Ecology and Environment ›› 2023, Vol. 32 ›› Issue (10): 1861-1872.DOI: 10.16258/j.cnki.1674-5906.2023.10.015
• Research Articles • Previous Articles Next Articles
LI Ruifa(), CUI Wanglai, SI Linghan, BAO Shengwang, YANG Fan
Received:
2023-07-29
Online:
2023-10-18
Published:
2024-01-16
Contact:
YANG Fan
通讯作者:
杨帆
作者简介:
李瑞发(2000年生),男,硕士研究生,研究方向为城市生态安全评估等。E-mail: 3061976130@qq.com
基金资助:
CLC Number:
LI Ruifa, CUI Wanglai, SI Linghan, BAO Shengwang, YANG Fan. Ecological Security Early Warning and Obstacle Factor Analysis in the Zhejiang Greater Bay Area[J]. Ecology and Environment, 2023, 32(10): 1861-1872.
李瑞发, 崔旺来, 司凌涵, 鲍声望, 杨帆. 浙江大湾区生态安全预警及障碍因子分析[J]. 生态环境学报, 2023, 32(10): 1861-1872.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.10.015
准则层 | 指标层 | 数据来源 | 性质 | 权重 |
---|---|---|---|---|
驱动 (D) | D1: 国民生产总值 | 统计数据 | + | 0.049 |
D2: 人均可支配收入 | 统计数据 | + | 0.013 | |
D3: 第三产业产值占GDP比重 | 统计数据 | + | 0.03 | |
D4: 城镇化率 | 统计数据 | + | 0.089 | |
压力 (P) | P1: 人口密度 | 统计数据 | − | 0.162 |
P2: 人口自然增长率 | 统计数据 | − | 0.063 | |
P3: 工业产值占GDP比重 | 统计数据 | − | 0.022 | |
P4: 工业废水排放量 | 统计数据 | − | 0.087 | |
状态 (S) | S1: 年平均温度 | 统计数据 | − | 0.02 |
S2: 年降水量 | 统计数据 | + | 0.044 | |
S3: 坡度 | DEM数据 | − | 0.043 | |
S4: 生态系统服务价值 | 模型计算 | + | 0.092 | |
S5: 生态系统弹性 | 模型计算 | + | 0.012 | |
影响 (I) | I1: 植被归一化指数 | MODIS产品 | + | 0.018 |
I2: 最大斑块指数 | Fragstats计算 | + | 0.02 | |
I3: 香浓均度指数 | Fragstats计算 | + | 0.018 | |
I4: 蔓延度指数 | Fragstats计算 | + | 0.019 | |
响应 (R) | R1: 政府环保投资 | 统计数据 | + | 0.082 |
R2: 城市污水处理率 | 统计数据 | + | 0.031 | |
R3: 建成区绿化覆盖率 | 统计数据 | + | 0.03 | |
R4: 政府科技投入 | 统计数据 | + | 0.057 |
Table 1 Evaluation index system of ecological security in Zhejiang Greater Bay Area
准则层 | 指标层 | 数据来源 | 性质 | 权重 |
---|---|---|---|---|
驱动 (D) | D1: 国民生产总值 | 统计数据 | + | 0.049 |
D2: 人均可支配收入 | 统计数据 | + | 0.013 | |
D3: 第三产业产值占GDP比重 | 统计数据 | + | 0.03 | |
D4: 城镇化率 | 统计数据 | + | 0.089 | |
压力 (P) | P1: 人口密度 | 统计数据 | − | 0.162 |
P2: 人口自然增长率 | 统计数据 | − | 0.063 | |
P3: 工业产值占GDP比重 | 统计数据 | − | 0.022 | |
P4: 工业废水排放量 | 统计数据 | − | 0.087 | |
状态 (S) | S1: 年平均温度 | 统计数据 | − | 0.02 |
S2: 年降水量 | 统计数据 | + | 0.044 | |
S3: 坡度 | DEM数据 | − | 0.043 | |
S4: 生态系统服务价值 | 模型计算 | + | 0.092 | |
S5: 生态系统弹性 | 模型计算 | + | 0.012 | |
影响 (I) | I1: 植被归一化指数 | MODIS产品 | + | 0.018 |
I2: 最大斑块指数 | Fragstats计算 | + | 0.02 | |
I3: 香浓均度指数 | Fragstats计算 | + | 0.018 | |
I4: 蔓延度指数 | Fragstats计算 | + | 0.019 | |
响应 (R) | R1: 政府环保投资 | 统计数据 | + | 0.082 |
R2: 城市污水处理率 | 统计数据 | + | 0.031 | |
R3: 建成区绿化覆盖率 | 统计数据 | + | 0.03 | |
R4: 政府科技投入 | 统计数据 | + | 0.057 |
预警等级 | 预警情况 | ESEI | 生态安全状况 |
---|---|---|---|
I | 严重预警 | ≤0.482 | 很差 |
II | 中度预警 | (0.482, 0.53] | 差 |
III | 轻度预警 | (0.53, 0.593] | 一般 |
IV | 无预警 | >0.593 | 好 |
Table 2 Early warning grade standard for ecological security in Zhejiang Greater Bay Area
预警等级 | 预警情况 | ESEI | 生态安全状况 |
---|---|---|---|
I | 严重预警 | ≤0.482 | 很差 |
II | 中度预警 | (0.482, 0.53] | 差 |
III | 轻度预警 | (0.53, 0.593] | 一般 |
IV | 无预警 | >0.593 | 好 |
误差状况 | 相对误差间隔百分比 | 平均相对误差 | ||||
---|---|---|---|---|---|---|
评价结果的相对误差 | 0‒1% | 1‒2% | 2‒3% | 3‒4% | >4% | |
误差结果占比 | 33.85% | 27.69% | 18.46% | 10.77% | 9.23% | 1.91% |
Table 3 Error statistics of early warning model
误差状况 | 相对误差间隔百分比 | 平均相对误差 | ||||
---|---|---|---|---|---|---|
评价结果的相对误差 | 0‒1% | 1‒2% | 2‒3% | 3‒4% | >4% | |
误差结果占比 | 33.85% | 27.69% | 18.46% | 10.77% | 9.23% | 1.91% |
因子障碍度排名 | 年份 | ||||
---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | |
1 | R1 (9.163) | S4 (10.101) | S4 (10.213) | S4 (10.621) | S4 (10.626) |
2 | D4 (8.863) | R1 (8.956) | R1 (9.464) | R1 (9.624) | P1 (5.874) |
3 | S4 (8.323) | D4 (8.338) | D4 (8.086) | D4 (6.496) | D4 (5.843) |
4 | R4 (6.063) | R4 (6.158) | R4 (6.369) | R4 (5.923) | R1 (5.244) |
5 | D1 (4.472) | D1 (4.768) | D1 (4.893) | D1 (4.974) | D1 (4.544) |
Table 4 Obstacle degree of main obstacle factor in the index layer
因子障碍度排名 | 年份 | ||||
---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | |
1 | R1 (9.163) | S4 (10.101) | S4 (10.213) | S4 (10.621) | S4 (10.626) |
2 | D4 (8.863) | R1 (8.956) | R1 (9.464) | R1 (9.624) | P1 (5.874) |
3 | S4 (8.323) | D4 (8.338) | D4 (8.086) | D4 (6.496) | D4 (5.843) |
4 | R4 (6.063) | R4 (6.158) | R4 (6.369) | R4 (5.923) | R1 (5.244) |
5 | D1 (4.472) | D1 (4.768) | D1 (4.893) | D1 (4.974) | D1 (4.544) |
年份 | 障碍度排名 | 滨江区 | 海曙区 | 江北区 | 南湖区 | 嘉善县 | 海盐县 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
障碍因子 | 障碍度 | 障碍因子 | 障碍度 | 障碍因子 | 障碍度 | 障碍因子 | 障碍度 | 障碍因子 | 障碍度 | 障碍因子 | 障碍度 | |||||||
2000 | 1 | P1 | 21.85 | S4 | 19.43 | S4 | 18.85 | S4 | 18.78 | S4 | 15.76 | S4 | 14.36 | |||||
2 | S4 | 17.07 | R4 | 14.44 | P1 | 18.72 | P1 | 18.62 | R1 | 14.50 | D4 | 12.66 | ||||||
3 | R1 | 12.97 | D3 | 8.05 | R4 | 11.10 | R4 | 10.08 | D4 | 13.38 | R1 | 9.76 | ||||||
4 | D4 | 6.72 | R1 | 7.85 | D1 | 9.50 | S2 | 8.54 | P1 | 10.31 | P1 | 8.97 | ||||||
5 | S2 | 6.54 | P1 | 7.32 | D4 | 7.07 | D4 | 7.36 | R4 | 7.61 | R4 | 8.91 | ||||||
2005 | 1 | P1 | 23.63 | S4 | 19.96 | S4 | 19.77 | S4 | 18.28 | S4 | 15.57 | S4 | 15.31 | |||||
2 | S4 | 16.18 | R4 | 12.59 | P1 | 16.55 | P1 | 15.08 | R1 | 14.31 | R1 | 13.98 | ||||||
3 | R1 | 13.56 | P2 | 9.30 | R4 | 9.68 | R4 | 10.09 | D4 | 12.06 | D4 | 12.68 | ||||||
4 | P4 | 6.90 | S2 | 8.31 | D1 | 8.34 | S2 | 8.76 | P1 | 8.43 | R4 | 9.44 | ||||||
5 | D1 | 6.60 | D3 | 7.91 | D4 | 8.10 | D1 | 7.65 | S2 | 8.10 | P1 | 7.79 | ||||||
2010 | 1 | P1 | 24.87 | S4 | 18.18 | S4 | 17.78 | S4 | 20.76 | S4 | 17.05 | S4 | 16.48 | |||||
2 | S4 | 16.55 | R4 | 12.63 | P1 | 13.68 | P1 | 15.57 | R1 | 13.01 | R1 | 13.68 | ||||||
3 | R1 | 14.64 | R1 | 11.35 | R4 | 9.85 | R4 | 11.40 | R4 | 10.55 | D4 | 12.15 | ||||||
4 | P2 | 9.28 | S2 | 8.23 | R1 | 9.11 | S2 | 9.07 | D4 | 10.51 | R4 | 9.91 | ||||||
5 | D1 | 5.16 | S3 | 6.41 | D1 | 7.64 | D4 | 7.21 | P1 | 8.14 | P1 | 7.53 | ||||||
2015 | 1 | P1 | 28.07 | S4 | 21.19 | S4 | 20.33 | S4 | 21.50 | S4 | 16.82 | S4 | 16.93 | |||||
2 | S4 | 15.84 | R4 | 13.75 | P1 | 13.66 | P1 | 14.31 | R1 | 13.55 | R1 | 13.51 | ||||||
3 | R1 | 13.47 | R3 | 7.65 | R4 | 10.53 | R4 | 10.45 | D4 | 11.72 | D4 | 10.65 | ||||||
4 | P2 | 10.88 | D1 | 7.56 | D1 | 8.48 | S2 | 7.50 | R4 | 8.90 | R4 | 9.06 | ||||||
5 | D3 | 3.64 | S3 | 7.49 | R3 | 6.03 | D1 | 7.50 | S2 | 8.63 | D1 | 6.91 | ||||||
2020 | 1 | P1 | 26.85 | S4 | 17.24 | S4 | 19.47 | S4 | 21.30 | S4 | 20.80 | S4 | 17.21 | |||||
2 | S4 | 16.14 | R1 | 17.02 | R1 | 15.00 | R4 | 11.51 | R4 | 11.34 | D4 | 11.07 | ||||||
3 | R1 | 12.62 | R4 | 12.55 | R4 | 11.05 | D1 | 7.46 | D4 | 10.13 | R4 | 10.39 | ||||||
4 | P2 | 11.08 | S3 | 6.10 | D1 | 7.57 | S2 | 6.84 | D1 | 8.38 | R1 | 9.84 | ||||||
5 | R3 | 5.21 | S2 | 5.97 | D4 | 5.81 | D4 | 6.22 | S2 | 7.36 | D1 | 7.67 |
Table 5 Obstacle degree of main obstacle factor in the key areas
年份 | 障碍度排名 | 滨江区 | 海曙区 | 江北区 | 南湖区 | 嘉善县 | 海盐县 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
障碍因子 | 障碍度 | 障碍因子 | 障碍度 | 障碍因子 | 障碍度 | 障碍因子 | 障碍度 | 障碍因子 | 障碍度 | 障碍因子 | 障碍度 | |||||||
2000 | 1 | P1 | 21.85 | S4 | 19.43 | S4 | 18.85 | S4 | 18.78 | S4 | 15.76 | S4 | 14.36 | |||||
2 | S4 | 17.07 | R4 | 14.44 | P1 | 18.72 | P1 | 18.62 | R1 | 14.50 | D4 | 12.66 | ||||||
3 | R1 | 12.97 | D3 | 8.05 | R4 | 11.10 | R4 | 10.08 | D4 | 13.38 | R1 | 9.76 | ||||||
4 | D4 | 6.72 | R1 | 7.85 | D1 | 9.50 | S2 | 8.54 | P1 | 10.31 | P1 | 8.97 | ||||||
5 | S2 | 6.54 | P1 | 7.32 | D4 | 7.07 | D4 | 7.36 | R4 | 7.61 | R4 | 8.91 | ||||||
2005 | 1 | P1 | 23.63 | S4 | 19.96 | S4 | 19.77 | S4 | 18.28 | S4 | 15.57 | S4 | 15.31 | |||||
2 | S4 | 16.18 | R4 | 12.59 | P1 | 16.55 | P1 | 15.08 | R1 | 14.31 | R1 | 13.98 | ||||||
3 | R1 | 13.56 | P2 | 9.30 | R4 | 9.68 | R4 | 10.09 | D4 | 12.06 | D4 | 12.68 | ||||||
4 | P4 | 6.90 | S2 | 8.31 | D1 | 8.34 | S2 | 8.76 | P1 | 8.43 | R4 | 9.44 | ||||||
5 | D1 | 6.60 | D3 | 7.91 | D4 | 8.10 | D1 | 7.65 | S2 | 8.10 | P1 | 7.79 | ||||||
2010 | 1 | P1 | 24.87 | S4 | 18.18 | S4 | 17.78 | S4 | 20.76 | S4 | 17.05 | S4 | 16.48 | |||||
2 | S4 | 16.55 | R4 | 12.63 | P1 | 13.68 | P1 | 15.57 | R1 | 13.01 | R1 | 13.68 | ||||||
3 | R1 | 14.64 | R1 | 11.35 | R4 | 9.85 | R4 | 11.40 | R4 | 10.55 | D4 | 12.15 | ||||||
4 | P2 | 9.28 | S2 | 8.23 | R1 | 9.11 | S2 | 9.07 | D4 | 10.51 | R4 | 9.91 | ||||||
5 | D1 | 5.16 | S3 | 6.41 | D1 | 7.64 | D4 | 7.21 | P1 | 8.14 | P1 | 7.53 | ||||||
2015 | 1 | P1 | 28.07 | S4 | 21.19 | S4 | 20.33 | S4 | 21.50 | S4 | 16.82 | S4 | 16.93 | |||||
2 | S4 | 15.84 | R4 | 13.75 | P1 | 13.66 | P1 | 14.31 | R1 | 13.55 | R1 | 13.51 | ||||||
3 | R1 | 13.47 | R3 | 7.65 | R4 | 10.53 | R4 | 10.45 | D4 | 11.72 | D4 | 10.65 | ||||||
4 | P2 | 10.88 | D1 | 7.56 | D1 | 8.48 | S2 | 7.50 | R4 | 8.90 | R4 | 9.06 | ||||||
5 | D3 | 3.64 | S3 | 7.49 | R3 | 6.03 | D1 | 7.50 | S2 | 8.63 | D1 | 6.91 | ||||||
2020 | 1 | P1 | 26.85 | S4 | 17.24 | S4 | 19.47 | S4 | 21.30 | S4 | 20.80 | S4 | 17.21 | |||||
2 | S4 | 16.14 | R1 | 17.02 | R1 | 15.00 | R4 | 11.51 | R4 | 11.34 | D4 | 11.07 | ||||||
3 | R1 | 12.62 | R4 | 12.55 | R4 | 11.05 | D1 | 7.46 | D4 | 10.13 | R4 | 10.39 | ||||||
4 | P2 | 11.08 | S3 | 6.10 | D1 | 7.57 | S2 | 6.84 | D1 | 8.38 | R1 | 9.84 | ||||||
5 | R3 | 5.21 | S2 | 5.97 | D4 | 5.81 | D4 | 6.22 | S2 | 7.36 | D1 | 7.67 |
[1] |
CHEN Y, WANG J L, 2020. Ecological security early-warning in central Yunnan Province, China, based on the gray model[J]. Ecological Indicators, 111: 106000.
DOI URL |
[2] | CHEN M H, CHEN F, TANG C J, et al., 2022. Integration of DPSIR framework and TOPSIS model reveals insight into the coastal zone ecosystem health[J]. Ocean & Coastal Management, 226: 106285. |
[3] |
DU W L, LIAO X Y, TONG Z J, et al., 2023. Early warning and scenario simulation of ecological security based on DPSIRM model and Bayesian network: A case study of east Liaohe river in Jilin Province, China[J]. Journal of Cleaner Production, 398: 136649.
DOI URL |
[4] |
GAO L H, NING J, BAO W L T Y, et al., 2022. A study on the marine ecological security assessment of Guangdong-Hong Kong-Macao Great Bay Area[J]. Marine Pollution Bulletin, 176: 113416.
DOI URL |
[5] |
JIAO M Y, YUE W Z, SUO A N, et al., 2023. Construction and influencing factors of an early warning system for marine ranching ecological security: Experience from China's coastal areas[J]. Journal of Environmental Management, 335: 117515.
DOI URL |
[6] |
KE X L, WANG X Y, GUO H X, et al., 2021. Urban ecological security evaluation and spatial correlation research: based on data analysis of 16 cities in Hubei Province of China[J]. Journal of Cleaner Production, 311(15): 127613.
DOI URL |
[7] |
LI Z T, LI M, XIA B C, 2020. Spatio-temporal dynamics of ecological security pattern of the Pearl River Delta urban agglomeration based on LUCC simulation[J]. Ecological Indicators, 114: 106319.
DOI URL |
[8] |
LIU Y Y, WANG C, WANG H, et al., 2023. An integrated ecological security early-warning framework in the national nature reserve based on the gray model[J]. Journal for Nature Conservation, 73(6): 126394.
DOI URL |
[9] |
QIU M, YANG Z L, ZUO Q T, et al., 2021. Evaluation on the relevance of regional urbanization and ecological security in the nine provinces along the Yellow River, China[J]. Ecological Indicators, 132(1): 108346.
DOI URL |
[10] |
SHU T, ZHANG Y J, XU Y, et al., 2022. Urban ecological security assessment and path regulation for ecological protection - A case study of Shenzhen, China[J]. Ecological Indicators, 145(2): 109717.
DOI URL |
[11] |
SUN K, HE W B, SHEN Y F, et al., 2023. Ecological security evaluation and early warning in the water source area of the Middle Route of South-to-North Water Diversion Project[J]. Science of The Total Environment, 868: 161561.
DOI URL |
[12] |
WANG S H, CHEN S S, ZHANG H Y, et al., 2021a. The model of early warning for China's marine ecology-economy symbiosis security[J]. Marine Policy, 128: 104476.
DOI URL |
[13] |
WANG H J, BAO C, 2021b. Scenario modeling of ecological security index using system dynamics in Beijing-Tianjin-Hebei urban agglomeration[J]. Ecological Indicators, 125(1): 107613.
DOI URL |
[14] |
WANG X W, LIU L, ZHANG S L, 2021c. Integrated model framework for the evaluation and prediction of the water environmental carrying capacity in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Ecological Indicators, 130(6): 108083.
DOI URL |
[15] |
WANG Z, ZHANG G Y, PEI H X, et al., 2022a. Selection of optimal models for predicting growth stress in Artemisia desertorum by comparison of linear regression and multiple neural networks: Take the construction of a green mine in the Bayan Obo mine as an example[J]. Ecotoxicology and Environmental Safety, 235(15): 113400.
DOI URL |
[16] |
WANG H P, ZHANG Z, 2022b. Forecasting Chinese provincial carbon emissions using a novel grey prediction model considering spatial correlation[J]. Expert Systems with Applications, 209: 118261.
DOI URL |
[17] |
XIONG J X, WANG X B, ZHAO D, et al., 2023. Spatiotemporal evolution for early warning of ecological carrying capacity during the urbanization process in the Dongting Lake area, China[J]. Ecological Informatics, 75(7): 102071.
DOI URL |
[18] |
ZHANG Z, HU B Q, QIU H L, 2021. Comprehensive assessment of ecological risk in southwest Guangxi-Beibu bay based on DPSIR model and OWA-GIS[J]. Ecological Indicators, 132: 108334.
DOI URL |
[19] |
ZOU S J, ZHANG L, HUANG X, et al., 2022. Early ecological security warning of cultivated lands using RF-MLP integration model: A case study on China's main grain-producing areas[J]. Ecological Indicators, 141: 109059.
DOI URL |
[20] | 曹新向, 2006. 旅游地生态安全预警评价指标体系与方法研究——以开封市为例[J]. 环境科学与管理, 31(3): 39-43. |
CAO X X, 2006. Research on the indicator system and method for ecological security early warning and evaluation of tourist destinations: Taking Kaifeng City as an example[J]. Environmental Science and Management, 31(3): 39-43. | |
[21] | 陈林, 牟凤云, 李梦梅, 2019. 基于可拓云模型的区域生态安全预警模型及应用——以垫江县为例[J]. 科学技术与工程, 19(35): 402-408. |
CHEN L, MOU F Y, LI M M, 2019. A regional ecological security early warning model based on extension cloud model and its application: Taking Dianjiang County as an example[J]. Science, Technology and Engineering, 19(35): 402-408. | |
[22] | 蔡文博, 韩宝龙, 逯非, 等, 2020. 全球四大湾区生态环境综合评价研究[J]. 生态学报, 40(23): 8392-8402. |
CAI W B, HAN B L, LU F, et al., 2020. Research on the comprehensive evaluation of the ecological environment in the four global Bay Areas[J]. Journal of Ecology, 40(23): 8392-8402. | |
[23] | 崔旺来, 蔡莉, 奚恒辉, 等, 2022. 基于土地利用/覆盖变化的浙江大湾区生态安全评价及多情景模拟分析[J]. 生态学报, 42(6): 2136-2148. |
CUI W L, CAI L, XI H H, et al., 2022. Ecological security evaluation and multi scenario simulation analysis of Zhejiang Greater Bay Area based on LUCC[J]. Journal of Ecology, 42(6): 2136-2148. | |
[24] | 崔旺来, 陈梦圆, 钟海玥, 2023. 基于探索性空间数据分析和地统计分析的湾区生态安全空间分异及差异化管理——以浙江大湾区为例[J]. 生态学报, 43(5): 2074-2087. |
CUI W L, CHEN M Y, ZHONG H Y, 2023. Spatial differentiation and differentiation management of ecological security in the Bay Area based on ESDA and GA: A case study of the Greater Bay Area of Zhejiang Province[J]. Journal of Ecology, 43(5): 2074-2087. | |
[25] | 邓淏丹, 叶露锋, 刘丽香, 等, 2022. 城市生态安全研究进展[J]. 环境工程技术学报, 12(1): 248-259. |
DENG H D, YE L F, LIU L X, et al., 2022. Research progress on urban ecological security[J]. Journal of Environmental Engineering Technology, 12(1): 248-259. | |
[26] | 傅伯杰, 1992. AHP法在区域生态环境预警中的应用[J]. 农业系统科学与综合研究, 8(1): 5-7, 10. |
FU B J, 1992. Application of AHP method in regional ecological environment early warning[J]. Agricultural System Science and Comprehensive Research, 8(1): 5-7, 10. | |
[27] | 傅伯杰, 1993. 区域生态环境预警的理论及其应用[J]. 应用生态学报, 4(4): 436-439. |
FU B J, 1993. The theory and application of regional ecological environment early warning[J]. Journal of Applied Ecology, 4(4): 436-439. | |
[28] | 冯琰玮, 甄江红, 2018. 基于径向基神经网络的呼和浩特市生态安全预警研究[J]. 干旱区资源与环境, 32(11): 87-92. |
FENG Y W, ZHEN J H, 2018. Research on ecological security early warning in Hohhot City based on radial basis function neural network[J]. Resources and Environment in Arid Areas, 32(11): 87-92. | |
[29] | 高宇, 曹明明, 邱海军, 等, 2015. 榆林市生态安全预警研究[J]. 干旱区资源与环境, 29(9): 57-62. |
GAO Y, CAO M M, QIU H J, et al., 2015. Research on ecological security early warning in Yulin City[J]. Resources and Environment in Arid Areas, 29(9): 57-62. | |
[30] | 苟露峰, 杨思维, 梅慧兵, 2023. 海洋生态安全预警管理的国际经验与启示[J]. 中国国土资源经济, 36(6): 75-82. |
GOU L F, YANG S W, MEI H B, 2023. International experience and enlightenment on early warning management of marine ecological security[J]. China’s Land and Resources Economy, 36(6): 75-82. | |
[31] | 胡静, 陈银蓉, 2005. 城市扩张驱动力分析及GM(1, N)预测[J]. 国土资源科技管理, 22(5): 69-72. |
HU J, CHEN Y R, 2005. Analysis of driving forces for urban expansion and GM (1, N) prediction[J]. Land and Resources Science and Technology Management, 22(5): 69-72. | |
[32] |
胡志仁, 龚建周, 李天翔, 等, 2018. 珠江三角洲城市群生态安全评价及态势分析[J]. 生态环境学报, 27(2): 304-312.
DOI |
HU Z R, GONG J Z, LI T X, et al., 2018. Ecological security assessment and situation analysis of Pearl River Delta urban agglomeration[J]. Journal of Ecological Environment, 27(2): 304-312. | |
[33] | 黄烈佳, 杨鹏, 2019. 长江经济带土地生态安全时空演化特征及影响因素[J]. 长江流域资源与环境, 28(8): 1780-1790. |
HUANG L J, YANG P, 2019. The spatiotemporal evolution characteristics and influencing factors of land ecological security in the Yangtze River economic belt[J]. Resources and Environment in the Yangtze Basin, 28(8): 1780-1790. | |
[34] | 何晔宇, 匡耀求, 2020. 基于驱动力-压力-状态-影响-响应模型的粤港澳大湾区惠州海岸带生态安全评价分析[J]. 环境污染与防治, 42(3): 362-368. |
HE Y Y, KUANG Y Q, 2020. Ecological safety assessment analysis of Huizhou Coastal Zone in the Guangdong Hong Kong Macao Greater Bay Area based on the DPSIR model[J]. Environmental Pollution and Prevention and Control, 42(3): 362-368. | |
[35] | 霍文敏, 陈甲斌, 2022. 煤炭资源富集区生态安全预警技术方法与应用研究[J]. 矿业研究与开发, 42(2): 70-75. |
HUO W M, CHEN J B, 2022. Research on the method and application of ecological security early warning technology in coal resource enrichment areas[J]. Mining Research and Development, 42(2): 70-75. | |
[36] | 贾良清, 欧阳志云, 赵同谦, 等, 2004. 城市生态安全评价研究[J]. 生态环境学报, 13(4): 592-596. |
JIA L Q, OUYANG Z Y, ZHAO T Q, et al., 2004. Ecological security assessment of an urban ecosystem[J]. Journal of Ecological Environment, 13(4): 592-596. | |
[37] | 金兰, 何刚, 朱艳娜, 等, 2019. 基于惩罚型变权模型的生态安全预警[J]. 中国环境管理干部学院学报, 29(2): 23-26, 47. |
JIN L, HE G, ZHU Y N, et al., 2019. Ecological security warning based on penalty based variable weight model[J]. Journal of China Environmental Management Cadre College, 29(2): 23-26, 47. | |
[38] | 柯小玲, 郭海湘, 龚晓光, 等, 2020. 基于系统动力学的武汉市生态安全预警仿真研究[J]. 管理评论, 32(4): 262-273. |
KE X L, GUO H X, GONG X G, et al., 2020. Simulation study on ecological security early warning in Wuhan City based on system dynamics[J]. Management Review, 32(4): 262-273. | |
[39] | 柯小玲, 王晨曦, 郭海湘, 等, 2021. 基于系统动力学的长江经济带生态安全预警研究[J]. 长江流域资源与环境, 30(12): 2905-2914. |
KE X L, WANG C X, GUO H X, et al., 2021. Research on ecological security early warning of the Yangtze River Economic Belt based on System Dynamics[J]. Resources and Environment of the Yangtze Basin, 30(12): 2905-2914. | |
[40] | 马艳, 钟春兰, 2018. 灰色预测模型在土地生态安全预警中的应用[J]. 统计与决策, 34(12): 82-85. |
MA Y, ZHONG C L, 2018. The application of grey prediction model in land ecological security warning[J]. Statistics and Decision-making, 34(12): 82-85. | |
[41] | 秦海旭, 段学军, 赵海霞, 等, 2020. 南京市资源环境承载力监测预警研究[J]. 长江流域资源与环境, 29(12): 2727-2736. |
QIN H X, DUAN X J, ZHAO H X, et al., 2020. Research on monitoring and early warning of resource and environmental carrying capacity in Nanjing[J]. Resources and Environment in the Yangtze Basin, 29(12): 2727-2736. | |
[42] | 孙仪阳, 李贻学, 姜怀龙, 等, 2016. 基于Markov和GM(1, 1)模型的土地利用变化预测[J]. 农业资源与环境学报, 33(3): 289-296. |
SUN Y Y, LI Y X, JIANG H L, et al., 2016. Prediction of land use change based on Markov and GM (1, 1) models[J]. Journal of Agricultural Resources and Environment, 33(3): 289-296. | |
[43] | 苏迎庆, 刘庚, 赵景波, 等, 2021. 2006-2018年汾河流域土地生态安全预警测度及时空格局演变[J]. 水土保持通报, 41(1): 144-151. |
SU Y Q, LIU G, ZHAO J B, et al., 2021. Land ecological security warning measurement and spatiotemporal pattern evolution in the Fenhe River Basin from 2006 to 2018[J]. Soil and Water Conservation Bulletin, 41(1): 144-151. | |
[44] |
苏小霞, 黎仁杰, 吴静, 等, 2022. 城市生态系统安全评估研究进展与未来发展趋势[J]. 测绘通报 (6): 25-31.
DOI |
SU X X, LI R J, WU J, et al., 2022. Research progress and future development trend of Urban ecosystem security assessment[J]. Surveying and Mapping Bulletin (6): 25-31. | |
[45] | 孙传谆, 王梓辰, 李景刚, 等, 2023. 基于生态系统多维特征的粤港澳大湾区国土空间生态保护修复分区研究[J]. 生态学报, 43(5): 2061-2073. |
SUN C C, WANG Z C, LI C G, et al., 2023. Study on the ecological protection and restoration zoning of the land space in the Guangdong Hong Kong Macao Greater Bay Area based on the multidimensional characteristics of the ecosystem[J]. Journal of Ecology, 43(5): 2061-2073. | |
[46] | 谭术魁, 邹尚君, 曾忠平, 等, 2022. 基于RF-MLP集成模型的耕地生态安全预警系统设计与应用[J]. 长江流域资源与环境, 31(2): 436-446. |
TAN S K, ZOU S J, ZENG Z P, et al., 2022. Design and application of farmland ecological security early warning system based on RF-MLP integrated model[J]. Resources and Environment in the Yangtze Basin, 31(2): 436-446. | |
[47] | 王冠孝, 王伟, 张娟娟, 2023. 乡村旅游与农村人居环境的耦合协调关系及障碍因子诊断——以山西省为例[J/OL]. 干旱区地理: 1-13[2023-09-06]. |
WANG G X, WANG W, ZHANG J J, 2023. The Coupling and Coordination Relationship between Rural Tourism and Rural Human Settlements and the Diagnosis of Obstacle Factors: A Case Study of Shanxi Province[J/OL]. Geography of Arid Areas: 1-13 [2023-09-06]. | |
[48] | 王如松, 欧阳志云, 2007. 对我国生态安全的若干科学思考[J]. 中国科学院院刊, 22(3): 223-229. |
WANG R S, OUYANG Z Y, 2007. Some scientific considerations on China's ecological security[J]. Journal of the Chinese Academy of Sciences, 22(3): 223-229. | |
[49] | 吴朋, 董会忠, 张峰, 2016. 基于熵权物元可拓模型的山东半岛蓝色经济区生态安全预警[J]. 科技管理研究, 36(15): 99-104. |
WU P, DONG H Z, ZHANG F, 2016. Ecological security early warning of Shandong Peninsula Blue Economic Zone based on entropy weighted matter element extension model[J]. Research on Science and Technology Management, 36(15): 99-104. | |
[50] | 吴华安, 曾波, 彭友, 等, 2018. 基于多维灰色系统模型的城市人口密度预测[J]. 统计与信息论坛, 33(8): 60-67. |
WU H A, ZENG B, PENG Y, et al., 2018. Urban population density prediction based on multidimensional grey system model[J]. Forum on Statistics and Information, 33(8): 60-67. | |
[51] | 魏小衬, 李陇堂, 2021. 基于DPSIR模型的西北干旱风沙区旅游生态安全预警研究——以宁夏回族自治区中卫市为例[J]. 生态经济, 37(6): 134-139. |
WEI X C, LI L T, 2021. A study on the early warning of tourism ecological security in northwest arid and sandy areas based on DPSIR model: Taking Zhongwei City, Ningxia Hui Autonomous Region as an example[J]. Ecological Economy, 37(6): 134-139. | |
[52] | 王焰新, 2022. 发展绿色低碳产业推进生态长江建设[J]. 环境与可持续发展, 47(1): 18-19. |
WANG Y X, 2022. Developing green and low-carbon industries to promote the construction of the ecological Yangtze River[J]. Environment and Sustainable Development, 47(1): 18-19. | |
[53] | 向文, 涂建军, 李琪, 等, 2018. 基于灰色预测模型的长江经济带城市土地生态安全预警[J]. 生态科学, 37(2): 78-88. |
XIANG W, TU J J, LI Q, et al., 2018. Early warning of urban land ecological security in the Yangtze River Economic Belt based on grey prediction model[J]. Ecological Science, 37(2): 78-88. | |
[54] | 易武英, 李威, 苏维词, 等, 2017. 基于改进突变级数法的典型喀斯特峰丛洼地生态安全预警评价——以贵州省平塘县19个乡镇为例[J]. 农业科学研究, 38(3): 11-16. |
YI W Y, LI W, SU W C, et al., 2017. Ecological security early warning evaluation of typical karst peak cluster depression based on improved mutation progression method: A case study of 19 townships in Pingtang County, Guizhou Province[J]. Agricultural Science Research, 38(3): 11-16. | |
[55] | 余文波, 蔡海生, 张莹, 等, 2018. 湖北省土地生态安全预警评价及调控[J]. 环境科学与技术, 41(2): 189-196. |
YU W B, CAI H S, ZHANG Y, et al., 2018. Early warning evaluation and regulation of land ecological security in Hubei Province[J]. Environmental Science and Technology, 41(2): 189-196. | |
[56] | 应凌霄, 孔令桥, 肖燚, 等, 2022. 生态安全及其评价方法研究进展[J]. 生态学报, 42(5): 1679-1692. |
YING L X, KONG L Q, XIAO Y, et al., 2022. Research progress on ecological security and its evaluation methods[J]. Journal of Ecology, 42(5): 1679-1692 | |
[57] | 郑泽娜, 周伟, 2013. 基于主成分的河北省地市城市生态安全预警评价[J]. 中国农学通报, 29(14): 118-123. |
ZHEN Z N, ZHOU W, 2013. Principal component based early warning evaluation of urban ecological security in Hebei Province[J]. China Agricultural Bulletin, 29(14): 118-123. | |
[58] | 赵鹏宇, 薛慧敏, 2020. 基于PSR模型的能源-生态复合区生态安全预警研究——以山西省忻州市为例[J]. 水土保持通报, 40(2): 285-290, 298. |
ZHAO P Y, XUE H M, 2020. Research on ecological security early warning of energy ecological composite zone based on PSR model: Taking Xinzhou City, Shanxi Province as an example[J]. Soil and Water Conservation Notification, 40(2): 285-290, 298. | |
[59] |
张中浩, 聂甜甜, 高阳, 等, 2022. 长三角城市群生态安全评价与时空跃迁特征分析[J]. 地理科学, 42(11): 1923-1931.
DOI |
ZHANG Z H, NIE T T, GAO Y, et al., 2022. Ecological security evaluation and spatiotemporal transition characteristics analysis of the Yangtze River Delta urban agglomeration[J]. Geographic Science, 42(11): 1923-1931. |
[1] | XU Jing, LIAO Xingkai, GAN Qixu, ZHOU Maoxian. Construction of Ecological Security Pattern Based on MSPA and Circuit Theory in Gansu Section of the Yellow River Basin [J]. Ecology and Environment, 2023, 32(4): 805-813. |
[2] | HE Yanhu, GONG Zhenjie, WU Haibin, CAI Yanpeng, YANG Zhifeng, CHEN Xiaohong. Spatiotemporal Evolution of Urban Eco-efficiency and Its Influencing Factors in Guangdong-Hong Kong-Macao Greater Bay Area [J]. Ecology and Environment, 2023, 32(3): 469-480. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn