL |
[7] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al., 2020. Generative adversarial networks[J]. Association for Computing Machinery, 63(11): 139-144. |
[8] | GRACZYK K M, MATYKA M, 2020. Predicting porosity, permeability, and tortuosity of porous media from images by deep learning[J]. Scientific Report, 10(1): 1-11. |
[9] |
GUIBERT R, NAZAROVA M, HORGUE P, 2015. Computational permeability determination from pore-scale imaging: Sample size, mesh and method sensitivities[J]. Transport in Porous Media, 107: 641-656.
DOI URL |
[10] |
HORGUE P, SOULAINE C, FRANC J, 2015. An open-source toolbox for multiphase flow in porous media[J]. Computer Physics Communications, 187: 217-226.
DOI URL |
[11] |
HÜTTER M, 2003. Heterogeneity of colloidal particle networks analyzed by means of Minkowski functionals[J]. Physical Review E, 68(3): 031404.
DOI URL |
[12] |
JI X M, QIAN J, RAHMAN S M J, et al., 2018. XCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression[J]. Oncogene, 37(36): 5007-5019.
DOI PMID |
[13] |
KAMRAVA S, TAHMASEBI P, SAHIMI M, 2020. Linking morphology of porous media to their macroscopic permeability by deep learning[J]. Transport in Porous Media, 131: 427-448.
DOI |
[14] |
KATO M, KANEKO K, TAKAHASHI M, 2015. Segmentation of multi-phase X-ray computed tomography images[J]. Environmental Geotechnics, 2(2): 104-117.
DOI URL |
[15] | KLAIN D A, ROTA G C, 1997. Introduction to geometric probability[M]. Cambridge: Lezioni Lincee. |
[16] | MAAS A L, HANNUN A Y, NG A Y, 2013. Rectifier nonlinearities improve neural network acoustic models[J]. Journal of Machine Learning Research, 30(28): 1-6. |
[17] | MATHERON G, 1971. Elements pour une theorie des milieux poreux[M]. Paris: Masson. |
[18] |
MOSSER L, DUBRULE O, BLUNT M J, 2017. Reconstruction of three-dimensional porous media using generative adversarial neural networks[J]. Physical Review E, 96: 043309.
DOI URL |
[19] |
NIEZGODA S R, FULLWOOD D T, KALIDINDI S R, 2008. Delineation of the space of 2-point correlations in a composite material system[J]. Acta Materialia, 56(18): 5285-5292.
DOI URL |
[20] | REIJONEN H M, KUVA J, HEIKKILA P, 2020. Benefits of applying X-ray computed tomography in bentonite based material research focused on geological disposal of radioactive waste[J]. Environmental Science and Pollution Research, 27(38): 407-421. |
[21] |
RIESCO R, BOYER L, BLOSSE S, 2019. Water-in-PDMS emulsion templating of highly interconnected porous architectures for 3D cell culture[J]. American Chemical Society, 11(286): 31-40.
DOI URL |
[22] | SAHIMI M, 2003. Heterogeneous materials I: Linear transport and optical properties[M]. New York: 175 Fifth Avenue. |
[23] | SCHLÜTER S, SHEPPARD A, BROWN K, et al., 2014. Image processing of multiphase images obtained via X-ray microtomography: A review[J]. Water Resources Research, 50(36): 15-39. |
[24] |
SCHOLZ C, WIRNER F, KLATT M A, 2015. Direct relations between morphology and transport in Boolean models[J]. Physical Review E, 92: 043023.
DOI URL |
[25] | SERGEY I, CHRISTIAN S, 2015. Batch Normalization: Accelerating deep network training by reducing internal covariate shift[J]. Proceedings of Machine Learning Research, 37: 448-456. |
[26] |
SUDAKOV O, BURNAEV E, KOROTEEV D, 2019. Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks[J]. Computers & Geosciences, 127: 91-98.
DOI URL |
[27] | TOWNSEND A, PAGANI L, SCOTT P, et al., 2017. Areal surface texture data extraction from X-ray computed tomography reconstructions of metal additively manufactured parts[J]. Precision Engineering, 48(4): 72. |
[28] |
VARFOLOMEEV I, YAKIMCHUK I, SAFONOV I, 2019. An application of deep neural networks for segmentation of microtomographic images of rock samples[J]. Computers, 8(4): 1-21.
DOI URL |
[29] | WANG F, CHENG Y, LU S, 2014. Influence of coalification on the pore characteristics of middle-high rank coal[J]. Energy & Fuels, 28(57): 29-36. |
[30] |
WANG H, YIN Y, HUI X Y, et al., 2020. Prediction of effective diffusivity of porous media using deep learning method based on sample structure information self-amplification[J]. Energy and AI, 2: 100035.
DOI URL |
[31] | WU H Y, FANG W Z, KANG Q J, 2019. Predicting effective diffusivity of porous media from images by deep learning[J]. Scientific Report, 9: 20387. |
[32] |
ZHANG F, TENG Q Z, CHEN H G, 2021. Slice-to-voxel stochastic reconstructions on porous media with hybrid deep generative model[J]. Computational Materials Science, 186: 110018.
DOI URL |
[33] |
ZHANG Y T, JIANG F, TSUJI T, 2022. Influence of pore space heterogeneity on mineral dissolution and permeability evolution investigated using lattice boltzmann method[J]. Chemical Engineering Science, 247: 117048.
DOI URL |
[1] | WU Jieting, ZHAO Ruofan, BAO Hongxu, ZHANG Ying, ZHAO Lei, XU Qi, CHEN Zhonglin, XU Lili, ZHANG Chi, XU Haiping, MA Fang. Research Progress on the Enhanced Microbial Remediation of Polycyclic Aromatic Hydrocarbons with Rhamnolipids [J]. Ecology and Environment, 2022, 31(1): 205-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn