Ecology and Environment ›› 2023, Vol. 32 ›› Issue (2): 226-234.DOI: 10.16258/j.cnki.1674-5906.2023.02.002
• Research Articles • Previous Articles Next Articles
CHEN Zhizhong1(), ZAN Mei1,2,*(
), YANG Xuefeng1,2, DONG Yu1,2
Received:
2022-10-31
Online:
2023-02-18
Published:
2023-05-11
Contact:
ZAN Mei
陈治中1(), 昝梅1,2,*(
), 杨雪峰1,2, 董煜1,2
通讯作者:
昝梅
作者简介:
陈治中(1998年生),男,硕士研究生,主要从事干旱区森林碳储量研究。E-mail: 2192352335@qq.com
基金资助:
CLC Number:
CHEN Zhizhong, ZAN Mei, YANG Xuefeng, DONG Yu. Prediction of Forest Vegetation Carbon Storage in Xinjiang[J]. Ecology and Environment, 2023, 32(2): 226-234.
陈治中, 昝梅, 杨雪峰, 董煜. 新疆森林植被碳储量预测研究[J]. 生态环境学报, 2023, 32(2): 226-234.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.02.002
森林 类型 | 模型 | 参数 | r2 | n | σRMSE | P | |
---|---|---|---|---|---|---|---|
a | b | ||||||
ENF | 公式1 | 11.57 | 0.99 | 0.82 | 211 | 1.22 | 0.00 |
DNF | 1.28 | 1.74 | 0.80 | 171 | 3.22 | 0.00 | |
DBF | 0.98 | 1.74 | 0.70 | 112 | 2.47 | 0.00 | |
MF | 3.80 | 1.36 | 0.79 | 109 | 3.25 | 0.00 |
Table 1 Parameters of forest biomass estimation model in Xinjiang
森林 类型 | 模型 | 参数 | r2 | n | σRMSE | P | |
---|---|---|---|---|---|---|---|
a | b | ||||||
ENF | 公式1 | 11.57 | 0.99 | 0.82 | 211 | 1.22 | 0.00 |
DNF | 1.28 | 1.74 | 0.80 | 171 | 3.22 | 0.00 | |
DBF | 0.98 | 1.74 | 0.70 | 112 | 2.47 | 0.00 | |
MF | 3.80 | 1.36 | 0.79 | 109 | 3.25 | 0.00 |
森林 类型 | 模型 | 参数 | r2 | n | σRMSE | P | ||
---|---|---|---|---|---|---|---|---|
α | β | γ | ||||||
ENF | 公式3 | 615.16 | 1.79 | 0.02 | 0.77 | 211 | 18.16 | 0.00 |
DNF | 公式2 | 529.91 | 4.16 | 0.03 | 0.76 | 171 | 19.00 | 0.00 |
DBF | 公式2 | 389.78 | 4.21 | 0.02 | 0.72 | 112 | 12.38 | 0.00 |
MF | 公式2 | 372.70 | 5.12 | 0.18 | 0.83 | 109 | 25.27 | 0.00 |
Table 2 Parameters of forest age estimation model in Xinjiang
森林 类型 | 模型 | 参数 | r2 | n | σRMSE | P | ||
---|---|---|---|---|---|---|---|---|
α | β | γ | ||||||
ENF | 公式3 | 615.16 | 1.79 | 0.02 | 0.77 | 211 | 18.16 | 0.00 |
DNF | 公式2 | 529.91 | 4.16 | 0.03 | 0.76 | 171 | 19.00 | 0.00 |
DBF | 公式2 | 389.78 | 4.21 | 0.02 | 0.72 | 112 | 12.38 | 0.00 |
MF | 公式2 | 372.70 | 5.12 | 0.18 | 0.83 | 109 | 25.27 | 0.00 |
森林 类型 | 模型 | 参数 | n | r2 | P | |||
---|---|---|---|---|---|---|---|---|
δ | ε | μ | τ | |||||
ENF | 公式5 | 309.53± 3.19 | 1.88± 0.09 | 0.03± 0.00 | 209 | 0.93 | 0.00 | |
DNF | 公式4 | 279.51± 4.07 | 12.46± 1.64 | 125.80± 1.22 | 4.08± 0.13 | 171 | 0.99 | 0.00 |
DBF | 公式4 | 204.88± 2.90 | 9.24± 1.21 | 185.00± 1.73 | 4.15± 0.13 | 112 | 0.99 | 0.00 |
MF | 公式4 | 188.61± 1.68 | 10.72± 1.09 | 30.96± 0.15 | 5.44± 0.12 | 109 | 0.99 | 0.00 |
Table 3 Fitting parameters of forest age and carbon density
森林 类型 | 模型 | 参数 | n | r2 | P | |||
---|---|---|---|---|---|---|---|---|
δ | ε | μ | τ | |||||
ENF | 公式5 | 309.53± 3.19 | 1.88± 0.09 | 0.03± 0.00 | 209 | 0.93 | 0.00 | |
DNF | 公式4 | 279.51± 4.07 | 12.46± 1.64 | 125.80± 1.22 | 4.08± 0.13 | 171 | 0.99 | 0.00 |
DBF | 公式4 | 204.88± 2.90 | 9.24± 1.21 | 185.00± 1.73 | 4.15± 0.13 | 112 | 0.99 | 0.00 |
MF | 公式4 | 188.61± 1.68 | 10.72± 1.09 | 30.96± 0.15 | 5.44± 0.12 | 109 | 0.99 | 0.00 |
森林 类型 | 碳储量/Tg | 碳汇速率/(Tg·a-1) | ||||
---|---|---|---|---|---|---|
2019年 | 2030年 | 2060年 | 2030年 | 2060年 | ||
ENF | 127.69±2.65 | 159.64±3.26 | 240.33±5.18 | 2.90±0.77 | 2.69±0.76 | |
DNF | 29.90±1.00 | 37.90±1.26 | 62.64±1.94 | 0.73±0.03 | 0.82±0.02 | |
DBF | 11.74±0.30 | 13.42±0.32 | 20.24±0.51 | 0.15±0.00 | 0.23±0.01 | |
MF | 4.87±0.19 | 8.80±0.27 | 11.78±0.29 | 0.36±0.01 | 0.10±0.00 |
Table 4 Prediction Results of Forest Carbon Storage and Carbon Sink Rate in Xinjiang
森林 类型 | 碳储量/Tg | 碳汇速率/(Tg·a-1) | ||||
---|---|---|---|---|---|---|
2019年 | 2030年 | 2060年 | 2030年 | 2060年 | ||
ENF | 127.69±2.65 | 159.64±3.26 | 240.33±5.18 | 2.90±0.77 | 2.69±0.76 | |
DNF | 29.90±1.00 | 37.90±1.26 | 62.64±1.94 | 0.73±0.03 | 0.82±0.02 | |
DBF | 11.74±0.30 | 13.42±0.32 | 20.24±0.51 | 0.15±0.00 | 0.23±0.01 | |
MF | 4.87±0.19 | 8.80±0.27 | 11.78±0.29 | 0.36±0.01 | 0.10±0.00 |
森林 类型 | 龄组 | 林龄/a | 面积/m2 | 偏差/a | |
---|---|---|---|---|---|
估测值 | 文献值 (戴铭等, | ||||
ENF | 幼龄 | 50 | 45 | 4.00×109 | 5 |
中龄 | 76 | 85 | 5.70×109 | -9 | |
近熟 | 106 | 110 | 1.60×109 | -4 | |
成熟 | 128 | 140 | 3.60×108 | -12 | |
过熟 | 184 | 170 | 1.10×107 | 14 | |
DNF | 幼龄 | 22 | 35 | 9.60×108 | -13 |
中龄 | 63 | 62.50 | 1.40×109 | 0.50 | |
近熟 | 91 | 82.50 | 1.20×109 | 8.50 | |
成熟 | 112 | 105 | 1.30×109 | 7 | |
过熟 | 159 | 130 | 6.20×107 | 29 | |
DBF | 幼龄 | 4 | 5 | 2.50×109 | -1 |
中龄 | 13 | 12.50 | 8.90×108 | 0.50 | |
近熟 | 18 | 18 | 7.40×108 | 0 | |
成熟 | 23 | 25 | 1.10×109 | -2 | |
过熟 | 43 | 40 | 9.70×108 | 3 | |
MF | 幼龄 | 27 | 32.50 | 2.70×108 | -5.50 |
中龄 | 41 | 53.50 | 5.50×108 | -12.50 | |
近熟 | |||||
成熟 | |||||
过熟 | 124.50 | 104 | 7.60×107 | 24.50 |
Table 5 Verification of forest age estimation in Xinjiang
森林 类型 | 龄组 | 林龄/a | 面积/m2 | 偏差/a | |
---|---|---|---|---|---|
估测值 | 文献值 (戴铭等, | ||||
ENF | 幼龄 | 50 | 45 | 4.00×109 | 5 |
中龄 | 76 | 85 | 5.70×109 | -9 | |
近熟 | 106 | 110 | 1.60×109 | -4 | |
成熟 | 128 | 140 | 3.60×108 | -12 | |
过熟 | 184 | 170 | 1.10×107 | 14 | |
DNF | 幼龄 | 22 | 35 | 9.60×108 | -13 |
中龄 | 63 | 62.50 | 1.40×109 | 0.50 | |
近熟 | 91 | 82.50 | 1.20×109 | 8.50 | |
成熟 | 112 | 105 | 1.30×109 | 7 | |
过熟 | 159 | 130 | 6.20×107 | 29 | |
DBF | 幼龄 | 4 | 5 | 2.50×109 | -1 |
中龄 | 13 | 12.50 | 8.90×108 | 0.50 | |
近熟 | 18 | 18 | 7.40×108 | 0 | |
成熟 | 23 | 25 | 1.10×109 | -2 | |
过熟 | 43 | 40 | 9.70×108 | 3 | |
MF | 幼龄 | 27 | 32.50 | 2.70×108 | -5.50 |
中龄 | 41 | 53.50 | 5.50×108 | -12.50 | |
近熟 | |||||
成熟 | |||||
过熟 | 124.50 | 104 | 7.60×107 | 24.50 |
[1] | DAI L, ZHANG Y F, WANG L, et al., 2021. Assessment of carbon density in natural mountain forest ecosystems at northwest China[J]. International of Environmental Research and Public Health, 18(4): 2098. |
[2] |
FANG J Y, BROWN S, TANG Y H, et al., 2006. Overestimated biomass carbon pools of the northern mid-and high latitude forests[J]. Climatic Change, 74(1): 355-368.
DOI URL |
[3] |
FANG J Y, CHEN A P, PENG C H, et al., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 292(5525): 2320-2322.
DOI PMID |
[4] |
GUPTA A, LÖVBRAND E, TURNHOUT E, et al., 2012. In pursuit of carbon accountability: The politics of REDD+ measuring, reporting and verification systems[J]. Current Opinion in Environmental Sustainability, 4(6): 726-731.
DOI URL |
[5] |
JIANG F G, ZHAO F, MA K S, et al., 2021. Mapping the forest canopy height in northern china by synergizing ICESat-2 with sentinel-2 using a stacking algorithm[J]. Remote Sensing, 13(8): 1535.
DOI URL |
[6] |
LIANG Y J, HASHIMOTO S, LIU L J, 2021. Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess Plateau of China from 1995 to 2050[J]. Ecological Indicators, 120: 106939.
DOI URL |
[7] |
LIU X Q, SU Y J, HU T Y, et al., 2022. Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 data[J]. Remote Sensing of Environment, 269: 112844.
DOI URL |
[8] |
NEPAL P, INCE P J, SKOG K E, et al., 2012. Projection of US forest sector carbon sequestration under US and global timber market and wood energy consumption scenarios, 2010-2060 [J]. Biomass and Bioenergy, 45(45): 251-264.
DOI URL |
[9] | PIENAAR L V, TURNBULL K J, 1973. The Chapman-Richards generalization of Von Bertalanffy’s growth model for basal area growth and yield in even-aged stands[J]. Forest Science, 19(1): 2-22. |
[10] |
POTAPOV P, LI X Y, HERNANDEZ-SERNA A, et al., 2021. Mapping global forest canopy height through integration of GEDI and Landsat data[J]. Remote Sensing of Environment, 253: 112165.
DOI URL |
[11] |
QIU Z X, FENG Z K, SONG Y N, et al., 2020. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: Predicting forest vegetation growth based on climate and the environment[J]. Journal of Cleaner Production, 252: 119715.
DOI URL |
[12] |
WANG J, FENG L, PALMER P I, et al., 2020. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 586(7831): 720-723.
DOI |
[13] |
ZHANG C H, JU W M, CHEN J M, et al., 2013. China’s forest biomass carbon sink based on seven inventories from 1973 to 2008[J]. Climatic Change, 118(3): 933-948.
DOI URL |
[14] |
ZHANG C H, JU W M, CHEN J M, et al., 2014. Mapping forest stand age in China using remotely sensed forest height and observation data[J]. Journal of Geophysical Research: Biogeosciences, 119(6): 1163-1179.
DOI URL |
[15] |
ZHAO J F, MA J Y, HOU M T, et al., 2020. Spatial-temporal variations of carbon storage of the global forest ecosystem under future climate change[J]. Mitigation and Adaptation Strategies for Global Change, 25(4): 603-624.
DOI |
[16] |
陈耀亮, 罗格平, 叶辉, 等, 2013. 近30年土地利用变化对新疆森林生态系统碳库的影响[J]. 地理研究, 32(11): 1987-1999.
DOI |
CHEN Y L, LUO G P, YE H, et al., 2013. Impact of land use change on carbon pool of forest ecosystem in Xinjiang in recent 30 years[J]. Geographical Research, 32(11): 1987-1999. | |
[17] | 池泓, 黄进良, 邱娟, 等, 2018. GLAS星载激光雷达和Landsat/ETM+数据的森林生物量估算[J]. 测绘科学, 43(4): 9-16, 23. |
CHI H, HUANG J L, QIU J, et al., 2018. Forest biomass estimation from GLAS spaceborne lidar and Landsat/ETM+data[J]. Science of Surveying and Mapping, 43(4): 9-16, 23. | |
[18] | 戴铭, 周涛, 杨玲玲, 等, 2011. 基于森林详查与遥感数据降尺度技术估算中国林龄的空间分布[J]. 地理研究, 30(1): 172-184. |
DAI M, ZHOU T, YANG L L, et al., 2011. Estimation of spatial distribution of forest age in China based on detailed forest survey and remote sensing data downscaling technology[J]. Geographical Research, 30(1): 172-184. | |
[19] | 方精云, 郭兆迪, 朴世龙, 等, 2007. 1981-2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑: 地球科学), 37(6): 804-812. |
FANG J Y, GUO Z D, PIAO S L, et al., 2007. Estimation of terrestrial vegetation carbon sink in China from 1981 to 2000[J]. Science in China (Series D: Earth Sciences), 37(6): 804-812. | |
[20] | 付尧, 孙玉军, 2013. 植物有机碳测定研究进展[J]. 世界林业研究, 26(1): 24-30. |
FU Y, SUN Y J, 2013. Research progress in determination of plant organic carbon[J]. World Forestry Research, 26(1): 24-30. | |
[21] |
贾炜玮, 孙赫明, 李凤日, 2019. 包含哑变量的黑龙江省落叶松人工林碳储量预测模型系统[J]. 应用生态学报, 30(3): 814-822.
DOI |
JIA W W, SUN H M, LI F R, 2019. Carbon storage prediction model system of larch plantation in Heilongjiang Province with dummy variables[J]. Journal of Applied Ecology, 30(3): 814-822. | |
[22] | 李虎, 吕巡贤, 陈蜀疆, 等, 2003. 新疆森林资源动态分析: 基于RS与GIS的森林资源动态研究[J]. 地理学报, 58(1): 133-138. |
LI H, LÜ X X, CHEN S J, et al., 2003. Dynamic analysis and evaluation of Xinjiang forest resources: Based on remote sensing and GIS[J]. Acta Geographica Sinica, 58(1): 133-138.
DOI |
|
[23] | 李奇, 朱建华, 冯源, 等, 2018. 中国森林乔木林碳储量及其固碳潜力预测[J]. 气候变化研究进展, 14(3): 287-294. |
LI Q, ZHU J H, FENG Y, et al., 2018. Carbon storage and carbon sequestration potential prediction of forest arbor forests in China[J]. Progress in Climate Change Research, 14(3): 287-294. | |
[24] | 李春明, 张会儒, 王卓晖, 2022. 基于混合效应模型及生存分析方法的落叶松云冷杉林单木生存模型研究[J]. 北京林业大学学报, 44(1): 1-8. |
LI C M, ZHANG H R, WANG Z H, 2022. Study on single tree survival model of Larch spruce fir forest based on mixed effect model and survival analysis method[J]. Journal of Beijing Forestry University, 44(1): 1-8. | |
[25] | 李海奎, 雷渊才, 曾伟生, 2011. 基于森林清查资料的中国森林植被碳储量[J]. 林业科学, 47(7): 7-12. |
LI H K, LEI Y C, ZENG W S, 2011. Carbon storage of forest vegetation in China based on forest inventory data[J]. Forestry Science, 47(7): 7-12. | |
[26] | 刘茂秀, 史军辉, 王新英, 等, 2016. 塔河流域天然胡杨林不同林龄地上生物量及碳储量[J]. 水土保持通报, 36(5): 326-332, 339. |
LIU M X, SHI J H, WANG X Y, et al., 2016. Aboveground biomass and carbon storage of natural Populus euphratica forests at different ages in the Tahe River Basin[J]. Water and Soil Conservation Bulletin, 36(5): 326-332, 339. | |
[27] | 刘迎春, 高显连, 付超, 等, 2019. 基于森林资源清查数据估算中国森林生物量固碳潜力[J]. 生态学报, 39(11): 4002-4010. |
LIU Y C, GAO X L, FU C, et al., 2019. Estimation of carbon sequestration potential of forest biomass in China based on forest resource inventory data[J]. Journal of Ecology, 39(11): 4002-4010. | |
[28] | 卢晓菲, 任传友, 王艳华, 等, 2018. 三个全球气候模式对中国气温季节变化模拟能力的空间差异特征分析[J]. 干旱区地理, 41(5): 972-983. |
LU X F, REN C Y, WANG Y H, et al., 2018. Analysis on spatial difference characteristics of three global climate models in simulating seasonal changes of temperature in China[J]. Geography of Arid Areas, 41(5): 972-983 | |
[29] | 罗磊, 王蕾, 刘平, 等, 2019. 阿尔泰山落叶松林碳储量与生产力时空特征及其气候成因分析[J]. 生态学报, 39(22): 8575-8584. |
LUO L, WANG L, LIU P, et al., 2019. Temporal and spatial characteristics of carbon storage and productivity of larch forest and its climatic causes in Altai Mountain[J]. Journal of Ecology, 39(22): 8575-8584. | |
[30] | 罗旭, 梁宇, 贺红士, 等, 2019. 气候变化和不同强度造林对大兴安岭主要树种林分信息和地上生物量的长期影响[J]. 生态学报, 39(20): 7656-7669. |
LUO X, LIANG Y, HE H S, et al., 2019. Long term effects of climate change and different intensity afforestation on stand information and aboveground biomass of main tree species in Daxing’an Mountains[J]. Journal of Ecology, 39(20): 7656-7669. | |
[31] | 骆钰波, 黄洪宇, 唐丽玉, 等, 2019. 基于地面激光雷达点云数据的森林树高、胸径自动提取与三维重建[J]. 遥感技术与应用, 34(2): 243-252. |
LUO Y B, HUANG H Y, TANG L Y, et al., 2019. Automatic extraction and reconstruction of forest tree height and DBH based on Ground Lidar Point Cloud Data[J]. Remote Sensing Technology and Application, 34(2): 243-252. | |
[32] |
马辉英, 李昕竹, 马鑫钰, 等, 2022. 新疆天山北麓中段不同植被类型下土壤有机碳组分特征及其影响因素[J]. 生态环境学报, 31(6): 1124-1131.
DOI |
MA H Y, LI X Z, MA X Y, et al., 2022. Characteristics and driving factors of soil organic carbon fractions under different vegetation types of the mid-northern piedmont of the Tianshan Mountains, Xinjiang[J]. Ecology and Environmental Sciences, 31(6): 1124-1131. | |
[33] | 朴世龙, 方精云, 黄耀, 2010. 中国陆地生态系统碳收支[J]. 中国基础科学, 12(2): 20-22, 65. |
PU S L, FANG J Y, HUANG Y, 2010. Carbon budget of China’s terrestrial ecosystem[J]. China Basic Science, 12(2): 20-22, 65. | |
[34] | 朴世龙, 何悦, 王旭辉, 等, 2022. 中国陆地生态系统碳汇估算: 方法、进展、展望[J]. 中国科学: 地球科学, 52(6): 1010-1020. |
PU S L, HE Y, WANG X H, et al., 2022. Carbon sink estimation of China’s terrestrial ecosystem: Methods, progress and prospects[J]. China Science: Earth Science, 52(6): 1010-1020 | |
[35] | 任继勤, 夏景阳, 2017. 基于碳密度-林龄关系的黑龙江省森林碳汇潜力预测[J]. 环境科学研究, 30(4): 552-558. |
REN J Q, XIA J Y, 2017. Prediction of forest carbon sink potential in Heilongjiang Province: The carbon density-age relationship-based approach[J]. Research of Environment Science, 30(4): 552-558 | |
[36] | 孙清芳, 贾立明, 刘玉龙, 等, 2016. 中国森林植被与土壤碳储量估算研究进展[J]. 环境化学, 35(8): 1741-1744. |
SUN Q F, JIA L M, LIU Y L, et al., 2016. Research progress on estimation of forest vegetation and soil carbon storage in China[J]. Environmental chemistry, 35(8): 1741-1744. | |
[37] |
孙雪娇, 李吉玫, 张毓涛, 等, 2021. 天山北坡山地森林林地产流产沙特征及其影响因素分析[J]. 生态环境学报, 30(9): 1821-1830.
DOI |
SUN X J, LI J M, ZHANG Y T, et al., 2021. Characteristics and influence of runoff and sediment yield in mountain forest on the north slope of Tianshan Mountains[J]. Ecology and Environmental Sciences, 30(9): 1821-1830. | |
[38] |
王新英, 史军辉, 刘茂秀, 2018. 塔里木河流域天然胡杨林营养积累特征及动态变化[J]. 新疆农业科学, 55(6): 1036-1045.
DOI |
WANG X Y, SHI J H, LIU M X, 2018. Nutrient accumulation characteristics and dynamic changes of natural Populus euphratica forest in Tarim River Basin[J]. Xinjiang Agricultural Science, 55(6): 1036-1045. | |
[39] | 徐冰, 郭兆迪, 朴世龙, 等, 2010. 2000-2050年中国森林生物量碳库: 基于生物量密度与林龄关系的预测[J]. 中国科学: 生命科学, 40(7): 587-594. |
XU B, GUO Z D, PIAO S L, et al., 2010. Forest biomass carbon pool in China from 2000 to 2050: Prediction based on the relationship between biomass density and forest age[J]. Chinese Science: Life Science, 40(7): 587-594. | |
[40] |
许文强, 杨辽, 陈曦, 等, 2016. 天山森林生态系统碳储量格局及其影响因素[J]. 植物生态学报, 40(4): 364-373.
DOI |
XU W Q, YANG L, CHEN X, et al., 2016. Carbon storage pattern and its influencing factors in Tianshan forest ecosystem[J]. Journal of Plant Ecology, 40(4): 364-373. | |
[41] | 张颖, 李晓格, 温亚利, 2022. 碳达峰碳中和背景下中国森林碳汇潜力分析研究[J]. 北京林业大学学报, 44(1): 38-47. |
ZHANG Y, LI X G, WEN Y L, 2022. Analysis of forest carbon sink potential in China under the background of carbon peak and carbon neutralization[J]. Journal of Beijing Forestry University, 44(1): 38-47. | |
[42] |
张悦, 谢龙飞, 董利虎, 2022. 长白落叶松含碳率分析及含碳量异速生长模型[J]. 应用生态学报, 33(5): 1166-1174.
DOI |
ZHANG Y, XIE L F, DONG L H, 2022. Carbon content analysis and allometric growth model of Larix olgensis[J]. Journal of Applied Ecology, 33(5): 1166-1174. | |
[43] |
张桂莲, 2021. 基于遥感估算的上海城市森林碳储量空间分布特征[J]. 生态环境学报, 30(9): 1777-1786.
DOI |
ZHANG G L, 2021. Spatial distribution characteristics of carbon storage of urban forests in Shanghai based on remote sensing estimation[J]. Ecology and Environmental Sciences, 30(9): 1777-1786. | |
[44] |
张林, 周飘, 齐实, 等, 2022. 侧柏人工林林分空间结构对林下草本多样性的差异性影响及其关联度[J]. 生态环境学报, 31(9): 1794-1801.
DOI |
ZHANG L, ZHOU P, QI S, et al., 2022. Difference influence of spatial structure of Platycladus orientalis plantations on diversity of understory herbaceous and its correlation degree[J]. Ecology and Environmental Sciences, 31(9): 1794-1801. | |
[45] | 张毓涛, 胡莎莎, 李吉玫, 等, 2013. 新疆3种主要森林类型根系生物量变化特征研究[J]. 干旱区地理, 36(2): 269-276. |
ZHANG Y T, HU S S, LI J M, et al., 2013. Study on variation characteristics of root biomass of three main forest types in Xinjiang[J]. Geography of Arid Areas, 36(2): 269-276. | |
[46] |
郑拴丽, 许文强, 杨辽, 等, 2016. 新疆阿尔泰山森林生态系统碳密度与碳储量估算[J]. 自然资源学报, 31(9): 1553-1563.
DOI |
ZHENG S L, XU W Q, YANG L, et al., 2016. Estimation of carbon density and carbon storage of forest ecosystem in Altai mountain, Xinjiang[J]. Journal of Natural Resources, 31(9): 1553-1563. | |
[47] | 周志峰, 王耀, 贾刚, 等, 2022. 河北省乔木林碳储量现状与固碳潜力预测[J]. 林业资源管理 (2): 45-53. |
ZHOU Z F, WANG Y, JIA G, et al., 2022. Carbon storage status and carbon sequestration potential prediction of arbor forests in Hebei Province[J]. Forestry Resource Management (2): 45-53. |
[1] | CHEN Keyi, WANG Jianjun, HE Youjun, ZHANG Liwen. Estimations of Forest Carbon Storage and Carbon Sequestration Potential of Key State-Owned Forest Region in Daxing’anling, Heilongjiang Province [J]. Ecology and Environment, 2022, 31(9): 1725-1734. |
[2] | LI Meijiao, HE Fanneng, ZHAO Caishan, YANG Fan. Credibility Assessment of Cropland Data in Xinjiang Area in Global Historical LUCC Datasets [J]. Ecology and Environment, 2022, 31(6): 1215-1224. |
[3] | ZHU Shengbao, TANG Guangmu, ZHANG Yushu, XU Wanli, GE Chunhui, MA Haigang. Changes in Soil Aggregates Associated Organic Carbon under Long-term Irrigation and Drought Cultivation [J]. Ecology and Environment, 2022, 31(11): 2152-2160. |
[4] | ZHANG Shulan, HAN Yong, YANG Pan, YAN Yuying, LIU Zhaoxue, LI Zhuoyao. Evaluation of Hydrological Function of Litter of Quercus Acuvarius at Different Ages in the Upper Reaches of Han River [J]. Ecology and Environment, 2022, 31(1): 44-51. |
[5] | SUN Xuejiao, LI Jimei, ZHANG Yutao, LI Xiang, LU Jianjiang, SHE Fei. Characteristics and Influence of Runoff and Sediment Yield in Mountain Forest on the North Slope of Tianshan Mountains [J]. Ecology and Environment, 2021, 30(9): 1821-1830. |
[6] | LI Haiping, LI Guangyi, WAN Huawei, LI Liping. Spatial Difference of Birds and Mammals Species Richness Based on Matrix Analysis: Taking Xinjiang as An Example [J]. Ecology and Environment, 2021, 30(7): 1333-1341. |
[7] | ZHANG Yangyang, ZHOU Qinghui, XU Jiaoyang, WEI Ming, CHEN Jihao, HE Wei, WANG Pengcheng, YAN Zhaogui. Effects of Forest Ages on the Diversity of Understory Plants and Soil Seed Bank of Pinus massoniana Plantations [J]. Ecology and Environment, 2021, 30(11): 2121-2129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn