Ecology and Environment ›› 2021, Vol. 30 ›› Issue (12): 2370-2379.DOI: 10.16258/j.cnki.1674-5906.2021.12.012
• Research Articles • Previous Articles Next Articles
MA Feiyang1(), FAN Tuantuan1, SUN Xiaoping2, MING Junde1, WANG Shitong1, ZHANG Yinghao1, YAO Xin1,*(
)
Received:
2021-03-06
Online:
2021-12-18
Published:
2022-01-04
Contact:
YAO Xin
马飞扬1(), 樊团团1, 孙小平2, 明峻德1, 王世同1, 张英豪1, 姚昕1,*(
)
通讯作者:
姚昕
作者简介:
马飞扬(1996年生),女,硕士研究生,主要研究方向为湖泊有机质迁移转化。E-mail: 1315471930@qq.com
基金资助:
CLC Number:
MA Feiyang, FAN Tuantuan, SUN Xiaoping, MING Junde, WANG Shitong, ZHANG Yinghao, YAO Xin. DOM Fluorescence Characteristics and Sources in Different Regions of Dongting Lake[J]. Ecology and Environment, 2021, 30(12): 2370-2379.
马飞扬, 樊团团, 孙小平, 明峻德, 王世同, 张英豪, 姚昕. 洞庭湖不同湖区水体DOM的荧光特征及来源[J]. 生态环境学报, 2021, 30(12): 2370-2379.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.12.012
Fig. 2 Spatial distribution of A250/A365 (a), a254 (b), ASUV (c), ASUV-260 (d), FI (e), BIX (f), HIX (g), Fmax (h) and C1 (i), C2 (j), C3 (k), C4 (l) in Dongting Lake in summer
Regions | Parameters | A250/A365 | a254/(mg·L-1) | ASUV/(L·mg-1·m-1) | ASUV-260/(L·mg-1·m-1) | ρ(COD)/(mg·L-1) | ρ(DOC)/(mg·L-1) |
---|---|---|---|---|---|---|---|
The East Dongting | Mean (Range) | 5.68±0.34 (3.34-6.86) | 16.68±2.60 (10.63-28.88) | 2.72±0.10 (2.35-3.24) | 2.52±0.09 (2.18-2.99) | 4.12±0.49 (2.89-6.60) | 6.03±0.81 (4.10-9.45) |
Coefficient of variation | 0.18 | 0.11 | 0.11 | 0.11 | 0.36 | 0.40 | |
The South Dongting | Mean (Range) | 5.06±0.23 (4.50-5.94) | 10.91±0.35 (9.55-11.92) | 2.71±0.04 (2.58-2.86) | 2.52±0.04 (2.41-2.64) | 2.80±0.11 (2.37-3.06) | 4.02±0.12 (3.70-4.55) |
Coefficient of variation | 0.11 | 0.04 | 0.04 | 0.04 | 0.09 | 0.07 | |
The West Dongting | Mean (Range) | 5.33±0.17 (4.92-5.73) | 10.67±0.64 (9.52-12.26) | 2.51±0.05 (2.43-2.66) | 2.32±0.05 (2.23-2.47) | 2.83±0.12 (2.56-3.06) | 4.24±0.17 (3.90-4.61) |
Coefficient of variation | 0.06 | 0.05 | 0.04 | 0.05 | 0.08 | 0.08 |
Table 1 Comparison of absorption parameters for A250/A365, a254, ASUV, ASUV-260, ρ(COD), ρ(DOC) in three lakes of Dongting
Regions | Parameters | A250/A365 | a254/(mg·L-1) | ASUV/(L·mg-1·m-1) | ASUV-260/(L·mg-1·m-1) | ρ(COD)/(mg·L-1) | ρ(DOC)/(mg·L-1) |
---|---|---|---|---|---|---|---|
The East Dongting | Mean (Range) | 5.68±0.34 (3.34-6.86) | 16.68±2.60 (10.63-28.88) | 2.72±0.10 (2.35-3.24) | 2.52±0.09 (2.18-2.99) | 4.12±0.49 (2.89-6.60) | 6.03±0.81 (4.10-9.45) |
Coefficient of variation | 0.18 | 0.11 | 0.11 | 0.11 | 0.36 | 0.40 | |
The South Dongting | Mean (Range) | 5.06±0.23 (4.50-5.94) | 10.91±0.35 (9.55-11.92) | 2.71±0.04 (2.58-2.86) | 2.52±0.04 (2.41-2.64) | 2.80±0.11 (2.37-3.06) | 4.02±0.12 (3.70-4.55) |
Coefficient of variation | 0.11 | 0.04 | 0.04 | 0.04 | 0.09 | 0.07 | |
The West Dongting | Mean (Range) | 5.33±0.17 (4.92-5.73) | 10.67±0.64 (9.52-12.26) | 2.51±0.05 (2.43-2.66) | 2.32±0.05 (2.23-2.47) | 2.83±0.12 (2.56-3.06) | 4.24±0.17 (3.90-4.61) |
Coefficient of variation | 0.06 | 0.05 | 0.04 | 0.05 | 0.08 | 0.08 |
Fig. 4 Distributions of the contents (a) and percentages (b) of DOM fractions in East Dongting Lake (DT1-DT9), South Dongting Lake (DT10-DT15) and West Dongting Lake (DT16-DT19)
[1] |
BERTOLET B L, CORMAN J R, CASSON N J, et al., 2018. Influence of soil temperature and moisture on the dissolved carbon, nitrogen, and phosphorus in organic matter entering lake ecosystems[J]. Biogeochemistry, 139(3): 293-305.
DOI URL |
[2] |
BU G J, HE X S, LI T T, et al., 2019. Insight into indicators related to the humification and distribution of humic substances in Sphagnum and peat at different depths in the Qi Zimei Mountains[J]. Ecological Indicators, 98: 430-441.
DOI URL |
[3] |
BUTTURINI A, HERZSPRUNG P, J. L O, et al., 2020. Dissolved organic matter in a tropical saline-alkaline lake of the East African Rift Valley[J]. Water Research, 173: 115532.
DOI URL |
[4] | CHENG Y Y, WANG S L, HU S B, et al., 2015. The fluorescence characteristics of dissolved organic matter (DOM) in the seagrass ecosystem from Hainan by fluorescence excitation-emission matrix spectroscopy[J]. Spectroscopy & Spectral Analysis, 35(1): 141-145. |
[5] |
CHEN W, WESTERHOFF P, LEENHEER J A, et al., 2015. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 37(24): 5701-5710.
DOI URL |
[6] |
DAI M L, WANG J, ZHANG M B, et al., 2017. Impact of the Three Gorges Project operation on the water exchange between Dongting Lake and the Yangtze River[J]. International Journal of Sediment Research, 32(4): 506-514.
DOI URL |
[7] |
ELENA F, ANDREY S, OLGA Y, et al., 2019. Biodegradation of humic substances by microscopic filamentous fungi: Chromatographic and spectroscopic proxies[J]. Journal of Soils and Sediments, 19(6): 2676-2687.
DOI URL |
[8] | FANG F, YANG Y, GUO J S, et al., 2011. Three-dimensional fluorescence spectral characterization of soil dissolved organic matters in the fluctuating water-level zone of Kai County[J]. Frontiers of Environmental Science & Engineering in China, 5(3): 426-434. |
[9] | GOU X Y, ZHANG P Y, SONG Y H, et al., 2017. Novel insights into the coagulation process for pharmaceutical wastewater treatment with fluorescence EEMs-PARAFAC[J]. Water Science & Technology, 76(12): 3246-3257. |
[10] | GRAEBER D, GOYENOLA G, MEERHOFF M, et al., 2015. Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments[J]. Hydrology & Earth System Sciences Discussions, 12(1): 135-175. |
[11] |
JIAN Z J, XU J, HUANG X L, et al., 2021. Optical Absorption Characteristics, Spatial Distribution, and Source Analysis of Colored Dissolved Organic Matter in Wetland Water around Poyang Lake[J]. Water, 13(3): 274-274.
DOI URL |
[12] | LAI X, JIANG J, HUANG Q, 2013. Effects of the normal operation of the Three Gorges Reservoir on wetland inundation in Dongting Lake, China: A modelling study[J]. International Association of Scientific Hydrology Bulletin, 58(7): 1467-1477. |
[13] | LAO X Y, YUAN J, LIU Y, et al., 2019. Sources, Characteristics and Transformation Dynamics of Fluorescent Dissolved Organic Matter in the Silin Reservoir[J]. Environmental Science, 40(3): 1209-1216. |
[14] | LI L L, JIANG T, LU S, et al., 2014. Using ultraviolet-visible (UV-Vis) absorption spectrum to estimate the dissolved organic matter (DOM) concentration in water, soils and sediments of typical water-level fluctuation zones of the Three Gorges Reservoir areas[J]. Environmental Science, 35(9): 3408. |
[15] | LI Y P, ZHANG L, WANG S R, et al., 2016. Composition, structural characteristics and indication of water quality of dissolved organic matter in Dongting Lake sediments[J]. Ecological Engineering, (97): 370-380. |
[16] |
MA R H, PAN D L, DUAN H T, et al., 2009. Absorption and scattering properties of water body in Taihu Lake, China: backscattering[J]. International Journal of Remote Sensing, 30(9): 2321-2335.
DOI URL |
[17] |
MOSTOFA K M G, YOSHIOKA T, KONOHIRA E, et al., 2007. Dynamics and Characteristics of Fluorescent Dissolved Organic Matter in the Groundwater, River and Lake Water[J]. Water, Air, and Soil Pollution, 184(1-4): 157-176.
DOI URL |
[18] | NIE M H, YAN C X, YANG Y, et al., 2017. Fluorescence Characterization of Fractionated Colloids in Wastewaters Received by Huangpu River[J]. Environmental Science, 38(8): 3192-3199. |
[19] |
OLEFELDT D, ROULET N, GIESLER R, et al., 2013. Total waterborne carbon export and DOC composition from ten nested subarctic peatland catchments-importance of peatland cover, groundwater influence, and inter-annual variability of precipitation patterns[J]. Hydrological Processes, 27(16): 2280-2294.
DOI URL |
[20] |
QIAO Z X, HU S H, WU Y G, et al., 2021. Changes in the fluorescence intensity, degradability, and aromaticity of organic carbon in ammonium and phenanthrene-polluted aquatic ecosystems[J]. RSC Advances, 11(2): 1066-1076.
DOI URL |
[21] |
SHAN G C, XU J Q, JIANG Z W, et al., 2019. The transformation of different dissolved organic matter subfractions and distribution of heavy metals during food waste and sugarcane leaves co-composting[J]. Waste Management, 87: 636-644.
DOI URL |
[22] |
WANG X Y, LI X, BAIYINBAOLIGAO X, et al., 2017. Maintaining the connected river-lake relationship in the middle Yangtze River reaches after completion of the Three Gorges Project[J]. International Journal of Sediment Research, 32(4): 487-494.
DOI URL |
[23] |
WU J H, LI G F, PENG Y K, et al., 2019. Nondestructive Assessment of Egg Freshness using a Synchronous Fluorescence Spectral Technique[J]. American Journal of Biochemistry and Biotechnology, 15(4): 230-240.
DOI URL |
[24] |
YAO X, ZHU G W, CAI L L, et al., 2012. Geochemical Characteristics of Amino Acids in Sediments of Lake Taihu, A Large, Shallow, Eutrophic Freshwater Lake of China[J]. Aquatic Geochemistry, 18(3): 263-280.
DOI URL |
[25] |
KIM Y B, AHN J H, 2017. Changes of absorption spectra, SUVA, and color in treating landfill leachate using microwave-assisted persulfate oxidation[J]. Korean Journal of Chemical Engineering, 34(7): 1980-1984.
DOI URL |
[26] | KOTHAWALA D N, ROEHM C, BLODAU C, et al., 2012. Selective adsorption of dissolved organic matter to mineral soils[J]. Geoderma, (189-190): 334-342. |
[27] | ZHOU Y Q, ZHANG Y L, NIU C, et al., 2013. Characterizing chromophoric dissolved organic matter (CDOM) in Lake Honghu, Lake Donghu and Lake Liangzihu using excitation-emission matrices (EEMs) fluorescence and parallel factor analysis (PARAFAC)[J]. Spectroscopy and Spectral Analysis, 33(12): 3286-3292. |
[28] |
ZHANG H, ZHENG Y, WANG X C, et al., 2021. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments[J]. Journal of Environmental Management, 294(8): 113041.
DOI URL |
[29] |
陈昭, 罗小波, 高阳华, 等, 2019. 基于半变异函数的重庆市地表温度空间异质性建模及多尺度特征分析[J]. 地球信息科学学报, 21(7): 1051-1060.
DOI |
CHEN Z, LUO X B, GAO Y H, et al., 2019. Modeling and Multi-Scale Analysis of the Spatial Heterogeneity of Land Surface Temperature in Chongqing based on Semi-Variogram[J]. Journal of Geo-information Science, 21(7): 1051-1060. | |
[30] | 胡光伟, 张明, 刘珍, 等, 2019. 洞庭湖水质变化及其形成机制分析[J]. 水资源与水工程学报, 30(3): 39-45. |
HU G W, ZHANG M, LIU Z, et al., 2019. Analysis of water quality change and its formation mechanism of Dongting Lake[J]. Journal of Water Resources and Water Engineering, 30(3): 39-45. | |
[31] | 江俊武, 李帅东, 沈胤胤, 等, 2017. 夏季太湖CDOM光学特性空间差异及其来源解析[J]. 环境科学研究, 30(7): 1020-1030. |
JIANG J W, LI S D, SHEN Y Y, et al., 2017. Spatial Differences of Optical Properties of CDOM and Their Source Apportionment in Taihu Lake in Summer[J]. Research of Environmental Sciences, 30(7): 1020-1030. | |
[32] | 李庚飞, 兰素恋, 刘媛, 2020. 陕西典型麦田区土壤全氮的空间异质性及其影响因素[J]. 生态科学, 39(3): 64-70. |
LI G F, LAN S L, LIU Y, 2020. Spatial heterogeneity and the influencing factors of soil total nitrogen in typical wheat fields of Shanxi province, China[J]. Ecological Science, 39(3): 64-70. | |
[33] | 翟天恩, 霍守亮, 张靖天, 2017. 沉积物中溶解性有机质的垂直分布光谱特性[J]. 环境工程学报, 11(11): 6196-6204. |
ZHAI T E, HUO S L, ZHANG J T, 2017. Spectral characteristics of vertical distribution of dissolved organic matters in sediments[J]. Chinese Journal of Environmental Engineering, 11(11): 6196-6204. | |
[34] | 栗婷婷, 宋凡浩, 冯伟莹, 等, 2018. 北京森林土壤富里酸亚组分的表征及荧光指标分析[J]. 环境科学研究, 31(7): 1275-1281. |
LI T T, SONG F H, FENG W Y, et al., 2018. Characterization and Fluorescence Index Analysis for Forest Soil Fulvic Acid Sub-Fractions in Beijing[J]. Research of Environmental ences, 31(7): 1275-1281. | |
[35] | 刘文, 严小东, 吴曼, 等, 2016. 基于分子量分布的生活污水荧光光谱研究[J]. 湖北农业科学, 55(4): 872-876, 954. |
LIU W, YAN X D, WU M, et al., 2016. Fluorescence Spectroscopy Analysis of Domestic Wastewater Based on Molecular Weight Distribution[J]. Hubei Agricultural Sciences, 55(4): 872-876, 954. | |
[36] | 吕伟伟, 姚昕, 张保华, 等, 2018. 太湖颗粒态有机质的荧光特征及环境指示意义[J]. 环境科学, 39(5): 2056-2066. |
LÜ WEI WEI, YAO XIN, ZHANG BAOHUA, et al., 2017. Fluorescent Characteristics and Environmental Significance of Particulate Organic Matter in Lake Taihu, China[J]. Environmental Science, 39(5): 2056-2066. | |
[37] | 田泽斌, 王丽婧, 李小宝, 等, 2014. 洞庭湖出入湖污染物通量特征[J]. 环境科学研究, 27(9): 1008-1015. |
TIAN Z B, WANG L J, LI X B, et al., 2014. Characteristics Analysis of Pollutant Influx and Outflux in Dongting Lake[J]. Research of Environmental Ences, 27(9): 1008-1015. | |
[38] | 王菲菲, 李琴, 王先良, 等, 2014. 我国《地表水环境质量标准》历次修订概要及启示[J]. 环境与可持续发展, 039(001): 28-31. |
WANG F F, QIN L I, WANG X, et al., 2014. Comparative Analysis and Generalization on Environmental Quality Standards for Surface Water from 1983 to 2002[J]. Environment and Sustainable Development, 039(001): 28-31. | |
[39] | 熊剑, 喻方琴, 田琪, 等, 2016. 近30年来洞庭湖水质营养状况演变特征分析[J]. 湖泊科学, 28(6): 1217-1225. |
XIONG JIAN, YU FANG QIN, TIAN QI, et al., 2016. The evolution of water quality and nutrient condition in Lake Dongting in recent 30 years[J]. Journal of Lake Sciences, 28(6): 1217-1225.
DOI URL |
|
[40] | 易雯, 2004. 《地表水环境质量标准》中氮、磷指标体系及运用中有关问题的探讨[J]. 环境保护, (08): 10-11. |
YI WEN, 2004. Discussion on N, P standard system and its applications in Environmental quality standards for surface water[J]. Environmental Protection, (08): 10-11. | |
[41] | 张光贵, 2016. 洞庭湖水体叶绿素a时空分布及与环境因子的相关性[J]. 中国环境监测, 32(4): 84-90. |
ZHANG G G, 2016. Spatial-Temporal Distribution of Chlorophyll-a and Its Correlation with Environment Factors in Dongting Lake[J]. Environmental Monitoring in China, 32(4): 84-90. |
[1] | JIANG Jing, RUAN Chengjie, CHEN Xiaoyu, WU Yi, WANG Yongchuang. Research Progress on Simulated Aging of Microplastics and Its Effects on Pollutant Adsorption [J]. Ecology and Environment, 2022, 31(11): 2263-2274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn